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In recent years, Deep Learning models have shown a great performance in complex optimization
problems. They generally require large training datasets, which is a limitation in most practical cases.
Transfer learning allows importing the first layers of a pre-trained architecture and connecting them to
fully-connected layers to adapt them to a new problem. Consequently, the configuration of the these
layers becomes crucial for the performance of the model. Unfortunately, the optimization of these
models is usually a computationally demanding task. One strategy to optimize Deep Learning models
is the pruning scheme. Pruning methods are focused on reducing the complexity of the network,
assuming an expected performance penalty of the model once pruned. However, the pruning could
potentially be used to improve the performance, using an optimization algorithm to identify and
eventually remove unnecessary connections among neurons. This work proposes EvoPruneDeepTL, an
evolutionary pruning model for Transfer Learning based Deep Neural Networks which replaces the last
fully-connected layers with sparse layers optimized by a genetic algorithm. Depending on its solution
encoding strategy, our proposed model can either perform optimized pruning or feature selection over
the densely connected part of the neural network. We carry out different experiments with several
datasets to assess the benefits of our proposal. Results show the contribution of EvoPruneDeepTL and
feature selection to the overall computational efficiency of the network as a result of the optimization
process. In particular, the accuracy is improved, reducing at the same time the number of active
neurons in the final layers.

© 2022 Published by Elsevier Ltd.
1. Introduction

Deep Learning (DL) (Goodfellow et al., 2016) is one of the most
ttractive research areas in machine learning in recent times,
ue to the great results offered by such models in a plethora
f applications. DL architectures are successfully used in many
roblems, like audio classification (Lee et al., 2009, December),
udio recognition (Noda et al., 2015), object detection (Zhou et al.,
017, May), image classification for medical analysis (Muhammad
t al., 2021) or vehicular perception (Muhammad et al., 2020).
Convolutional Neural Networks (CNNs) (Lecun et al., 1998)

onstitute the state-of-the art in image classification (Sultana
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et al., 2018, November). CNNs include two parts, the first part
is actually a feature extractor based on convolution and pooling
operations. The second part usually contains one or more fully
connected layers. In these fully-connected layers, the neuron
of each layer is connected to all the neurons of the previous
layer, which generates a large number of weights to be trained.
The design of an appropriate network for each problem is a
requirement in order to obtain a good performance. The training
process of a DL architecture is frequently time-consuming. Com-
plexity reduction maintaining the performance is an important
challenge in DL, currently attracting significant attention in the
community. Transfer Learning (TL) (Weiss et al., 2016) is usually
considered the alternative. It is very common to use a DL model
with fixed and pre-trained weights in the convolutional layers
with a dataset (like ImageNet Krizhevsky et al., 2012, December)
and then add and train several layers, named fully-connected

layers, to adapt the network to a different classification problem
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[dataset] Gómez-Ríos et al., 2019; Khan et al., 2019; Shin et al.,
016).
The architecture of fully-connected layers used for the prob-

em is a critical decision, and its design is still an open issue
n terms of the number of layers and neurons per layer (Liu,
ang, Liu et al., 2017). There are general guidelines based on the

xperience working with these layers, rather than rules to follow
or the configuration of them. Therefore, any kind of optimization
n them could provide a benefit in terms of model complexity
nd performance. The pruning approaches follow the key idea
f reducing the complexity of the model, which creates new
etworks with less computational cost for training. This idea is
ollowed in Frankle and Carbin (2019, May), which also shows
hat, in the end, the accuracy can also improve as a result of
runing.
Pruning is interpreted as removing unnecessary connections

rom the model, but learning which connections are the fittest to
mprove the performance of the model is the key point. In fact,
he selection of the best features for the problem is known as
eature Selection (FS) (Iguyon & Elisseeff, 2003). In our case, TL
llows the extraction of the features of the input data of the DL
odel. These features are the input of the fully-connected layers

hat will be trained and, as a result of that, will largely affect
he performance of the network. Nonetheless, in many cases,
he problem that is formulated to learn these features is usually
ifferent, sometimes more complex, than the one at hand and,
herefore, not all the learned patterns would be required. For that
eason, FS gives rise to an interesting option to select and retain
he subset of all features that lead to an improved performance
f the model (Yildirim et al., 2018).
In pruning scenarios, the main aim of most of the tradi-

ional pruning techniques mainly aim at reducing the number
f trainable parameters of the network, at the cost of a lower
erformance. They seek to control the performance degradation
esulting from the process, but it is not their priority. Further-
ore, they locally optimize parts of the network rather than
earching for globally optimal pruning policies, yielding usually
uboptimal pruned subnetworks with a lower performance. An-
ther disadvantage of these pruning proposals is the fact that,
s the pruning affect all layers, the complete network must be
rained again, hence obtaining no advantages from the TL process.
t could be useful to have a pruning technique that prioritizes
esults over complexity reduction, targeting a global performance
mprovement of the network while reducing its complexity.

Transforming the fully-connected layers into a sparse repre-
entation, in which each connection could be active or inactive,
ould be used to prune neural networks. Following this approach,
oth pruning and FS can be seen as optimization problems, in
hich the target is to obtain the active set of connections that
roduce the best performance. This optimization problem can
e globally tackled by optimization algorithms like Evolution-
ry Algorithms (Back et al., 1997) (EAs). They have been suc-
essfully applied to many complex optimization problems. Even
hough they cannot guarantee the achievement of the optimum
or the problem at hand, they obtain good results with limited
esources and reasonable processing time. Another advantage is
heir versatility: several of them, like genetic algorithms (Gold-
erg, 1989) (GAs) allow optimizing solutions with different repre-
entations (Chambers, 2000). The spectrum of problems in which
As can be used is very wide. EAs have been traditionally applied
o optimize neural networks (Iba, 2018), but their usage in DL
etworks to improve DL networks (Martinez et al., 2021), to train
hem (Mohapatra et al., 2022), and to create new DL networks
rom scratch (Elsken et al., 2019b) is more recent. The use of EA’s
s mainly oriented towards optimizing a complete network. How-

ver, in this paper, our aim is to adapt the fully-connected layers

60
(the only trained for the problem to solve using TL) to improve
the accuracy in the predictions, together with the complexity
reduction. Our main hypothesis is the convenience of use of EAs
to prune the fully-connected layers via a sparse representation.

We propose an evolutionary pruning model based on TL for
deep neural networks, Evolutionary Pruning for Deep Transfer
Learning (EvoPruneDeepTL). EvoPruneDeepTL can be applied to a
DL model that resorts to TL to tackle a new task. EvoPruneDeepTL
combines sparse layers and EA, consequently, neurons in such
layers are pruned to adapt their sparsity pattern to the ad-
dressed problem. EvoPruneDeepTL is able to efficiently explore
the neuron search space (to discover coarsely grained solutions)
or, alternatively, in the connection search domain (fine-grained
solutions).

An important aspect to analyze in EvoPruneDeepTL is that one
of its solution encoding schemes effectively leads to a feature se-
lection mechanism, in which we deactivate the extracted features
and the EA evolves these features to learn which ones fit best as
predictors for the given problem.

EvoPruneDeepTL’ goals include flexibility and adaptability.
EvoPruneDeepTL has been designed to be flexible, and the au-
tomatic configuration of the network can be applied to different
pre-trained networks, used as feature extractors, and different
fully-connected layers. This make our proposal capable of tackling
different problems. The optimization in connections that Evo-
PruneDeepTL generates allows the model to be adaptable to the
specific dataset to be modeled. Thus, when the dataset suffers a
change, the resultant configuration will also be adapted to the
new circumstances.

To assess the performance of EvoPruneDeepTL, we have con-
ducted an extensive experimentation that leads to several valu-
able insights. To begin with, experimental results showcase the
behavior and effectiveness of EvoPruneDeepTL in terms of preci-
sion and in terms of reduction of the complexity of the network.
Thanks to the flexibility of EvoPruneDeepTL, it is applied to per-
form either pruning or FS. Both cases improve the accuracy of
the network when the comparison is made against reference
models and CNN pruning methods from the literature. Moreover,
in most cases, the FS scheme achieves a better performance than
the pruning scheme in terms of the accuracy of the network.
Furthermore, the network pruned by the FS scheme also achieves
a significantly reduced number of connections in its fully con-
nected part, contributing to the computational efficiency of the
network. We have also included several experiments showing
the flexibility of the model, both changing the feature extractor
and showing how changes in the dataset implies a modification
in the final configuration obtained by EvoPruneDeepTL. In short,
this extensive experimentation is used to provide answer to
the following six questions as the thread running through this
experimental study:

(RQ1) Which is the performance of EvoPruneDeepTL against
fully-connected models?

(RQ2) Which would be better, to remove neurons or connec-
tions?

(RQ3) Which is the performance of EvoPruneDeepTL when com-
pared to other efficient pruning methods?

(RQ4) Which would be better, the use of pruning of fully-
connected layers or Feature Selection?

(RQ5) How does EvoPruneDeepTL perform when applied to dif-
ferent pre-trained networks?

(RQ6) Can EvoPruneDeepTL adapt efficiently their pruned knowl-
edge to changes in the modeling task, showing robust-

ness?
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The rest of the article is structured as follows: Section 2 ex-
oses related work to our proposal present in the literature. Sec-
ion 3 shows the details of the proposed EvoPruneDeepTL model.
ection 4 presents our experimental framework. In Section 5,
e show and discuss the EvoPruneDeepTL’s results of the ex-
eriments of pruning, feature selection and against efficient CNN
runing methods of the literature. Moreover, EvoPruneDeepTL is
ested with different extractor features and with different varia-
ions of datasets in this section. Section 6 follows by summarizing
he advantages and drawbacks of our proposal when compared
o other pruning approaches. Finally, Section 7 draws the main
onclusions stemming from our work, and outlines future work
eparting from our findings.

. Related work

The purpose of this section is to make a brief review of
ontributions to the literature that link to the key elements of
ur study: Transfer Learning (Section 2.1), Neural Architecture
earch (Section 2.2), CNN pruning (Section 2.3), Evolutionary Al-
orithms (Section 2.4) and Feature Selection with Deep Learning
Section 2.5).

.1. Transfer learning

TL (Pan & Yang, 2010) is a DL mechanism encompassing a
road family of techniques (Tan et al., 2018, October). Arguably,
he most straightforward method when dealing with neural net-
orks is Network-based deep transfer learning, in which a previous
etwork structure with pre-trained parameters in a similar prob-
em is used. It offers good results by the behavior of DL models, in
hich first layers detect useful features on the images, and later

ayers strongly depend on the chosen dataset and task. As finding
hese standard features on the first layers seems very common
egardless of the natural image datasets, its trained values can
e used for different problems (Yosinski et al., 2014, December).
raining DL models from scratch is usually time-consuming due
o the great amount of data in most cases. TL gives some benefits
hich make it a good option for DL: reduction of time needed for
raining (Sa et al., 2016), better performance of the model and less
eed of data.
TL has been applied to several real-world applications, such

s sound detection (Jung et al., 2019, May) or coral reef classi-
ication (Gómez-Ríos et al., 2019). Moreover, in Tajbakhsh et al.
2016) two different approaches for TL are discussed: fine-tuning
r full training. They demonstrated that, for medical reasons,
pre-trained CNN with adequate fine-tuning performed better

n terms of accuracy than a CNN trained from scratch. Another
pproach of TL is presented in Mehdipour Ghazi et al. (2017), in
hich an optimization of TL parameters for plant identification is
roposed.
There are different deep neural networks proposed in the

iterature. One of the most popular is ResNet, which uses resid-
al learning to improve the training process, obtaining better
erformance than other models (He et al., 2016, June). ResNet
odels are characterized by the use of deeper neural networks
ithout loss of information due to their architecture. Differ-
nt ResNet models with TL have been used in several appli-
ations (Scott et al., 2017), such as medical classification like
ulmonary nodule (Nibali et al., 2017) and diabetic retinopa-
hy classification (Wan et al., 2018). Moreover, other networks
ave shown great performance when used with TL, such as
enseNet (Huang et al., 2017, July) and VGG (Simonyan & Zisser-
an, 2015, May). An example of DenseNet with TL is presented

n Aneja and Aneja (2019, July), which shows that this network

rchitecture is able to achieve a great result for the task at

61
hand when combined with TL. Lastly, VGG has also shown an
outstanding performance when it is used in combination with
TL. An example is presented in Wen et al. (2019, May) in which
a pre-trained VGG-19 network is used to solve a fault diagnosis
problem.

2.2. Neural architecture search

The appropriate design of a neural network is a key point
to solve DL problems. Nevertheless, finding the best architecture
that optimally fits the data and, as a result of that, gives the best
outcome for the problem is extremely difficult. Recently, the term
Neural Architecture Search, NAS, has obtained a great importance
in this field. The objective of NAS is the automatic search for the
best design of a NN to solve the problem at hand.

The first work in this field is presented in Stanley and Mi-
ikkulainen (2002) in the beginning of this century, in which they
demonstrate the effectiveness of a GA to evolve topologies of NN.

In Zoph et al. (2018, June), the authors design the NASNet
architecture, a new search space to look for the best topology for
the tackled problem. Moreover, in Liu, Zoph et al. (2018, Septem-
ber) the authors propose to search for structures in increasing
order of their level of complexity, while learning a surrogate
model to guide the search through structure space.

NAS methods usually rely on Reinforcement Learning, RL, and
EA, like (Zoph et al., 2018, June) or (Liu, Simonyan et al., 2018,
April), in which the authors explore the search space using a
hierarchical genetic representation. Another example of RL for
NAS is shown in Kokiopoulou et al. (2020, August). The authors
propose a novel method that, by sharing information on multiple
tasks, is able to efficiently search for architectures.

