Neural Networks 158 (2023) 59-82

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

L))

Check for
updates

EvoPruneDeepTL: An evolutionary pruning model for transfer learning
based deep neural networks

Javier Poyatos *, Daniel Molina ", Aritz D. Martinez ", Javier Del Ser ",
Francisco Herrera *¢

@ Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI),
University of Granada, Granada, 18071, Spain

b TECNALIA, Basque Research & Technology Alliance (BRTA), Derio, 48160, Spain

¢ University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain

d Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

ARTICLE INFO ABSTRACT

Article history:

Received 6 February 2022

Received in revised form 27 September 2022
Accepted 11 October 2022

Available online 4 November 2022

In recent years, Deep Learning models have shown a great performance in complex optimization
problems. They generally require large training datasets, which is a limitation in most practical cases.
Transfer learning allows importing the first layers of a pre-trained architecture and connecting them to
fully-connected layers to adapt them to a new problem. Consequently, the configuration of the these
layers becomes crucial for the performance of the model. Unfortunately, the optimization of these
models is usually a computationally demanding task. One strategy to optimize Deep Learning models
is the pruning scheme. Pruning methods are focused on reducing the complexity of the network,
assuming an expected performance penalty of the model once pruned. However, the pruning could
potentially be used to improve the performance, using an optimization algorithm to identify and
eventually remove unnecessary connections among neurons. This work proposes EvoPruneDeepTL, an
evolutionary pruning model for Transfer Learning based Deep Neural Networks which replaces the last
fully-connected layers with sparse layers optimized by a genetic algorithm. Depending on its solution
encoding strategy, our proposed model can either perform optimized pruning or feature selection over
the densely connected part of the neural network. We carry out different experiments with several
datasets to assess the benefits of our proposal. Results show the contribution of EvoPruneDeepTL and
feature selection to the overall computational efficiency of the network as a result of the optimization
process. In particular, the accuracy is improved, reducing at the same time the number of active
neurons in the final layers.

Keywords:

Deep learning
Evolutionary algorithms
Pruning

Feature selection
Transfer learning

© 2022 Published by Elsevier Ltd.

1. Introduction et al,, 2018, November). CNNs include two parts, the first part

is actually a feature extractor based on convolution and pooling

Deep Learning (DL) (Goodfellow et al., 2016) is one of the most
attractive research areas in machine learning in recent times,
due to the great results offered by such models in a plethora
of applications. DL architectures are successfully used in many
problems, like audio classification (Lee et al., 2009, December),
audio recognition (Noda et al., 2015), object detection (Zhou et al.,
2017, May), image classification for medical analysis (Muhammad
et al., 2021) or vehicular perception (Muhammad et al., 2020).

Convolutional Neural Networks (CNNs) (Lecun et al.,, 1998)
constitute the state-of-the art in image classification (Sultana

* Corresponding author.
E-mail addresses: jpoyatosamador@ugr.es (J. Poyatos),
dmolina@decsai.ugr.es (D. Molina), aritz.martinez@tecnalia.com (A.D. Martinez),
javier.delser@tecnalia.com (J. Del Ser), herrera@decsai.ugr.es (F. Herrera).

https://doi.org/10.1016/j.neunet.2022.10.011
0893-6080/© 2022 Published by Elsevier Ltd.

operations. The second part usually contains one or more fully
connected layers. In these fully-connected layers, the neuron
of each layer is connected to all the neurons of the previous
layer, which generates a large number of weights to be trained.
The design of an appropriate network for each problem is a
requirement in order to obtain a good performance. The training
process of a DL architecture is frequently time-consuming. Com-
plexity reduction maintaining the performance is an important
challenge in DL, currently attracting significant attention in the
community. Transfer Learning (TL) (Weiss et al., 2016) is usually
considered the alternative. It is very common to use a DL model
with fixed and pre-trained weights in the convolutional layers
with a dataset (like ImageNet Krizhevsky et al., 2012, December)
and then add and train several layers, named fully-connected
layers, to adapt the network to a different classification problem

https://doi.org/10.1016/j.neunet.2022.10.011
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.10.011&domain=pdf
mailto:jpoyatosamador@ugr.es
mailto:dmolina@decsai.ugr.es
mailto:aritz.martinez@tecnalia.com
mailto:javier.delser@tecnalia.com
mailto:herrera@decsai.ugr.es
https://doi.org/10.1016/j.neunet.2022.10.011

J. Poyatos, D. Molina, A.D. Martinez et al.

(|dataset] Gémez-Rios et al., 2019; Khan et al., 2019; Shin et al.,
2016).