NAS can also be viewed as a multi-objective problem. Among
these methods, one of them is presented in Elsken et al. (2019a,
May), in which the authors propose a multi-objective for NAS that
allows approximating the entire Pareto-front of architectures.
Another example is Neural Architecture Transfer (Lu et al., 2021),
that allows to overcome a common limitation of NAS, that is
requiring one complete search for each deployment specification
of hardware or objective. They use an integrated online transfer
learning and a many-objective evolutionary search procedure.

Recently, one of the most well-known multi-objective EA,
NSGA-II, has been used for NAS (Lu et al., 2019, July), called
NSGA-Net. This novel proposal looks for the best architecture
through a three-step search: an initialization step from hand-
crafted architectures, an exploration step that performs the EA
operators to create new architectures, and finally an exploitation
step that utilizes the knowledge stored in the history of all the
evaluated architectures in the form of a Bayesian Network.

Lastly, there are more advanced techniques of NAS and EA
given by Real et al. (2019, January), in which a new model for
evolving a classifier is presented, and by Real et al. (2020, July), in
which the authors propose AutoML-Zero, an evolutionary search
to build a model from scratch (with low-level primitives for
feature combination and neuron training) which is able to get a
great performance over the addressed problem.

2.3. CNN pruning

The main reason to optimize the architecture of a deep neural
network is to reduce its complexity. That reduction can be done
in different ways (Long, Ben and Liu, 2019). One of them is
by designing compact models from scratch instead of resort-
ing to architectures comprising multiple layers. Another strategy
is via weights-sharing (Ullrich et al., 2017, April). An alterna-
tive method to reduce the complexity of DL models is low-rank

factorization (Long, Ben, Zeng et al., 2019), based on a matrix
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ecomposition to convolutional layers to estimate parameters.
owever, one of the most popular is Network Pruning. The ob-
ective of pruning is to remove unnecessary parameters from a
eural network, so that they do not participate during training
nd/or inference. It can be done in the convolutional phase on
he channels, kernels and weights or even in the fully connected
hase on the neurons. In Masson et al. (2021) they show a
lassification of pruning methods for channels. They categorize
he pruning methods for channel reduction, and they also specify
he criteria used to select these channels: based on weights or
ased on feature maps.
We have seen that network pruning has achieved a great

mportance in the literature as many researchers have applied
ifferent techniques to simplify a CNN using a pruning scheme.
n Liu et al. (2019, May) they classify the pruning methods in
nstructured and structured pruning, and make a review of all the
tate-of-art structured pruning methods. Unstructured pruning
ethods remove weights without following any order. For the
tructured methods, there are some rules or even constraints
hich define how the pruning is done (Anwar et al., 2017). Typi-
ally, the pruned layers appertain to the convolutional phase (Luo
t al., 2017, October). In our proposal, we instead apply a struc-
ured pruning scheme to the fully-connected layers.

Among pruning methods, the value-based weight pruning (Han
t al., 2015, Dececember) and neuron pruning (Srinivas & Babu,
015, September) have arisen as the most used, particularly due
o their simplicity. The logic behind this pruning methods is
traightforward: a certain amount (%) of the weights or neurons
hat contribute less to the final trained model are removed from
he architecture. This makes the network quicker to perform
nference and endows it with better generalization capabilities.
owever, multiple pruning and retraining steps demonstrated
hat it is possible to recover fully or partially the knowledge
ost in the pruning phase. Further along the series of pruning
pproaches published to date, Polynomial Decay (Zhu & Gupta,

2018, April) is a scheduled pruning method that considers that
a higher amount of weights can be pruned in early stages of
pruning, while systematically less amount of weights should be
pruned in late stages. Between pruning steps, the network is
retrained for some epochs. An implementation of the discussed
methods can be found for Tensorflow.1

Pruning a CNN model reduces its complexity, but sometimes
leads to a decrease of the performance of the model, although
there are some proposals that reduce the complexity of the model
with no loss of accuracy (Han et al., 2016, May).

Pruning a neural network can be conceived as an optimization
method in which we start from the original vector, and con-
nections/neurons are decision variables whose value is evolved
towards optimizing a given objective. In this context of evolu-
tion of neural networks, evolutionary algorithms for evolving DL
architectures have been applied (Iba, 2018). While this combi-
nation of EA and DL models seemed to be a great scheme for
the optimization of DL models, especially for CNN network, the
optimization of DL models is still an open problem (Liu, Wang,
Liu et al., 2017). Many proposals have been published about this
problem like in Martinez et al. (2021), where they make a review
of proposals using EAs for optimizing DL models, prescribing
challenges and future trends to effectively leverage the synergy
between these two areas.

Researchers have presented a great variety of proposals about
the optimization of DL models using EA, most commonly for CNN.
In Martín et al. (2018), the authors developed EvoDeep, an EA
with specific mutation and crossover operators to automatically

1 https://www.tensorflow.org/model_optimization/guide/pruning, Tensorflow
runing. Last access: 28/01/2022.
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create DL models from scratch. Moreover, in Real et al. (2017,
August) a novel evolution approach to evolve CNN models using
a GA was proposed. Another example of the optimization of CNN
was developed in Assunção et al. (2019), in which a GA was
presented for the optimization of the topology and parameters
of the CNN.

In our proposal, we improve the performance of the models
using a TL approach to extract the features of the images and
apply a reduction of the fully-connected layer using a GA to
optimize a sparse layer.

2.4. Evolutionary algorithms for CNN pruning

In the previous section, several works of CNN pruning have
been presented, but none of them use an EA to prune. In this
section, we mention some studies present in the literature which
have used an EA in order to prune a CNN model. To begin with,
in Liu, Wang and Qiao (2017, February), the authors propose a
sparse approach to reduce CNN complexity. EAs are also a good
way to prune CNN. In Mantzaris et al. (2011), a first attempt
of pruning and GA is proposed for a medical application. They
use a GA to search for redundancy factors in a neural network.
Moreover, in Samala et al. (2018) another EA is presented to
prune deep CNN for breast cancer diagnosis in digital breast to-
mosynthesis. A combined approach of EA and sparse is proposed
by Wang et al. (2020), in which a GA and sparse learning are
applied to a scheme of network channel pruning in the convo-
lutional scheme of the CNN. For pruning CNN, not only GAs but
also other algorithms are used, like Differential Evolution (DE).
In Salehinejad and Valaee (2021) the authors propose to use a
Differential Evolution algorithm to prune the convolutional phase
and the fully-connected phase of some Deep CNN, obtaining a
reduction of the model but a small decrease of its performance.

However, all previous works are focused on reducing the com-
plexity, using the EA to reduce the accuracy loss of the pruned
network. Also, many of them try to reduce the whole model,
changing the complete architecture and making the pre-trained
values unusable. The re-training of the network may be a time-
consuming task, so we assume that TL is useful in this context.
We therefore maintain the original architecture with pre-trained
values. Our model focuses on improving the performance of the
model by pruning connections of the fully-connected layers using
a GA to evolve the connections. In this environment, the search
space of the GA is narrower and a faster convergence of the
algorithm may be reached.

In addition to that, in the field of neural architecture search,
more advanced techniques have been developed. Among them,
in Section 2.2, either (Real et al., 2019, January) and (Real et al.,
2020, July) have been commented. Nonetheless, they also have a
great relevance in this section. The first one evolves a classifier,
whereas in the second one, the authors develop an evolutionary
search to build a model from scratch.

2.5. Feature selection and deep learning

One of the advantages of using TL is reducing the required time
to train a DL architecture. Nonetheless, the result of this process
may lead to recognize patterns that are not useful to address the
problem at hand. For that reason, once TL is applied, a FS process
to obtain the best features might lead to a better performance of
the neural network (Roy et al., 2015, July).

An example of this process is presented in an arrhythmia
detection task addressed in Yildirim et al. (2018), in which the
authors propose a mechanism based on feature extraction and
selection to improve and ultimately obtain one of the best results

https://www.tensorflow.org/model_optimization/guide/pruning
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Fig. 1. Representation of both architectures.

or this problem. In relation to medical problems, the combina-
ion of FS and DL is also used in cancer diagnosis and digital breast
omosynthesis. In Samala et al. (2018) they use a TL approach and
hen a FS process followed by an evolution through a GA that
eads to a reduced network with the same performance. Another
xample is described for remote sensing scene classification, in
hich the FS makes an impact to improve the performance of
he neural network models (Zou et al., 2015), as the authors
ormulate the FS problem as a feature reconstruction problem.
heir iterative method selects the best features to solve this
roblem as the discriminative features.
In our proposal, if we assume that TL is applied and we only

ave one fully-connected layer, then the pruning is made in
elation to the extracted features of the network and, therefore,
e are making a selection of the features that adjust at best to
he tackled problem.

. Evolutionary Pruning for Deep Transfer Learning

This section describes EvoPruneDeepTL, which is a model that
eplaces fully-connected layers with sparse layers optimized us-
ng a genetic algorithm in a TL approach. Section 3.1 gives a
otion of the concept of sparse layer and the description of
voPruneDeepTL. In Section 3.2, we define the evolutionary com-
onents of EvoPruneDeepTL. The description of the process of
reating the network and how the pruning is made is shown in
ection 3.3.

.1. Global scheme of Evolutionary Pruning for Deep Transfer Learn-
ng

In a fully-connected layer, all neurons of each side are con-
ected. Sometimes, all these connections may not be necessary,
nd the learning process can be reduced. For that reason, the
ully-connected layer can be replaced by a sparse layer, in which
ome connections are eliminated.
In this work, our goal is to improve the performance of the

eural network and, at the same time, to decrease the maximum
umber of connections or neurons. To this end, we use a sparse
ayer, which is composed of a subset of all connections of a
ully-connected layer.

Fig. 1(a) shows the fully-connected network architecture,
hile Fig. 1(b) represents the sparsely connected architecture
ith a connection matrix of 4 × 3 because we have 3 classes
blue circles) and 4 neurons of the previous layer.

In this section, we discuss the basic notions of pruning
nd sparse layers. Moreover, the encoding strategies of
63
EvoPruneDeepTL are described, together with the decoding pro-
cess of the chromosome encoding the pruning pattern (genotype)
that yields the pruned sparse layer(s) (phenotype). Nonetheless,
for the sake of a clear vision of EvoPruneDeepTL, Fig. 2 shows a di-
agram that exposes its general components. We next complement
the detailed description provided in the following subsections
with a short, albeit illustrative introduction to the key parts and
overall workflow of EvoPruneDeepTL:

First, the TL process departs from a source dataset modeled by
a CNN model, which adjusts the value of its coefficients by means
of its learning algorithm. Then, those parameters are transferred
to another network aimed to model a target task. This implicitly
assumes that both tasks are correlated with each other, such
that the knowledge delivered from the source to the target task
via the transferred network weights can positively contribute to
the learning process of the target task. These weights are kept
fixed, frozen, in this study. Then, EvoPruneDeepTL specializes the
fully-connected part of the neural network of the target task by
resorting to a GA. This metaheuristic wrapper prunes unnecessary
neurons of these layers driven by the improvement of a perfor-
mance measure (e.g. accuracy). The outcome of the process is a
pruned network with a potentially improved accuracy by virtue
of an optimized pruning mask.

In this study, we propose a novel method to prune the neu-
rons, that considers the removal of both single connections and
groups of connections of the input connections of a specific
neuron, as can be observed in Fig. 3. Fig. 3(b) shows a sparse
layer that leads to the encoding strategy used in this work. This
encoding, which is represented by the chromosome of the GA, is
required to know exactly which connections are removed.

EvoPruneDeepTL model utilizes a GA designed to optimize the
connections of a sparse layer. The GA takes each individual as a
mask for the neural network and creates a sparse layer activating
from the mask. This optimized mask gives rise to a pruned neural
network suitable for the problem under consideration.

The optimization is performed using both methods, either by
groups of connections or by single connections. The genome rep-
resentation of each chromosome of the GA is binary-coded and
represents the active neurons or the active connections. The GA
volves the configuration of the network towards its best pruned
ariant in terms of accuracy. Next, we describe both encoding
trategies:

• Neurons: each gene of the chromosome represents the
number of active neurons. A value 1 in position i means
that the neuron i is active, and a 0 that is inactive. A non-
active neuron implies that all the input connections are
removed both in training and inference times. The length
of the chromosome in this case is the number of neurons of
the sparse model.
• Connections: each gene represents the connection between

the layers. The interpretation of the binary values is as
follows: if a gene is 1, the connection between the cor-
responding layers exists, otherwise, that connection does
not exist. Therefore, the length of the chromosome is the
maximum number of connections, noted as D = D1 × D2,
where D1 is the number of neurons in the previous layer,
and D2 is the number of neurons in that layer.

An example of both encoding strategies is shown in Fig. 3. In
oth cases, the pruned connections are from the input on the
ayer, i.e. the right layer. The left image shows a representation
f neuron-wise encoding, in which a group of neurons is selected
o be active and the rest are pruned. The right image depicts how
ingle connections are pruned.
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Fig. 2. Diagram of EvoPruneDeepTL.
Fig. 3. Representation of encoding strategies.

.2. Evolutionary components of EvoPruneDeepTL

In this subsection, we introduce the evolutionary components
f EvoPruneDeepTL. It is a steady-state genetic algorithm, which
eans that two new individuals, called offsprings, are created in
ach generation, for the previous mentioned encoding strategies
neuron encoding vs single connection encoding, Fig. 3): in each
teration two individuals are selected and crossed, producing two
ffsprings that could also be mutated. The offspring candidates
re introduced in the population only if they improve the worst
andidates in the population, replacing them.
64
As previously mentioned, in EvoPruneDeepTL each chromo-
some is a binary array and each gene represents a connection
between two layers. Each generation follows the classical scheme
of selection, crossover, mutation and replacement. The best solu-
tions found during the evolutionary search are kept in a popula-
tion of individuals. Next, we describe the different components:

Selection: the implemented selection operator is Negative As-
sorting Mating (NAM) (Fernandes & Rosa, 2001, May). The first
parent is picked uniformly at random, while the second parent
is selected between three possible candidates. These candidates
are also picked uniformly at random from the population. The
candidate with higher Hamming distance from the first parent
is chosen as the second parent, thereby ensuring that the re-
combined parents are diverse. This selection method allows for
a higher degree of exploration of the search space.

Crossover: EvoPruneDeepTL uses the uniform crossover oper-
ator shown in Expression (1). Given two parents P and Q, where
P = {pi}Di=1 and Q = {qi}Di=1. Then two offsprings P′ = {p′i}

D
i=1 and

Q′ = {q′i}
D
i=1 are created following the equations:

pi′ =
{
pi if r ≤ 0.5
qi otherwise

q′i =
{
qi if r ≤ 0.5
pi otherwise

(1)

where r is the realization of a continuous random variable with
support over the range [0.0, 1.0]. This operator takes two parents
P and Q of length D and creates two new offspring P′ and Q′ of the
same size. Each new offspring is composed of the parents genes.
Each gene (position of the new array) is set equal to the gene of
the first or second parent. This process is repeated until the whole
offspring is composed.

Mutation: EvoPruneDeepTL adopts the so-called single point
mutation. A mutation probability for each individual is defined
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y pmut . Then, a gene of that individual is uniformly randomly
selected and its bit is flipped , i.e., if the mutation is performed,
then that neuron or connection changes its value, which implies
that the connection or the neurons is activated or deactivated.
In this operator, pmut is the value that establishes the probability
that a mutation is performed.

Replacement Strategy: at the end of every generation, the two
offsprings resulting from the crossover and mutation operators
compete against the worst two elements. As a result, the pop-
ulation is updated with the best two individuals among them,
i.e. those whose fitness value is better. EvoPruneDeepTL main-
tains a pool of four individuals: two offsprings and the two
worst individuals selected from the population. Then, the best
two of them are in the new population. The criterion to select
the best two is based on the fitness as the best of them are
selected. In case of same values, the individuals with fewer active
neurons/connections are those selected to be retained in the new
population.

Initialization: the genes composing the individuals are initial-
ized to 0 or 1 as per the following probabilistic condition with a
pone probability:

Ii =
{
1 if r ≤ pone
0 otherwise (2)

where r is the realization of a uniform continuous random vari-
able with support [0.0, 1.0].

Evaluation of individuals: the fitness value of every individual
s given by the accuracy over a test dataset of the neural net-
ork pruned as per the decoded individual, and trained over the
raining dataset of the task at hand. Each individual, named p,
s decoded to yield a sparse neural network, which we hereafter
efer to SparseNetp. Then this network is trained as previously
ommented over the train dataset, giving the TrainedSparseNetp
network. Lastly, the test dataset is evaluated in this network, pro-
ducing the fitness of the individual, which we call ChildFitnessp.

Algorithm 1 shows the pseudocode of EvoPruneDeepTL. First,
we need to understand what EvoPruneDeepTL requires to start its
evolution process, and what results from this process. The input
of EvoPruneDeepTL is determined by:

• Dataset and task to be modeled.
• Configuration of the GA: parameters needed for the algo-

rithm.
• Configuration of the network: parameters needed for the

network.
• Feature extractor: a pre-trained neural network used for fea-

ture extraction and TL, e.g., ResNet-50 trained over Imagenet
or any other available architecture alike.

The algorithm starts by initializing the individuals of the pop-
ulation (line 1) using the previous operator and then evaluating
them (line 2). The evolutionary process is performed in lines 3–
15. Two parents are selected using the NAM operator (line 4)
and then the two offsprings are generated using the crossover
operator (line 5). If the mutation condition is met, then mutation
is performed (lines 6–8). The child population is now evalu-
ated (lines 9–14). The evaluation is held over three steps, in
which each individual is decoded (variable SparseNetp in line 10),
and then the network created with its configuration is trained
(named TrainedSparseNetp in line 11) using the train dataset
and then evaluated (called ChildFitnessp in line 12) over the test
dataset. Lastly, the replacement strategy is triggered (line 15).
The stopping criterion is the evaluation of a maximum number
of networks.
65
Algorithm 1: EvoPruneDeepTL
Input : Dataset, configuration of the GA, configuration of

the network and feature extractor
Output: Best pruned network

1 Initialization of individuals of the population using the
initialization operator;

2 Evaluation of the initial population (see lines 9-14);
3 while evaluations < max_evals do
4 Parent selection using NAM operator;
5 Generate offsprings using crossover operator;
6 if rand() < p_mut then
7 Perform mutation using mutation operator;
8 end
9 for each child p in children population do

10 SparseNetp ← Create sparse network using the
decoded individual of the population;

11 TrainedSparseNetp ← Train SparseNetp using train
dataset;

12 ChildFitnessp ← Accuracy of TrainedSparseNetp
evaluated in test dataset;

13 evaluations+=1;
14 end
15 Replacement Strategy: child population vs worst

individuals of population;
16 end

3.3. EvoPruneDeepTL network

This subsection is devised to fully understand the components
associated with the networks that involve EvoPruneDeepTL. Evo-
PruneDeepTL stands for the usage of transfer learning, which
means that the convolutional phase before the fully-connected
layers is imported from other pre-trained model. Thus, the chosen
CNN works as a feature extractor, i.e, obtains the main feature
or characteristics for the task at hand. In our study, we have
chosen ResNet-50 as feature extractor, although others can also
be used, such as VGG or DenseNet. In Section 5, a comparison
between these three extractors is made to analyze the goodness
of EvoPruneDeepTL with them.

These features are used as the input for the fully-connected
layers. We introduce two different compositions of these fully-
connected layers:

• Single fully-connected layer: it is composed of a single layer
with 512 neurons, followed by the output layer.
• Two fully-connected layers: this architecture has two layers

of 512 each, and the output layer connecting the output of
the last fully connected layer to as many neurons as the
number of classes to be discriminated in the dataset.

EvoPruneDeepTL stands for the usage of sparse layers. By
definition, a sparse layer has few active connections. A key object
in this environment is the adjacency matrix. This matrix is key
in our study because it is used to create a sparse layer from it.
It allows decoding an individual evolved via the GA to yield, as a
result, a neural network with a sparse layer. Taking a look about
this matrix, EvoPruneDeepTL performs the pruning in relation to
the connections/neurons that compose the input of the neuron.
Consequently, there may be some neurons of the second layer
which have no connection from the previous layer.

Based on the two network architectures described above, we
consider different scenarios where EvoPruneDeepTL can be ap-
plied. We present these scenarios in the following figures, in
which the red-dashed lines indicate the effects of the pruning.
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Fig. 4. Visualization of pruning architectures with one layer.
Fig. 5. Visualization of pruning architectures with two layers.
n addition to that, we have grouped the models in terms of the
umber of the last layers. The first model is the application of the
voPruneDeepTL to prune model with one layer, which is shown
n Fig. 4(a). Moreover, when the pruning is made with networks
ith two layers, three cases come up: pruning the first layer (see
ig. 5(a)), pruning the second layer (see Fig. 5(b) for these cases),
r both at the same time, which is the combination of the last two
ases. Lastly, EvoPruneDeepTL is also able to prune the charac-
eristics that are extracted from the network. This approximation
s called Feature Selection because EvoPruneDeepTL prunes the
eatures that are less important to enhance the accuracy of the
etwork. Fig. 4(b) illustrates how pruning in this last scenario
educes to a selection of features.

. Experimental framework

In this section, we describe the experimental framework fol-
owed in our study. First, we give a brief description of the
nalyzed datasets. Then, the training setup is presented, empha-
izing the parameters of EvoPruneDeepTL and the experimental
onditions.

.1. Datasets

In our study, we have chosen several diverse and represen-
ative datasets that are suitable for TL due to their size, as they
equire less training and inference time. Therefore, these datasets
re suitable for population metaheuristics, as many individuals
re evaluated. The selected datasets are shown in Table 1, which
ortrays their main characteristics for our experiments.
These datasets are diverse and taken from the literature:
66
Table 1
Datasets used in the experiments.
Dataset Image size # classes # Instances (train/test)

SRSMAS (299, 299) 14 333/76
RPS (300, 300) 3 2520/372
LEAVES (256, 256) 4 476/120
PAINTING (256, 256) 5 7721/856
CATARACT (256, 256) 4 480/121
PLANTS (100, 100) 27 2340/236

• SRSMAS ([dataset] Gómez-Ríos et al., 2019) is a dataset
to classify coral reef types with different classes and high
distinction difficulty.
• RPS ([dataset] Laurence Moroney, 2019) is a dataset to iden-

tify the gesture of the hands in the popular Rock Paper
Scissors game from images that have different positions and
different skin colors.
• LEAVES is composed of images of healthy and unhealthy

citrus leaves, with different shades of green ([dataset] Hafiz
Tayyab Rauf et al., 2019).
• PLANTS is another dataset from the natural environment

([dataset] Singh et al., 2020, May), in which the task is
to differentiate between leaves of different plants such as
tomato, apple or corn, among others.
• CATARACT comes from the medical domain ([dataset] Sung-

joon Choi, 2020), whose purpose is to classify different types
of eye diseases.
• PAINTING is related to the painting world ([dataset] Virtual
Russian Museum, 2018). The images in this dataset have
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Fig. 6. Images of datasets. Top: SRSMAS examples. Middle: RPS examples.
Bottom: LEAVES examples.

Table 2
Parameters of EvoPruneDeepTL.
Parameter Value

Maximum Evals 200 (one layer)
300 (both layer)

# Runs 5
Population size 30
NAM 3
pmut 0.07
Batch size 32

been taken from a museum and the task is to recognize
different types of paintings.

Examples for several of the above datasets are shown in Fig. 6.

.2. Training setup

The evaluation of EvoPruneDeepTL requires splitting the im-
ges of the datasets in train and test subsets. As the results could
trongly depend on the train and test sets, we have applied in
RSMAS and LEAVES a 5-fold cross-validation2
For the remaining datasets, the train and test had already

een defined beforehand, so we have used them for the sake of
eplicability.

The training is done using SGD as optimizer, a batch size of 32
mages, and maximum 600 epochs, but the training stops when
o improvement of loss is obtained in ten consecutive epochs.
he model with the greater accuracy on the training set is saved.
s we apply TL, only the last layers are trained, whereas the
emaining ones are frozen with the parameter values imported
rom the pre-trained ResNet-50 network.

The parameters of EvoPruneDeepTL are indicated in Table 2.
e have set the maximum evaluations to two different values,

2 Sets for 5 fold CV for SRSMAS and LEAVES: https://drive.google.
om/drive/folders/1Xf7OeZyWDDG-_Y4VX_nnAdfz3Kwhy8LU?usp=sharing. Last
ccess: 28/01/2022.
 n
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Table 3
Average time per run of EvoPruneDeepTL.
Dataset First layer Second layer Both layers

SRSMAS 9 h 41 min 10 h 45 min 15 h 27 min
RPS 4 h 23 min 5 h 13 min 8 h 00 min
LEAVES 10 h 26 min 16 h 01 min 17 h 45 min
PAINTING 13 h 1 min 15 h 24 min 22 h 45 min
CATARACT 2 h 3 min 2 h 22 min 3 h 26 min
PLANTS 6 h 3 min 6 h 11 min 10 h 00 min

200 and 300, because there are some experiments we carry out to
analyze the behavior of EvoPruneDeepTL that need an adaptation
of this value because the search space in these experiments is
wider. The size of the population of networks that our model
evolves at each generation is set to 30, the mutation probability
is pmut and the NAM operator chooses the second parent among
3 candidates. The best solution found in terms of accuracy is
returned. We note that in case of several solutions with the
same accuracy, the returned solution is the configuration with
the lowest percentage of active neurons. Note that the number
of runs and total function evaluations is kept low to meet a
computationally affordable balance between performance and
the high execution times required for simulation. This is shown
in Table 3, in which the average time per execution of the models
with two layers is indicated. Unfortunately, this limited number
of runs per experiment impedes the application of statistical tests
to assess the significance of the reported differences, as tests
conventionally used for this purpose require larger sample sizes
to reach meaningful conclusions.

All the following experiments have been carried out using
Python 3.6 and a Keras/Tensorflow implementation deployed and
running on a Tesla V100-SXM2 GPU. The code is published in a
open repository in GitHub.3

5. Results and discussion

In this section, we analyze the behavior of EvoPruneDeepTL. In
order to show the benefits of using EvoPruneDeepTL, we propose
four research questions (RQ) that they are going to be answered
with different and diverse experiments over several datasets are
carried out. We will show tables with the results of these ex-
periments and we will analyze them to ensure the benefits of
EvoPruneDeepTL. These RQ are the following ones:

(RQ1) Which is the performance of EvoPruneDeepTL against
fully-connected models?
We compare EvoPruneDeepTL against non-pruned mod-
els comprising fully-connected layers to study which
model obtains a better performance in the experiments.
Moreover, we remark the flexibility of EvoPruneDeepTL
applying it with one and several layers.

(RQ2) Which would be better, to remove neurons or connec-
tions?
We compare EvoPruneDeepTL using the two alternatives
explained in the previous section: (1) pruning the neu-
rons or (2) each individual represents exact connections
between neurons, allowing for a more finely grained op-
timization. The goal of this section is to check which
representation obtains the best results. On the one hand,
the neuron representation of the length of chromosomes
is shorter, so the domain search is smaller. On the other
hand, the connections representation is a more fine-detail
representation, so it could potentially allow the algorithm
to obtain better results.

3 EvoPruneDeepTL repository: https://github.com/ari-dasci/S-EvoDeepTLPruni
g.
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(RQ3) Which is the performance of EvoPruneDeepTL when com-
pared to efficient pruning methods?
We compare the performance of EvoPruneDeepTL against
several efficient pruning methods published in the lit-
erature for compressing CNN networks: Polynomial De-
cay (Zhu & Gupta, 2018, April), Weight Pruning (Han et al.,
2015, Dececember) and Neuron Pruning (Srinivas & Babu,
2015, September). This comparison of EvoPruneDeepTL
and the CNN models is made in terms of accuracy and
model compression.

(RQ4) Which would be better, pruning fully-connected layers or
performing Feature Selection?
A particular case of EvoPruneDeepTL stands when the op-
timization of the network is done with one fully-
connected layer and features are evolved towards the
fittest for the problem at hand. Our aim is to check if this
scheme improves the overall performance of the model
over a dataset in terms of the accuracy of the models.

(RQ5) How does EvoPruneDeepTL perform when applied to dif-
ferent pre-trained networks?
We compare EvoPruneDeepTL with different feature ex-
tractors. From RQ1 to RQ4, ResNet-50 is used to ex-
tract the features or characteristics for the considered
datasets. Experiments devised for this RQ aim to examine
whether EvoPruneDeepTL adapts suitably to other feature
extractors such as DenseNet-121 and VGG-19, so that
better-performing pruned networks are produced by our
proposal also for these feature extractors.

(RQ6) Can EvoPruneDeepTL adapt efficiently their pruned
knowledge to changes in the modeling task, showing
robustness?
We analyze the behavior of EvoPruneDeepTL when the
datasets change. In this case, we have selected some
datasets from our study, and we have done several mod-
ifications, removing partially or totally a class. Within
these changes, we want to show both the robustness of
the EvoPruneDeepTL in different situations and that the
pruning models obtained by the GA of EvoPruneDeepTL
have been adapted to each one of these situations.

This section is divided in Section 5.1, where the comparison
f the diverse representations of pruning that EvoPruneDeepTL
akes against the reference models is presented to answer RQ1.
ext, Section 5.2 discusses whether EvoPruneDeepTL should op-
rate over neurons or connections to analyze RQ2. Section 5.3
rovides a complete comparison among EvoPruneDeepTL and
ther efficient pruning methods in order to solve RQ3. Sec-
ion 5.4 explains the approximation of Feature Selection. A whole
omparison against all the previous models is made to assess
he importance of the Feature Selection to answer RQ4.
ection 5.5 shows the comparison of the best two models of
voPruneDeepTL with different feature extractors. Lastly, in Sec-
ion 5.6, EvoPruneDeepTL is challenged, with several modifica-
ions of the used datasets, to grasp the relevant features of these
atasets and to analyze the robustness of our proposal.

.1. Answering RQ1: Pruning

In this section, we assess the performance gaps between the
roposed EvoPruneDeepTL against other reference models to an-
wer RQ1. In each subsection, several and diverse experiments
re carried out to present results that assure the quality of Evo-
runeDeepTL when it is compared to other models. This pruning
ection is composed of Section 5.1.1, in which we compare Evo-
runeDeepTL against reference models with only one layer; of
ection 5.1.2 we make the same experiments but with two layers
68
Table 4
Average results of EvoPruneDeepTL against not pruned models with one
fully-connected layer.
Dataset Measure Not Best EvoPrune

Pruned Fixed DeepTL

SRSMAS Accuracy 0.832 0.866 0.885
% Active neur. 100 20 25

RPS Accuracy 0.938 0.938 0.954
% Active neur. 100 40 46

LEAVES Accuracy 0.923 0.927 0.935
% Active neur. 100 80 38

PAINTING Accuracy 0.939 0.945 0.951
% Active neur. 100 60 46

CATARACT Accuracy 0.703 0.719 0.732
% Active neur. 100 70 39

PLANTS Accuracy 0.432 0.432 0.480
% Active neur. 100 10 49

and the optimization of one of them, and of Section 5.1.3, that
shows the optimization of two consecutive layers at the same
time.

In the following, we describe the different reference models:

• The first reference is composed of fully-connected layers of
512 units and the output layer. That is equivalent to the
model with all neurons in active mode (all gens to 1). This
model is the one with all active neurons, we call it Not
Pruned.
• A grid search scheme is compared to EvoPruneDeepTL to

check whether the improvement made by EvoPruneDeepTL
could be obtained with a simple search over the percentage
of neurons of the fully-connected layer. We have tested the
fully-connected model with different number of neurons:
10% to 90% of its total units increasing this percentage by
10% (including both), and for each dataset we have identified
the number of neurons which gives the best accuracy.
• The best result of the above models is also noted and it

is called Best Fixed. When implemented over both layers,
pruning is referred to as Best Fixed Both.

5.1.1. Pruning neurons of one fully-connected layer
This section introduces the results of pruning models with

only one fully-connected layer. Table 4 shows the comparison of
EvoPruneDeepTL against the reference models. In this case, the
reference model only has one fully-connected layer composed by
512 units and the output layer.

For each dataset, the first row shows the obtained average
accuracy by the models over the test set, whereas the second row
informs about the average percentage of active neurons.

These results show how EvoPruneDeepTL is capable of dis-
tinguishing the pruning configurations that lead towards an im-
provement of performance of the models, as it obtains a greater
accuracy in all the datasets for every reference model. More-
over, in most datasets, a higher compression ratio than the best
fully-connected model is also achieved.

5.1.2. Pruning neurons of two fully-connected layers
In this section, our challenge is to improve the performance

of a two fully-connected layer network. For that reason, Evo-
PruneDeepTL is applied to each layer individually.

The results of applying EvoPruneDeepTL to each layer individ-
ually are shown in Table 5, where First Layer indicates the case
of the optimization of the first layer, and Second Layer describes
the other case. In this case, Both Not Pruned and Best Fixed are the
reference models with two fully-connected layer.
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Table 5
Average results of EvoPruneDeepTL against not pruned models with two fully-connected layers.
Dataset Measure First layer Second layer

Not Best EvoPrune Not Best EvoPrune
Pruned Fixed DeepTL Pruned Fixed DeepTL

SRSMAS Accuracy 0.858 0.858 0.883 0.858 0.860 0.884
% Active neur. 100 100 46 100 80 47

RPS Accuracy 0.922 0.938 0.959 0.922 0.949 0.969
% Active neur. 100 30 37 100 30 16

LEAVES Accuracy 0.919 0.926 0.937 0.919 0.929 0.935
% Active neur. 100 40 28 100 60 12

PAINTING Accuracy 0.939 0.944 0.950 0.939 0.941 0.951
% Active neur. 100 60 53 100 90 53

CATARACT Accuracy 0.703 0.711 0.740 0.703 0.703 0.735
% Active neur. 100 70 63 100 100 59

PLANTS Accuracy 0.402 0.448 0.479 0.402 0.441 0.483
% Active neur. 100 10 45 100 50 37
In this case, results follow the same path as the previous one:
n all the datasets, EvoPruneDeepTL achieves an improvement of
he accuracy over the reference models. Moreover, the Second
ayer case obtains more compressed networks than the First
ayer option.
Comparing the results of the scheme of one and two layers,

oth have similar results, only in RPS and CATARACT the differ-
nce in terms of accuracy is higher. Thus, these experiments have
hown the ability of EvoPruneDeepTL of improving the overall
erformance of networks and, at the same time, reducing their
omplexity.

.1.3. Pruning neurons of both layers
In the previous sections, we have tested EvoPruneDeepTL to

ingle-layer optimization problems. In this section we increase
he difficulty of the problem: the optimization of two consecutive
ully-connected layers.

From the previous experiments, we have run EvoPruneDeepTL
ith 200 evaluations, but we have noticed that this number of
valuations might not be enough. This is due to the fact that
e have now individuals of size 1024, 512 for each layer, and
he search space is larger than in the rest of experiments. We
ave therefore also carried out the experiments with 300 function
valuations.
In Table 6, we show the results for reference models and Evo-

runeDeepTL with 300 evaluations. The reference models stand
he same as in the previous cases, but as they are implemented
ver both layers, the pruning is now referred to as Best Fixed Both.
In some cases, the percentage of remaining active neurons is

igher than in the first and second layer models, but that is due to
he complexity of this new problem. However, the performance of
he network in these experiments indicates that the best option
or pruning is achieved when the optimization is done to two
onsecutive layers.
These results prove the attainment of a sequential process to

ake pruning of DL models by adding layers and then, evolving
heir neurons to achieve a reduced configuration of the network.
his process rises the performance of the models in terms of
ccuracy.

.2. Answering RQ2: which would be better, to remove neurons or
onnections?

This section is devised to formally answer the RQ2, which is to
ecide if it is better to perform pruning of whole neurons or ei-
her single connections, by comparing different EvoPruneDeepTL
hromosome representations: neurons and connections, as we
escribed in Section 3. Two representations are shown in this
69
Table 6
Average results of EvoPruneDeepTL against not pruned methods optimizing two
consecutive layers.
Dataset Measure Not Best Fixed EvoPrune

Pruned Both DeepTL

SRSMAS Accuracy 0.858 0.863 0.885
% Active neur. 100 50 64

RPS Accuracy 0.922 0.946 0.978
% Active neur. 100 90 12

LEAVES Accuracy 0.919 0.934 0.936
% Active neur. 100 15 34

PAINTING Accuracy 0.939 0.949 0.953
% Active neur. 100 40 51

CATARACT Accuracy 0.703 0.735 0.746
% Active neur. 100 85 63

PLANTS Accuracy 0.402 0.466 0.491
% Active neur. 100 55 41

section: the neuron representation, in which a gen represents the
connections of a neuron, and the connections representation, in
which a gene represents a specific connection in the sparse layer.
Neuron representation obtains shorter chromosomes than the
connections one. Meanwhile, the connection representation leads
to a more detailed representation and a larger domain search.

Table 7 shows for each dataset and representation the mean
accuracy and % of active connections for both pruning methods.
The connection strategy is named Edges. The results show that
even though there are some cases in which the edges optimiza-
tion achieves a similar performance of the network, the neuron
optimization presents more robust results. The models working
at the neuron level are even able to further reduce the number of
active neurons in some datasets.

As a conclusion of this experiment, we can confirm that using
the neuron approach is the best representation and that the
second layer model gives us more consistent results than the first
layer pruning model, both in accuracy and in reduction of the
model.

5.3. Answering RQ3: Comparing EvoPruneDeepTL with efficient
methods for CNN pruning

This section is devised to analyze the RQ3 comparing Evo-
PruneDeepTL to other well known network pruning methods
to present results that measure the performance of our model
against these methods. This comparison is conducted in terms of
quality and computational complexity, aimed to prove the poten-
tial of EvoPruneDeepTL with respect to other pruning counter-
parts. To this end, we implement two different pruning methods,
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Table 7
Average results of EvoPruneDeepTL against edges models.
Dataset Measure One layer Two layers

Edges EvoPruneDeepTL Edges EvoPruneDeepTL EvoPruneDeepTL
layer 1 layer 2

SRSMAS Accuracy 0.875 0.885 0.875 0.883 0.884
% Active neur. 43 25 46 46 47

RPS Accuracy 0.952 0.954 0.952 0.959 0.969
% Active neur. 29 46 37 37 16

LEAVES Accuracy 0.932 0.935 0.933 0.937 0.935
% Active neur. 45 38 45 28 12

PAINTING Accuracy 0.949 0.951 0.950 0.950 0.951
% Active neur. 48 46 53 48 53

CATARACT Accuracy 0.729 0.732 0.737 0.740 0.735
% Active neur. 69 49 66 63 59

PLANTS Accuracy 0.457 0.480 0.463 0.479 0.483
% Active neur. 64 49 45 45 37
namely, weight pruning and neuron pruning. These methods have
a parameter in common, Sf ∈ R(0, 1), which denotes the target
pruning percentage. It is set to the same percentage of reduction
that EvoPruneDeepTL has obtained in the experiments discussed
previously. Next, we briefly describe each of such methods:

• weight (Han et al., 2015, Dececember): Parameters with
lower values are pruned at once. This method operates
over the whole parameter set in the layer to be optimized.
(Parameters: Sf )
• polynomial decay (Zhu & Gupta, 2018, April): Parameters

are pruned guided by a Polynomial Decay schedule to the
specified sparsity value. Between pruning steps, the net-
work is allowed to fine tune for 5 epochs. This model is
also applied over the whole parameter set in the layer to
be optimized. Parameters used in the experimentation are
listed in Table 8.
• neuron (Srinivas & Babu, 2015, September): Neurons with

lower mean input connection values are pruned. (Parame-
ters: Sf ) as in Figs. 4 and 5. (Parameters: Sf )

Table 8 summarizes the value of the parameters of Polynomial
Decay algorithm, which have been adapted to our experiments.
Then, given a desired sparsity value of S, the sparsity is updated
over a span of k pruning steps following the next equation

Sk = Sf + (Si − Sf ) ·
(
1−

Kk − Ki

Kf − Ki

)α

if Kk mod F = 0 (3)

wherein parameters are described as follows:

• Si,f ∈ R(0, 1) are the initial and final sparsity percentages.
• Sf depends on the experiment. It is the percentage of prun-

ing that EvoPruneDeepTL has achieved and the end of the
generations.
• Ki,f ∈ N configures at what training step the pruning

algorithm starts and ends.
• Kk ∈ N(Ki, Kf ) is the current step.
• nb is the number of batches. It is calculated as the length of

the training set divided by the batch size.
• F configures the frequency at which Eq. (3) is computed.

Parameters of the Polynomial Decay model are chosen to
achieve a tradeoff between network recovery and the number of
training epochs. Given the nature of this model, Polynomial Decay
implies more training epochs than the implemented neuron and
weight pruning methods. This fact could make the comparison
between such methods unfair if the additional training epochs
introduced by the Polynomial Decay model are high compared
to the initial training epochs (i.e. 600). To avoid this situation,
70
Table 8
Parameter values of Polynomial Decay.
Parameter Value

Si 0.1
Ki 0
Kf nb · 25
F nb · 5
α 3.0

Table 9
Average results of EvoPruneDeepTL against efficient CNN for one layer models.
Dataset Measure One layer

Weight Poly. Neuron EvoPrune
Decay DeepTL

SRSMAS Accuracy 0.805 0.823 0.745 0.885
% Active neur. 25 25 25 25

RPS Accuracy 0.917 0.927 0.869 0.954
% Active neur. 46 46 46 46

LEAVES Accuracy 0.918 0.920 0.886 0.935
% Active neur. 38 38 38 38

PAINTING Accuracy 0.993 0.994 0.874 0.951
% Active neur. 46 46 46 46

CATARACT Accuracy 0.678 0.679 0.658 0.732
% Active neur. 39 39 39 39

PLANTS Accuracy 0.406 0.411 0.365 0.480
% Active neur. 49 49 49 49

Polynomial Decay is configured so that it sufficiently guarantees
network recovery for all datasets while a minimal amount of
extra training epochs are carried out, just an extra 4% from the
initial 600 epochs (i.e. 25 extra epochs).

Our analysis aims to verify whether the performance
of the above efficient pruning methods are comparable to
EvoPruneDeepTL in terms of solution quality (accuracy) when
they are configured to prune the same amount of parameters.
Thus, the experimentation is carried out for the previously four
cases discussed, selecting the average outcomes from the exper-
imentation conducted in this point.

First, we show the results of this comparison when only a
fully-connected layer is used for the optimization. Table 9 shows
the results for this case. EvoPruneDeepTL outperforms the CNN
models in five out of the six cases, but only in PAINTING these
results are better for the Polynomial Decay or Weight models.

Second, Table 10 shows the results for the optimization of
models with two layers, where First Layer indicates the cases of
the optimization of the first layer and Second Layer describes the
cases of the second layer. Results point out that EvoPruneDeepTL
outperforms most of the methods in all the models and datasets.
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Table 10
Average results of EvoPruneDeepTL against efficient CNN pruning methods for two layers models.
Dataset Measure First layer Second layer Both layers

Weight Poly. Neuron EvoPrune Weight Poly. Neuron EvoPrune Weight Poly. Neuron EvoPrune
Decay DeepTL Decay DeepTL Decay DeepTL

SRSMAS Accuracy 0.795 0.815 0.775 0.883 0.834 0.837 0.779 0.884 0.845 0.847 0.647 0.885
% Active neur. 46 46 46 46 47 47 47 47 64 64 64 64

RPS Accuracy 0.886 0.911 0.803 0.959 0.845 0.911 0.696 0.969 0.694 0.899 0.490 0.978
% Active neur. 37 37 37 37 16 16 16 16 12 12 12 12

LEAVES Accuracy 0.913 0.918 0.812 0.937 0.904 0.919 0.712 0.935 0.911 0.925 0.747 0.936
% Active neur. 28 28 28 28 12 12 12 12 34 34 34 34

PAINTING Accuracy 0.995 0.993 0.850 0.950 0.937 0.938 0.920 0.951 0.934 0.940 0.853 0.953
% Active neur. 53 53 53 53 53 53 53 53 51 51 51 51

CATARACT Accuracy 0.668 0.684 0.673 0.740 0.694 0.689 0.648 0.737 0.686 0.696 0.611 0.746
% Active neur. 63 63 63 63 59 59 59 59 63 63 63 63

PLANTS Accuracy 0.408 0.403 0.343 0.479 0.392 0.420 0.313 0.482 0.393 0.411 0.278 0.491
% Active neur. 45 45 45 45 37 37 37 37 41 41 41 41
Table 11
Times in seconds per run of EvoPruneDeepTL against efficient CNN pruning methods with one and two layers models.
Dataset One layer Two layers

Weight Poly. Neuron EvoPruneDeepTL Weight Poly. Neuron EvoPruneDeepTL EvoPruneDeepTL EvoPruneDeepTL
Decay Decay layer 1 layer 2 both layers

SRSMAS 1995 2125 1995 34,510 2395 2545 2398 34,856 38,731 55,596
RPS 1674 1893 1674 19,851 1229 1379 1229 15,758 18,790 28,774
LEAVES 2425 2560 2425 35,243 2430 2565 2430 37,561 57,695 63,897
PAINTING 1386 1508 1386 61,734 2903 3243 2903 46,856 55,414 81,913
CATARACT 594 627 584 6,768 449 473 449 7,392 8,529 12,350
PLANTS 298 407 298 28,456 270 370 270 21,788 22,235 35,998
This case presents similar results as the one layer case because
only in the PAINTING dataset EvoPruneDeepTL has a lower per-
formance in relation to the literature methods. As a result of that,
EvoPruneDeepTL’s robustness in performance over the literature
methods has been shown in one-layer and two-layer networks.

Lastly, we compare the execution times for all the models.
volutionary approaches are known to converge slowly in highly-
imensional search spaces, as the one tackled in this paper. For
hat reason, in this section, we also want to compare the required
ime of EvoPruneDeepTL and the other traditional approaches.
able 11 shows the time in seconds for each model. From these
esults, in terms of computational efficiency, our method suffers
rom the convergence slowness derived from the exploration of
arge search spaces.

To summarize, in this section we have fairly compared Evo-
runeDeepTL to other well-known pruning methods, such as
eight pruning and neuron pruning, guided by different pruning
echniques. EvoPruneDeepTL is distinguished from other pruning
ethods due to the fact that they are advocate for shrinking

he through their pruning process, but with an admissible de-
rease of the accuracy. Although our model is slower in terms
f execution time, it scores higher accuracy levels than those
f traditional pruning counterparts. Therefore, we conclude that
voPruneDeepTL excels at determining which parameters to tune
n neural networks with imported knowledge from other related
asks.

.4. Answering RQ4: Feature Selection

The RQ4 establishes the dichotomy of choosing pruning or
eature selection for the given problem. For that reason, in this
ection we analyze the FS model by conducting the same group
f experiments of the previous sections, to compare it against
voPruneDeepTL to decide which one scores best among them.
he FS scheme is a particular case of EvoPruneDeepTL if only one

ully-connected layer composes the configuration of the network

71
Table 12
Average results for Feature Selection against non pruning methods.
Dataset Measure Not Best Feature

Pruned Fixed Selection

SRSMAS Accuracy 0.832 0.866 0.884
% Active neur. 100 20 60

RPS Accuracy 0.938 0.938 0.985
% Active neur. 100 40 45

LEAVES Accuracy 0.923 0.927 0.943
% Active neur. 100 80 59

PAINTING Accuracy 0.939 0.945 0.958
% Active neur. 100 60 55

CATARACT Accuracy 0.703 0.719 0.747
% Active neur. 100 70 55

PLANTS Accuracy 0.432 0.432 0.472
% Active neur. 100 10 68

and the pruning and GA are focused on the extracted features of
the ResNet-50 model.

Table 12 shows the results for this model against the reference
methods. This case follows the same similarities of the previous
ones, as FS obtains the best average results for all the datasets.

Similarly to the previous sections, we have also compared this
model with the CNN pruning methods with only one layer, as
shown in Table 13. In this case, in four out of six datasets the
Feature Selection outperforms these methods, but in LEAVES and
PAINTING Weight and Polynomial Decay perform better than our
model.

In this section, we have compared our FS scheme against
reference models and efficient pruning methods published in the
literature. The results shed light over the benefits of this model as
it is also able to achieve a great performance over the reference
models and also, in most cases, against the CNN pruning methods.

The global results for EvoPruneDeepTL and its different ver-

sions are presented in Table 14. The rows show the achieved
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Table 13
Average results of feature selection against efficient CNN pruning methods.
Dataset Measure Feature Selection

Weight Poly. Neuron Feature
Decay Selection

SRSMAS Accuracy 0.841 0.878 0.802 0.884
% Active neur. 60 60 60 60

RPS Accuracy 0.913 0.926 0.869 0.985
% Active neur. 45 45 45 45

LEAVES Accuracy 0.947 0.940 0.946 0.943
% Active neur. 59 59 59 59

PAINTING Accuracy 0.962 0.968 0.883 0.958
% Active neur. 55 55 55 55

CATARACT Accuracy 0.696 0.689 0.687 0.747
% Active neur. 55 55 55 55

PLANTS Accuracy 0.421 0.317 0.402 0.472
% Active neur. 68 68 68 68

Table 14
Results and percentage of improvement for each version of EvoPruneDeepTL in
relation to each reference model.
Dataset Measure Pruning model Pruning model Feature

one layer both layers Selection

SRSMAS Accuracy 0.885 0.885 0.884
% Improvement 1.9 2.2 1.8

RPS Accuracy 0.954 0.978 0.985
% Improvement 1.6 3.2 4.7

LEAVES Accuracy 0.935 0.936 0.943
% Improvement 0.8 0.2 1.6

PAINTING Accuracy 0.951 0.953 0.958
% Improvement 0.6 0.4 1.3

CATARACT Accuracy 0.732 0.746 0.747
% Improvement 1.3 1.1 2.8

PLANTS Accuracy 0.480 0.491 0.472
% Improvement 4.8 2.5 4.0

accuracy and the percentage of improvement in relation to the
best reference models for each model.

Reviewing the results of EvoPruneDeepTL and FS, we confirm
hat FS is the best model, as it obtains the best accuracy levels
n four out of six datasets. Furthermore, the pruning of both
ayers carried out by EvoPruneDeepTL also attains very notable
erformance levels.
Moreover, if we consider the optimization using the pruning

odel, the optimization of both layers yields the best results
n terms of mean accuracy for each dataset. However, when
omparing pruning and FS, the latter has more robust models:
t achieves the best performance in four datasets, and it is also
hown in the improvement percentage for each dataset.
In conclusion, it is shown with empirical evidence that pruning

an be done by optimizing the fully-connected layers, specifically,
y evolving their neurons to get the fittest configuration that
eports an improvement of the network performance. An evo-
utionary feature selection based on the extracted features also
chieves a great network performance, both in improving the
ccuracy and in reducing its complexity.

.5. Answering RQ5: Comparing different EvoPruneDeepTL with dif-
erent feature extractors

This section is devised to formally compare EvoPruneDeepTL
ith different networks that serve as feature extractor for each
ataset to analyze. CNNs have shown their capability to overcome
ifferent and diverse classification problems by learning visual

eatures that best correlate with the target variable of the task
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at hand. Transferring this knowledge to other problems with a
similar domain, which is what TL stands for, also helps to the
capability of generalization of the model that is devised for the
target task, specially when the volume of data for that task is low.

In previous sections, we have observed that the combination
of EvoPruneDeepTL with ResNet-50 has improved both refer-
ence models and pruning methods of the literature. However, in
this section, we explore two other feature extractors and assess
whether such performance gaps prevail. To determine perfor-
mance gains of EvoPruneDeepTL when using these alternative
feature extractors, both are tested over the two best performing
scenarios of EvoPruneDeepTL, namely pruning both layers and
feature selection. Moreover, we also include in the comparison
these feature extractors with pruning algorithms from the liter-
ature, following the same experimental procedure described in
preceding sections.

The chosen feature extractors are DenseNet-121 and VGG-
19. The experiments with these networks have been carried out
in the same conditions that the previous ones have been done.
Table 15 shows the comparison of these networks against the
reference models based on fully-connected layers.

The results from the previous table show the ability of Evo-
PruneDeepTL to adapt itself to several feature extractors. For both
DenseNet-121 and VGG-19, it improves the reference models.
Taking a deep look at the three networks, ResNet-50 is the best
of them, as it has the best improvement over several datasets.
Nonetheless, the straight conclusion which is derived from these
experiments is that EvoPruneDeepTL is able to adapt to different
feature extractors and datasets.

Once we have seen that EvoPruneDeepTL has achieved better
results than the reference models, now we inspect the perfor-
mance of different pruning methods from the literature. For that
reason, we compare the model which prunes two consecutive
layers against its similar models from the pruning methods. Ta-
ble 16 shows the comparison of the three networks against these
methods. Note that, for this comparison, we have used the best
to models of the CNN pruning methods: Weights and Polynomial
Decay. This holds for the rest of this section.

The results shown in Table 16 give rise to interesting insights.
To begin with, the first three columns are related to ResNet-50,
which have a great performance over these reference models, and
we know it from the previous sections. However, DenseNet and
VGG are totally new in this kind of experiments. The reality is that
both of these networks improve the CNN pruning methods when
they are applied to fully-connected layers in most cases. Only in
a few experiments are better than obtained by our proposal.

A global vision of these experiments suggests that DenseNet
and VGG, just like ResNet, contribute to the discovery of pruned
neural networks that maximize accuracy and reduce the num-
ber of active neurons. Moreover, these results verify that Evo-
PruneDeepTL is able to achieve for different networks better
results than reference and efficient CNN pruning methods when
the pruning is made in two consecutive layers. Thus, we have
shown the adaption ability of EvoPruneDeepTL for this case using
several networks (ResNet, DenseNet, and VGG).

The following scenario is the feature selection model which
derives from EvoPruneDeepTL. This scenario, which encourages
the pruning of the features extracted by the pre-trained network,
has yielded the best results so far. Next, Table 17 shows the com-
parison of these networks when feature selection is performed.

In the previous sections, we have shown that EvoPruneDeepTL
is able to prune the extracted features derived from the network,
and this model has reached the best results of EvoPruneDeepTL.
Table 17 shows that the pruning of the features that they have
been extracted using different networks (DenseNet and VGG) also

increases the performance of the networks, which is shown in
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Table 15
Average results of EvoPruneDeepTL with different networks optimizing two consecutive layers against non pruning methods.
Dataset Measure ResNet-50 DenseNet-121 VGG19

Not Best Fixed EvoPrune Not Best Fixed EvoPrune Not Best Fixed EvoPrune
Pruned Both DeepTL Pruned Both DeepTL Pruned Both DeepTL

SRSMAS Accuracy 0.858 0.863 0.885 0.861 0.881 0.890 0.837 0.853 0.885
% Active neur. 100 50 64 100 50 72 100 85 55

RPS Accuracy 0.922 0.946 0.978 0.704 0.723 0.754 0.814 0.879 0.922
% Active neur. 100 90 12 100 70 43 100 40 50

LEAVES Accuracy 0.919 0.934 0.936 0.896 0.904 0.915 0.903 0.911 0.917
% Active neur. 100 15 34 100 60 39 100 50 68

PAINTING Accuracy 0.939 0.949 0.953 0.940 0.943 0.947 0.923 0.938 0.945
% Active neur. 100 40 51 100 40 67 100 70 34

CATARACT Accuracy 0.703 0.735 0.746 0.694 0.727 0.741 0.661 0.727 0.759
% Active neur. 100 85 63 100 55 51 100 45 42

PLANTS Accuracy 0.402 0.466 0.491 0.411 0.428 0.456 0.292 0.364 0.374
% Active neur. 100 55 41 100 55 78 100 50 64
Table 16
Average results of EvoPruneDeepTL against efficient CNN pruning methods for pruning consecutive layers.
Dataset Measure ResNet50 DenseNet-121 VGG19

Weight Poly. EvoPrune Weight Poly. EvoPrune Weight Poly. EvoPrune
Decay DeepTL Decay DeepTL Decay DeepTL

SRSMAS Accuracy 0.845 0.847 0.885 0.862 0.865 0.890 0.933 0.869 0.885
% Active neur. 64 64 64 72 72 72 55 55 55

RPS Accuracy 0.694 0.899 0.978 0.815 0.817 0.754 0.803 0.842 0.922
% Active neur. 12 12 12 43 43 43 50 50 50

LEAVES Accuracy 0.911 0.925 0.936 1.000 0.907 0.915 1.000 0.916 0.917
% Active neur. 34 34 34 39 39 39 68 68 68

PAINTING Accuracy 0.934 0.940 0.953 0.897 0.901 0.947 0.923 0.922 0.945
% Active neur. 51 51 51 67 67 67 34 34 34

CATARACT Accuracy 0.686 0.696 0.746 0.587 0.593 0.741 0.661 0.686 0.759
% Active neur. 63 63 63 51 51 51 42 42 42

PLANTS Accuracy 0.393 0.411 0.491 0.251 0.249 0.456 0.284 0.292 0.374
% Active neur. 41 41 41 78 78 78 64 64 64
Table 17
Average results for feature selection with different networks against non-pruning methods.
Dataset Measure ResNet-50 DenseNet-121 VGG19

Not Best Feature Not Best Feature Not Best Feature
Pruned Fixed Selection Pruned Fixed Selection Pruned Fixed Selection

SRSMAS Accuracy 0.832 0.866 0.884 0.858 0.881 0.896 0.753 0.766 0.869
% Active neur. 100 20 60 100 60 68 100 40 87

RPS Accuracy 0.938 0.938 0.985 0.720 0.720 0.839 0.887 0.890 0.982
% Active neur. 100 40 45 100 100 48 100 60 53

LEAVES Accuracy 0.923 0.927 0.943 0.896 0.902 0.921 0.852 0.876 0.924
% Active neur. 100 80 59 100 10 60 100 10 68

PAINTING Accuracy 0.939 0.945 0.958 0.934 0.941 0.956 0.924 0.924 0.943
% Active neur. 100 60 55 100 90 63 100 100 77

CATARACT Accuracy 0.703 0.719 0.747 0.669 0.702 0.787 0.628 0.661 0.765
% Active neur. 100 70 55 100 30 57 100 10 66

PLANTS Accuracy 0.432 0.432 0.472 0.394 0.415 0.464 0.335 0.352 0.376
% Active neur. 100 10 68 100 90 67 100 40 66
the accuracy of these networks over the datasets. There are some
cases in which non pruning methods have less active neurons,
but their accuracy is lower than the models of EvoPruneDeepTL.
For that reason, the feature selection keeps being the best of
EvoPruneDeepTL models, as it has the best results so far.

The next, and final, step is to check the performance of this
eature selection model against efficient CNN pruning methods
rom the literature. In this section, we have checked that, for
odels which prune two consecutive layers, EvoPruneDeepTL
erforms better than the pruning methods. Consequently, now
e focus on this comparison, but in terms of the models which
73
prune the extracted features. Table 18 shows the results of this
comparison for the different networks.

The results show, not only that ResNet-50 has a great perfor-
mance (same results as previous sections), that both DenseNet
and VGG outperform the pruning methods when applied to prune
the features extracted from the networks. Both new networks
show a better performance in all the datasets than the reference
methods. For that reason, we conclude that the usage of Evo-
PruneDeepTL with these three networks has proven the capability
to perform better than the pruning methods.

In this section, we have compared ResNet-50 with other two
networks in two different scenarios: pruning consecutive layers



J. Poyatos, D. Molina, A.D. Martinez et al. Neural Networks 158 (2023) 59–82

a
p
d
r
o
a
t

r
f
F
s
c
i
e
i
r
r

n
i
e
n
m
i
t
c
E
t

H
a
a
t

Table 18
Average results of EvoPruneDeepTL with different networks against efficient CNN pruning methods for feature selection models.
Dataset Measure ResNet50 DenseNet-121 VGG19

Weight Poly. Feature Weight Poly. Feature Weight Poly. Feature
Decay Selection Decay Selection Decay Selection

SRSMAS Accuracy 0.841 0.878 0.884 0.869 0.868 0.896 0.826 0.825 0.869
% Active neur. 60 60 60 68 68 68 87 87 87

RPS Accuracy 0.913 0.926 0.985 0.675 0.699 0.839 0.981 0.834 0.982
% Active neur. 45 45 45 48 48 48 53 53 53

LEAVES Accuracy 0.947 0.940 0.943 0.858 0.891 0.921 0.904 0.843 0.924
% Active neur. 59 59 59 60 60 60 68 68 68

PAINTING Accuracy 0.962 0.968 0.958 0.937 0.934 0.956 0.928 0.928 0.943
% Active neur. 55 55 55 63 63 63 77 77 77

CATARACT Accuracy 0.696 0.689 0.747 0.676 0.682 0.787 0.666 0.688 0.765
% Active neur. 55 55 55 57 57 57 66 66 66

PLANTS Accuracy 0.421 0.317 0.472 0.387 0.394 0.464 0.322 0.311 0.376
% Active neur. 68 68 68 67 67 67 66 66 66
and pruning the extracted features from the networks. The exper-
iments show that EvoPruneDeepTL has proven its ability to adapt
to other networks in both cases and has improved both reference
models and pruning methods of the literature. For that reason,
and in light of the results from the previous sections, we conclude
that EvoPruneDeepTL has shown the ability of facing diverse
tasks, as EvoPruneDeepTL has achieved a great performance when
different networks are used either for pruning consecutive layer
or pruning the features extracted from the network.

5.6. Answering RQ6: Analyzing the ability of EvoPruneDeepTL to
adapt to relevant classes and robustness

The purpose of this section is twofold. First, we want to an-
lyze the goodness of EvoPruneDeepTL when modeling varying
roblems. In this case, we want to see how it adapts to the
ifferent classes that make up the datasets so that it captures the
elevance of each of them. For a given dataset, we analyze each
f its classes to determine if EvoPruneDeepTL is also able to have
good performance over it, and then, compare these results with
he whole dataset.

The second objective of this section is the analysis of these
esults. Once EvoPruneDeepTL has modeled each of the classes
or a dataset at hand, we check the quality of the obtained results.
or that reason, we must check that results are not affected by the
tochasticity induced by the usage of a genetic algorithm at the
ore of the proposed EvoPruneDeepTL. Recall that stochasticity
mplies that the output of the algorithm may not be the same,
ven with the same input. For that reason, our second objective
s related to this factor, and we want to show that the effect of
andomness has a low impact on EvoPruneDeepTL, i.e., the good
esults do not depend on the randomness.

In order to measure the effect of randomness in the pruned
etworks evolved by EvoPruneDeepTL, we resort to a similar-
ty measure called Centered Kernel Alignment, CKA (Kornblith
t al., 2019, June). CKA measures the similarity of trained neural
etworks, in compliance with several invariance properties that
ust be met for these particular computing structures (namely

nvariance to invertible linear transformation, invariance to or-
hogonal transformation and invariance to isotropic scaling). We
ompare the trained networks as a result of the application of
voPruneDeepTL. This comparison answers the question about
he robustness of EvoPruneDeepTL.

CKA is based on the Hilbert–Schmidt Independence Criterion,
SIC (Gretton et al., 2005, October). It compares two matrices (K
nd L) and determines the level of independence between them,
s it is shown in (4). In our case, these matrices are the structures
hat contain the weights of the trained neural networks. CKA
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takes a maximum value of 1 when the two inputs of CKA are
the same matrix. The range of this measure is [0, 1]. This means
that both matrix are very similar (in that case because they are
identical). Thus, if the CKA value is high, then both matrix are
similar.

CKA(K , L) =
HSIC(K , L)

√
HSIC(K , K )HSIC(L, L)

(4)

CKA is a measure which allows us make a double comparison.
Note that this measure helps us to compare the genotype (chro-
mosomes of the GA) against the phenotype (pruned networks
of EvoPruneDeepTL). The interpretation of this measure follows
that if the similarity of the chromosomes is high, then the CKA
value should be also high (close to one, which is its maximum).
Five independent executions have been made of EvoPruneDeepTL,
so we have taken the output of each of them, and we have
performed a double comparison based on this trained neural
network, which is explained next:

1. Comparison against the closest element (CKAClosest ): we
have the Output element as the best one for an execution.
Then, we calculate the Hamming distance of the best el-
ement with respect to all the elements evaluated in the
evolutionary process of EvoPruneDeepTL. The element with
the smallest Hamming distance to the best one is denoted
as Closest. Then, Output is compared against Closest. The
robustness of EvoPruneDeepTL is tested in this comparison
because high values of CKA when similar chromosomes
are compared is essential, as it will show that the re-
sults are not due to randomness, but to the process that
EvoPruneDeepTL performs.

2. Comparison against fully-connected, reference models
(CKARef ): in this case, we compare Output against a fully-
connected network with all the neurons activated. This
comparison sheds light on the ability of EvoPruneDeepTL
to learn which neurons are the best to solve the problem
at hand. It also permits to explain the difference in terms
of accuracy between the models that EvoPruneDeepTL de-
velops against the reference models. This value of CKA
quantifies the differences in accuracy between our models
and the reference models, as EvoPruneDeepTL searches for
the best neurons to remove the unnecessary ones, while
reference models simply train the models without taking
into account the neurons which should be removed.

In this section, we select the best two models of
EvoPruneDeepTL for these experiments: pruning consecutive lay-

ers (both case) and pruning the features extracted from the
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Table 19
Average results of CATARACT-Class with pruning consecutive layers and feature selection.
Dataset Measure EvoPruneDeepTL No pruning EvoPruneDeepTL No pruning

both both feature selection feature selection

CATARACT - Accuracy 0.844 0.801 0.871 0.697
Retina % Active neur. 43 100 54 100

CATARACT - Accuracy 0.846 0.789 0.857 0.554
Glaucoma % Active neur. 44 100 63 100

CATARACT - Accuracy 0.735 0.732 0.761 0.614
Cataract % Active neur. 76 100 49 100

CATARACT - Accuracy 0.833 0.805 0.843 0.655
Normal % Active neur. 53 100 57 100

CATARACT - Accuracy 0.746 0.703 0.747 0.703
Full % Active neur. 63 100 55 100
t
s
l

t
a
t
s

networks (feature selection). Moreover, three datasets are con-
sidered in the experiments designed for this section: CATARACT,
PAINTING and RPS. Lastly, we show different tables with the fol-
lowing structure: DATASET-Class. This means that the mentioned
DATASET is analyzed without the class called Class.

For the CKA comparison, we will show two groups of ta-
les, one per each type of model (pruning consecutive layer
nd feature selection). Moreover, each table is composed of the
roblem at hand and the mean values of the Hamming distance
nd CKA averaged over five executions of EvoPruneDeepTL. The
ows of each table correspond to each DATASET-Class and the
four columns represent in pairs the previously explained com-
parisons, CKAClosest and CKARef , as we show the mean Hamming
distance and its corresponding CKA mean value for each of the
comparisons.

5.6.1. Analyzing the relevance of each class for a given dataset
Given a dataset of n classes, this approach performs a pro-

cedure that removes a whole class of the dataset and then,
EvoPruneDeepTL is applied with that remaining data both in
pruning consecutive layers and in feature selection. As a result
of that process, n experiments are done for each dataset.

The structure of the these tables correspond with the usual
structure of the rest of the paper, but now we show four columns.
These columns represent, in pairs based on the model, the results
of EvoPruneDeepTL versus the reference model without pruning.
The difference between the pairs of columns is the model at
hand: pruning consecutive layers or feature selection. We note
that for the first two columns, the optimization process which
lies in EvoPruneDeepTL is made with 300 evaluations and two-
layers networks, meanwhile for the last columns, the process
of pruning the extracted features is made with only one-layer
networks and 200 evaluations, i.e., under the same conditions as
the experiments in the previous sections.

The first results show the CATARACT dataset under these
conditions. Table 19 shows these results. We conclude from these
results that Cataract class is the easiest class in the dataset, as
both models struggle with that class (third row of the table), but
they improve their results with it. However, the results of Evo-
PruneDeepTL are better than the reference model. The number of
active neurons at the end of the evolutionary process are reduced,
in most cases, nearly by half. Moreover, the feature selection
model is also able to decrease this number from its previous
results (55% of remaining active neurons) in some cases. The same
conclusion can be drawn in relation to pruning consecutive layers,
as the full dataset has a mean percentage of active neurons of 63%
and in three of fours cases this number is reduced. The results
show that the pruning of the extracted features of the network,
i.e., the feature selection which derives from EvoPruneDeepTL, is
the best approximation for this dataset.

We focus now on the following dataset, RPS. Table 20 shows
the results of these experiments. Results show that the Paper
75
class makes an easier dataset, as all the approaches reach the
maximum accuracy. The other two experiments show that Evo-
PruneDeepTL achieves a better performance to the reference
models. For pruning consecutive layers, the number of remaining
active neurons is higher in comparison with the full dataset, but
in the feature selection model this number is very similar or even
for RPS-Scissors is lower.

The last considered dataset is PAINTING. Table 21 shows the
results for each of the experiments which have been made for
this dataset. The table shows that both of EvoPruneDeepTL mod-
els are constantly achieving better results than the reference
models. However, the difference between the accuracy is higher
in the feature selection models than the pruning consecutive
layers. Taking into consideration the remaining active neurons,
the feature selection has a similar degree of pruning in relation
with the experiments which have been carried out for the full
dataset experiments (55%). Similar conclusion can be drawn for
the other model, as the mean percentage of active neuron for
pruning consecutive layers is 51% and we have models with fewer
active neurons, but also with higher percentage.

These experiments shed light on a conclusion that it is not far
from the previous sections. The feature selection model, which
performs the pruning of the extracted features of the network,
constitutes the best model for all the experiments, as it has the
most difference between EvoPruneDeepTL and reference mod-
els. Nonetheless, the effect of pruning consecutive layers is also
positive, as it is shown in the results of the previous tables.

The next part of this section is crucial to determine the robust-
ness of EvoPruneDeepTL. Moreover, the differences in accuracy
of the previous tables are going to be explained in the following
tables. The key element of the comparison is the CKA measure
and the Hamming distance of the solutions. The combination of
these values determine the key points that we have discussed at
the beginning of this section.

Therefore, we are showing the CKA tables for each experiment
to perform the commented double comparison in this section.
These tables have a different structure from the last tables, so we
explain how to interpret them. Both of them present a similar
structure, but the table which shows the results for pruning
consecutive layers has another column. This column shows the
value of the CKA measure for the layer at hand. In the case of the
prune of the extracted feature of the network (feature selection),
as they only has one layer, this column is not required.

We show this pair of tables for each DATASET-Class. The first
able shows the results of the feature selection model, and the
econd one presents the results of the pruning of consecutive
ayers.

The composition of the tables for feature selection models is
he following one. After the first column which show the dataset
t hand, the next two columns represent the comparison among
he phenotype and genotype of EvoPruneDeepTL, i.e, chromo-
omes and pruned networks. Both mean Hamming distance of
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Table 20
Average results of general RPS pruning consecutive layers and feature selection.
Dataset Measure EvoPruneDeepTL No pruning EvoPruneDeepTL No pruning

both both feature selection feature selection

RPS - Accuracy 1.000 1.000 1.000 1.000
Paper % Active neur. 51 100 51 100

RPS - Accuracy 0.985 0.979 1.000 0.996
Rock % Active neur. 51 100 49 100

RPS - Accuracy 0.994 0.955 1.000 0.955
Scissors % Active neur. 33 100 23 100

RPS Accuracy 0.978 0.922 0.985 0.938
Full % Active neur. 12 100 45 100
Table 21
Average results of general PAINTING pruning consecutive layers and feature selection.
Dataset Measure EvoPruneDeepTL No pruning EvoPruneDeepTL No pruning

both both feature selection feature selection

PAINTING - Accuracy 0.942 0.932 0.947 0.857
Sculpture % Active neur. 64 100 53 100

PAINTING - Accuracy 0.959 0.946 0.961 0.820
Painting % Active neur. 42 100 50 100

PAINTING - Accuracy 0.942 0.920 0.949 0.835
Iconography % Active neur. 30 100 57 100

PAINTING - Accuracy 0.979 0.974 0.979 0.883
Engraving % Active neur. 74 100 56 100

PAINTING - Accuracy 0.994 0.989 0.996 0.944
Drawings % Active neur. 57 100 57 100

PAINTING Accuracy 0.953 0.939 0.958 0.939
Full % Active neur. 51 100 55 100
the five executions and CKAClosest are shown. The following group
of two columns shows the other explained comparison of the
reference models, which have all the neurons active. The metrics
are the same as the previous case, but now the CKA (CKARef )
corresponds to the mean value from the best model to this
reference model.

The composition of the table for the pruning of consecutive
layers is similar to the previous case. However, another column
is required for a more detailed explanation. This column gives
information about the CKA value for the layer at hand. Due to
the fact that we are comparing the whole chromosome, both
Hamming distance values are common to both layers, but the CKA
value is layer dependent. Then, in this table, we want to highlight
that the best chromosome EvoPruneDeepTL obtains good values
of the CKA measure for each of the layers of the model.

First, we show the CKA values for the CATARACT dataset in
its four different cases of DATASET-Class. Tables 22 and 23 show
the results for feature selection and pruning consecutive layers,
respectively. The results show for both models the robustness
of EvoPruneDeepTL because the mean CKA of the best versus its
closest chromosome in the history is a value extremely close to
1, which is the maximum value (this value is reached when the
best solution is compared to itself).

Taking a more deep look at the results of the feature selection,
we see that the Hamming distance is very low, which is a good
result and also proves the robustness of EvoPruneDeepTL. The
second group of columns, in which the comparison is made
against a model with all neurons active, we see that the Hamming
distance is higher and this has an impact on the CKA value, which
is higher. The conclusion which derives from these experiments is
that EvoPruneDeepTL learns to distinguish the valuable neurons
which have an impact on the model. This CKA value is the expla-
nation of the difference in accuracy in the previous experiments
of this dataset between EvoPruneDeepTL models and reference
models.

The results that they are shown in Table 23 confirm the

robustness of EvoPruneDeepTL. This insight is the same as in
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Table 22
Comparison of the CKA measure for feature selection in CATARACT-Class.
Dataset Feature Selection

Hamming distance CKAClosest Hamming distance CKARef
EvoPruneDeepTL no pruned model

CATARACT - 0.005 0.981 0.457 0.283Retina

CATARACT - 0.002 0.991 0.372 0.376Glaucoma

CATARACT - 0.001 0.994 0.514 0.200Cataract

CATARACT - 0.011 0.961 0.423 0.250Normal

the previous table: low values of Hamming distance in the best
chromosomes of EvoPruneDeepTL implies high values of CKA in
the closest element. Moreover, the Hamming distance from the
elements of pruning consecutive layers is higher than in the other
case, but the CKA values are also higher. This is a fair result
because the difference in accuracy between EvoPruneDeepTL and
the reference models is lower than in the other case. Note that the
class Cataract from this dataset is the class with the fewest gap in
accuracy, and this is shown in its CKA value. The Glaucoma class
is the opposite of Cataract, and the CKA value is lower. In all the
cases, EvoPruneDeepTL confirms the ability to learn the neurons
that they are indispensable to achieve a greater performance, and
that is the main difference between the reference models.

The second dataset under analysis is RPS. Table 24 shows the
results of the feature selection models for RPS-Class. We see that
the pair Hamming distance and CKA of the closest have a great
result in two of the three cases. Moreover, the results of the
other metrics achieve a great results, similarly to CATARACT-Class
with this model. For that reason, we confirm that, for this model,
EvoPruneDeepTL is also able to learn the neurons that maximize

the accuracy for the problem.
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Table 23
Comparison of the CKA measure for pruning consecutive layers in CATARACT-Class.
Dataset Pruning consecutive layers

# Layer Hamming distance CKAClosest Hamming distance CKARef
EvoPruneDeepTL no pruned model

CATARACT - Layer 1 0.020 0.980 0.567 0.685
Retina Layer 2 0.983 0.769

CATARACT - Layer 1 0.001 0.996 0.556 0.680
Glaucoma Layer 2 0.997 0.745

CATARACT - Layer 1 0.001 0.998 0.240 0.891
Cataract Layer 2 0.998 0.916

CATARACT - Layer 1 0.027 0.975 0.469 0.784
Normal Layer 2 0.979 0.843
2

Table 24
Comparison of the CKA measure for feature selection in RPS-Class.
Dataset Feature Selection

Hamming distance CKAClosest Hamming distance CKARef
EvoPruneDeepTL no pruned model

RPS - 0.199 0.416 0.485 0.224Paper

RPS - 0.020 0.926 0.507 0.195Rock

RPS - 0.040 0.863 0.766 0.104Scissors

A special case is RPS-Paper. When RPS does not have this
lass, the problem seems to be a very easy task, because all the
odels in the previous experiments for this dataset achieve the
aximum accuracy. This is the only case in which the CKA for

he best and its closest element is lower in comparison with the
thers. This is due to the fact that the problem at hand can be
olved with many chromosomes, as they all have the maximum
ccuracy value, so the chromosomes might not be very similar,
ecause the range of possible solutions is wide.
Table 25 shows the pruning of consecutive layers that it is

erformed by EvoPruneDeepTL. Similar conclusions are obtained
rom these results. First, we see that the Paper class has the same
roblem which appears in the previous table. However, the other
wo groups of experiments are harder to solve and this have been
rawn in the CKA of the closest element, because both layers have
great value of this measure. In the counterpart, the CKA values

or the reference also has a similar understanding, which belongs
o the fact that EvoPruneDeepTL pruning of consecutive layers
earns the best neurons for both layers.

In overall, EvoPruneDeepTL is also a robust model for this
ataset both in feature selection and pruning consecutive layers,
nd it also proves that the difference in accuracy between our
odels and the reference models is stated in the CKARef .
The last dataset in this section is PAINTING. The first table re-

ates to the feature selection model of EvoPruneDeepTL. Table 26,
nce more, shows that the lowest Hamming distance of the best
hromosome when it is compared with its closest, brings high
alues of CKA. The conclusion is clear, EvoPruneDeepTL is robust.
oreover, the values of CKARef are also a good estimation of how

EvoPruneDeepTL looks for the best neurons. Both CATARACT and
PAINTING have lots of similarities in the feature selection model.

Table 27 shows the results for pruning consecutive layers
in the dataset PAINTING. These results, again, prove that the
closest and best elements of EvoPruneDeepTL achieve a great
value of CKA given a low value of Hamming distance, which is
the best output that we can have. Moreover, the CKA values for
the reference models are high, but this is due to the fact that
the difference in accuracy between the models is lower. However,
this also proves that EvoPruneDeepTL also learns the best neurons

for this problem.
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In this section, we have shown that EvoPruneDeepTL is able
to capture the relevance of the diverse classes and datasets that
they are shown. Thanks to that adaption, EvoPruneDeepTL has
shown its robustness and its ability to search for the best neurons
to tackle the problem at hand.

5.6.2. Effects of a gradual aggregation of a class in the problem at
hand

This section is devised to analyze the impact of a class when
it appears as a new class in a dataset, and it increases its number
of examples over time. We have selected the class Iconography of
PAINTING for these experiments. The reason lies in the fact that
the class with a low percentage of examples is a minority class of
this dataset, but it becomes the majority class of PAINTING when
all the examples are used. Adding more examples of this class
lets us check how EvoPruneDeepTL is able to adapt to different
scenarios for the same dataset when a class is gradually growing
on its importance in the dataset.

This section has a similar structure to the previous one. First,
we show the results of the experiments for pruning consecutive
layers and feature selection models of EvoPruneDeepTL. Then,
the CKA values is also presented to perform the same double
comparison as it has been done in the last section. For this
section, the notation for the dataset is PAINTING-Iconography
we talk about the dataset resulting from adding more examples,
and in the tables this is shown as PAINTING-Pct%, where Pct =
0, 40, 60 and 80.
The first experiments we show are in Table 28. These experi-

ments have been carried out with the dataset PAINTING with the
different percentage, as we have previously explained. The results
show that, as the percentage of data increases, the models tend to
become better. If we compare these results with those obtained
with the full dataset, we see that the model with 80% of the data
(and with 60% of the data also for feature selection) is the closest
to the full model (see Tables 6 and 12).

Reviewing the results tables with the full dataset and compar-
ing them with these results, we observe that for the consecutive
layer pruning model, the number of active neurons is lower in
these experiments. The same phenomenon occurs in most of the
feature selection cases, except when 40% of the data is used,
where this number increases as the model improves the accuracy
for that dataset at the cost of increasing the percentage of active
neurons.

Next, we follow the same process as for the previous section,
in which the different classes of various datasets were analyzed.
We show the value of CKA for the feature selection model and for
the pruning consecutive layers model. Table 29 shows the results
for the different feature selection models applied to the various
data percentage options of the Iconography class. The CKA value,
which compares the best with its closest element in the history of
the execution, is very high. This implies that EvoPruneDeepTL is
a robust model, since the phenotype obtained from the genotype
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Table 25
Comparison of the CKA measure for pruning consecutive layers in RPS-Class.
Dataset Pruning consecutive layers

# Layer Hamming distance CKAClosest Hamming distance CKARef
EvoPruneDeepTL no pruned model

RPS - Layer 1 0.217 0.725 0.486 0.764
Paper Layer 2 0.761 0.825

RPS - Layer 1 0.032 0.977 0.492 0.757
Rock Layer 2 0.983 0.852

RPS - Layer 1 0.010 0.982 0.667 0.597
Scissors Layer 2 0.974 0.668
Table 26
Comparison of the CKA measure for feature selection in PAINTING-Class.
Dataset Feature Selection

Hamming distance CKAClosest Hamming distance CKARef
EvoPruneDeepTL no pruned model

PAINTING - 0.002 0.992 0.471 0.259Sculpture

PAINTING - 0.003 0.986 0.502 0.202Painting

PAINTING - 0.002 0.993 0.433 0.236Iconography

PAINTING - 0.006 0.984 0.441 0.291Engraving

PAINTING - 0.021 0.925 0.432 0.236Drawings

is very similar. In addition, the other CKA value reported by the
reference model indicates that EvoPruneDeepTL is capable of the
neurons important for the model, thus explaining the difference
in accuracy between the two approaches.

The following table, Table 30. The robustness of the proposal
ecomes evident when comparing the best element with its
losest element in each of the runs, which has also occurred in
he previous case. CKA values are extremely high when these
lements are compared.
The comparison with respect to the reference models shows

esults similar to those of other cases of consecutive layer prun-
ng. The difference in accuracy is reflected in the CKA, which is
igher than in the feature selection cases, because this difference
s larger when it comes to the pruning of the extracted features
f the network.
This section has allowed us to see EvoPruneDeepTL in different

ituations it has had to face. From datasets with fewer classes
o that our proposal is able to adapt to all the subclasses that
ompose it (first subsection), to the gradual increase of a class
rom being the minority to the majority (second subsection). The
tudy which has been performed in this section relies on a mea-
ure which allows us to study the robustness of EvoPruneDeepTL
nd, in addition, allows us to see the differences in accuracy of
he models that they have been developed.

The results in both sets of experiments show that the stochas-
icity that might be present in the proposal is not influential.
he results of the CKA measure when comparing the best trained
etwork found by EvoPruneDeepTL and its closest trained net-
ork for each of the runs show the high degree of robustness of
voPruneDeepTL.
The comparison of EvoPruneDeepTL with networks with all

eurons active (CKARef ) shows us a twofold conclusion. When
e are dealing with the feature selection models, those that
erformed the pruning of the extracted features of the network,
he difference in accuracy is reflected in the value of CKA, which
s very low and that means that the models are very different
n the other hand, for the case of pruning consecutive layers, the
78
CKARef value reflects models with less difference in comparison to
the previous case. However, both in feature selection and pruning
consecutive layers it is observed that EvoPruneDeepTL is able to
search for the neurons that best approximate the problem to be
solved.

6. Advantages and disadvantages of EvoPruneDeepTL

This section is devised to discuss the advantages and disad-
vantages of EvoPruneDeepTL, considering the diverse and large
experimentation which has been done in the manuscript. The
advantages of EvoPruneDeepTL can be summarized as follows:

• Specialization of the last layers of networks.
An important element of EvoPruneDeepTL is the transfer
learning. This is one of the most commonly used tech-
niques. We have refined its process, which is the extraction
of pre-trained features and then, the specialization of the
fully-connected layers. In this context, EvoPruneDeepTL, and
specifically the GA which is composed of, when applied to
these layers does not limit the network learning compared
to other evolutionary models in the literature that require
high computational time to evaluate the datasets, as they
train the whole network. For that reason, EvoPruneDeepTL
can be applied to more complex datasets.
• Performance over reference models and efficient pruning

methods from the literature.
The usage of an evolutionary model that focuses on prun-
ing neurons of the fully-connected layers achieves a better
performance than other pruning methods when applied un-
der the same conditions of EvoPruneDeepTL. The positive
effect of the genetic algorithm is the selection of the best
neurons of these layers, so that the evolution towards the
best configuration for the networks is obtained thanks to
EvoPruneDeepTL.
• Constructive modeling over the last layers of the net-

works.
In the different experiments that have been carried out in
the sections, we have observed that performing the pruning
constructively based on the number of layers achieves good
results. Pruning one-layer networks achieves good results,
but when the number of layer increases, it is shown that
performing the pruning over a single layer of two-layer
networks improves the one-layer networks. Nonetheless,
the simultaneous pruning of the both layers achieves a
better modeling of the datasets than all the previous pruning
models.
• Pruning the extracted features of the network against

pruning fully-connected layers.
EvoPruneDeepTL obtains better results by pruning the self-
generated features resulting from transfer learning versus
pruning the fully-connected layers. This is an intuitive idea
because the learned patterns or features are different for
each problem, and the learned features for the original prob-
lem may not be useful for the target problem. Knowing
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Table 27
Comparison of the CKA measure for pruning consecutive layers in PAINTING-Class.
Dataset Pruning consecutive layers

# Layer Hamming distance CKAClosest Hamming distance CKARef
EvoPruneDeepTL no pruned model

PAINTING - Layer 1 0.001 0.998 0.359 0.832
Sculpture Layer 2 0.999 0.879

PAINTING - Layer 1 0.004 0.998 0.578 0.701
Painting Layer 2 0.998 0.777

PAINTING - Layer 1 0.001 0.998 0.701 0,593
Iconography Layer 2 0.998 0.672

PAINTING - Layer 1 0.001 0.999 0.255 0.895
Engraving Layer 2 0.999 0.931

PAINTING - Layer 1 0.003 0.998 0.427 0.797
Drawings Layer 2 0.998 0.874
Table 28
Average results for PAINTING-Iconography with pruning consecutive layers and feature selection.
Dataset Measure EvoPruneDeepTL No pruning EvoPruneDeepTL No pruning

both both feature selection feature selection

PAINTING - Accuracy 0.944 0.931 0.945 0.826
20% % Active neur. 47 100 56 100

PAINTING - Accuracy 0.945 0.929 0.950 0.826
40% % Active neur. 39 100 65 100

PAINTING - Accuracy 0.946 0.931 0.954 0.839
60% % Active neur. 53 100 51 100

PAINTING - Accuracy 0.947 0.927 0.953 0.839
80% % Active neur. 41 100 47 100

PAINTING Accuracy 0.953 0.939 0.958 0.939
Full % Active neur. 51 100 55 100
.

Table 29
Comparison of the CKA measure for feature selection in PAINTING-Iconography
Dataset Feature Selection

Hamming distance CKAClosest Hamming distance CKARef
EvoPruneDeepTL no pruned model

PAINTING - 0.001 0.995 0.442 0.27720%

PAINTING - 0.007 0.976 0.352 0.46140%

PAINTING - 0.019 0.934 0.484 0.20560%

PAINTING - 0.001 0.998 0.530 0.17780%

which characteristics matter is crucial to the problem at
hand. The evolutionary process allows pruning these fea-
tures and selecting those that best solve the modeling prob-
lem under consideration.
• Generalization of EvoPruneDeepTL to other feature ex-

tractors.
One of the advantages of EvoPruneDeepTL is that the model
is generalizable to diverse feature extractors. This is an
important advantage because EvoPruneDeepTL is able to
achieve a great performance over different datasets and
with diverse networks. These are used to extract the fea-
tures of the dataset, thanks to the transfer learning tech-
nique. EvoPruneDeepTL has improved the reference models
and pruning models from the literature in both the pruning
of two consecutive layers and the pruning of the features
extracted by the networks.
• Adaptation to relevant classes and gradual aggregation of

data for the problem at hand.
EvoPruneDeepTL has achieved a great performance in dif-

ferent situations. However, it is also important to see how
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it adapts to different situations within the datasets them-
selves. EvoPruneDeepTL has improved the performance of
the reference models, but a measure is needed to support
the quality of these models. However, this increase in per-
formance has been proven by CKA not to be the result of
chance, so EvoPruneDeepTL models are able to search for
the best neurons to maximize the accuracy of the problem.
• The good results of EvoPruneDeepTL do not depend on

randomness.
The evolutionary algorithm in which EvoPruneDeepTL lies in
is a stochastic algorithm and the results may be affected by
randomness. This is a risk about the model, so it is required
to check if the good results are biased by the randomness.
For that reason, we have introduced a new measure, CKA.
This measure compares the differences between the pruned
networks, and it is a way to measure the robustness of
EvoPruneDeepTL. The values of the CKA for the various ex-
periments of the previous section shed light on the fact that
EvoPruneDeepTL results do not depend on the randomness.

The main disadvantage of EvoPruneDeepTL is:

• Execution time of EvoPruneDeepTL.
The main drawback of EvoPruneDeepTL it is the time that
is required to execute the model. In comparison with the
pruning methods from the literature and the reference mod-
els, the table of execution times (see Table 11) shows the
speed of the other models, but EvoPruneDeepTL is slower
than these models. The time difference is made up by im-
proved network performance, thanks to the usage of Evo-
PruneDeepTL. Nonetheless, there are some practical cases in
which the training time is not a problem, like in medical
diagnosis, because the main objective is obtaining a better
percentage of the models in terms of accuracy.
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Table 30
Comparison of the CKA measure for pruning consecutive layers in PAINTING-Iconography.
Dataset Pruning consecutive layers

# Layer Hamming distance CKAClosest Hamming distance CKARef
EvoPruneDeepTL no pruned model

PAINTING - Layer 1 0.001 0.999 0.529 0.732
20% Layer 2 0.998 0.794

PAINTING - Layer 1 0.001 0.998 0.607 0.677
40% Layer 2 0.999 0.755

PAINTING - Layer 1 0.001 0.999 0.466 0.758
60% Layer 2 0.999 0.828

PAINTING - Layer 1 0.001 0.998 0.594 0.694
80% Layer 2 0.998 0.762
B

C

[

[

[

[

[

7. Conclusions

This paper has introduced EvoPruneDeepTL, a novel model
hat sparsifies the architecture of the last layers of a DL model
nitialized using TL. EvoPruneDeepTL is a combination of sparse
ayers and EA, so that the neurons of these layers are pruned
sing the EA, in order to adapt them to the problem to tackle and
eciding which neurons/connections to leave active or inactive.
EvoPruneDeepTL is a flexible model that optimizes models

ith one and two layers and even two layers at the same time.
ur results show that the pruning over complete neurons is
etter than pruning connections individually, establishing the last
ne as the best encoding strategy. The evolution of the sparse
ayer improves these models in terms of accuracy and also in
erms of complexity of the network. In comparison with com-
ared reference models and pruning methods from the literature,
voPruneDeepTL achieves a better performance than all of them.
he choice of one among the pruning models or feature selection
as been answered and informed with experimental evidence:
he FS scheme derived from EvoPruneDeepTL has shown a better
erformance, in most cases, than the pruning methods . The
bility of adaptation of EvoPruneDeepTL to other feature extrac-
ors has been tested. Lastly, EvoPruneDeepTL has also shown its
apability to adapt to the relevance of diverse problems and it has
lso achieved an outstanding level of robustness, which implies
hat the results do not depend on random nature of the search
perators used by the GA that lies at the core of the proposed
volutionary pruning method.
From an overarching perspective, this work aligns with a

rowing strand of contributions where evolutionary computation
nd DL have synergized together to yield optimized models that
ttain better levels of performance and/or an increased com-
utational efficiency. Indeed, this fusion of concepts (forged as
volutionary Deep Learning) has been used for other optimization
rocesses, including hyperparameter or structural tuning. An-
ther recent case of the symbiosis of EA’s and DL are represented
n AutoML-Zero that use an evolutionary search to automatically
earch the best DL structure. AutoML-Zero and EvoPruneDeepTL
re two great examples of the benefits of combining EA’s and
L that outline the potential and promising path of successes
nvisioned for this research area.
Future research work stemming from the results reported in

his study is planned from a two-fold perspective. To begin with,
e plan to achieve larger gains from the combination of DL and
A by extending the evolutionary search over higher layers of the
eural hierarchy, increasing the number of optimized layers and
eurons per layer. To this end, we envision that exploiting the
ayered arrangement in which neurons are deployed along the
eural architecture will be essential to ensure an efficient search.
he second research line relates to this last thought, aiming to
mprove the search algorithm itself by resorting to advanced
oncepts in evolutionary computation (e.g. niching methods or
o-evolutionary algorithms).
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