The architecture of fully-connected layers used for the prob-
lem is a critical decision, and its design is still an open issue
in terms of the number of layers and neurons per layer (Liu,
Wang, Liu et al., 2017). There are general guidelines based on the
experience working with these layers, rather than rules to follow
for the configuration of them. Therefore, any kind of optimization
in them could provide a benefit in terms of model complexity
and performance. The pruning approaches follow the key idea
of reducing the complexity of the model, which creates new
networks with less computational cost for training. This idea is
followed in Frankle and Carbin (2019, May), which also shows
that, in the end, the accuracy can also improve as a result of
pruning.

Pruning is interpreted as removing unnecessary connections
from the model, but learning which connections are the fittest to
improve the performance of the model is the key point. In fact,
the selection of the best features for the problem is known as
Feature Selection (FS) (Iguyon & Elisseeff, 2003). In our case, TL
allows the extraction of the features of the input data of the DL
model. These features are the input of the fully-connected layers
that will be trained and, as a result of that, will largely affect
the performance of the network. Nonetheless, in many cases,
the problem that is formulated to learn these features is usually
different, sometimes more complex, than the one at hand and,
therefore, not all the learned patterns would be required. For that
reason, FS gives rise to an interesting option to select and retain
the subset of all features that lead to an improved performance
of the model (Yildirim et al., 2018).

In pruning scenarios, the main aim of most of the tradi-
tional pruning techniques mainly aim at reducing the number
of trainable parameters of the network, at the cost of a lower
performance. They seek to control the performance degradation
resulting from the process, but it is not their priority. Further-
more, they locally optimize parts of the network rather than
searching for globally optimal pruning policies, yielding usually
suboptimal pruned subnetworks with a lower performance. An-
other disadvantage of these pruning proposals is the fact that,
as the pruning affect all layers, the complete network must be
trained again, hence obtaining no advantages from the TL process.
It could be useful to have a pruning technique that prioritizes
results over complexity reduction, targeting a global performance
improvement of the network while reducing its complexity.

Transforming the fully-connected layers into a sparse repre-
sentation, in which each connection could be active or inactive,
could be used to prune neural networks. Following this approach,
both pruning and FS can be seen as optimization problems, in
which the target is to obtain the active set of connections that
produce the best performance. This optimization problem can
be globally tackled by optimization algorithms like Evolution-
ary Algorithms (Back et al., 1997) (EAs). They have been suc-
cessfully applied to many complex optimization problems. Even
though they cannot guarantee the achievement of the optimum
for the problem at hand, they obtain good results with limited
resources and reasonable processing time. Another advantage is
their versatility: several of them, like genetic algorithms (Gold-
berg, 1989) (GAs) allow optimizing solutions with different repre-
sentations (Chambers, 2000). The spectrum of problems in which
EAs can be used is very wide. EAs have been traditionally applied
to optimize neural networks (Iba, 2018), but their usage in DL
networks to improve DL networks (Martinez et al., 2021), to train
them (Mohapatra et al., 2022), and to create new DL networks
from scratch (Elsken et al., 2019b) is more recent. The use of EA’s
is mainly oriented towards optimizing a complete network. How-
ever, in this paper, our aim is to adapt the fully-connected layers

60

Neural Networks 158 (2023) 59-82

(the only trained for the problem to solve using TL) to improve
the accuracy in the predictions, together with the complexity
reduction. Our main hypothesis is the convenience of use of EAs
to prune the fully-connected layers via a sparse representation.

We propose an evolutionary pruning model based on TL for
deep neural networks, Evolutionary Pruning for Deep Transfer
Learning (EvoPruneDeepTL). EvoPruneDeepTL can be applied to a
DL model that resorts to TL to tackle a new task. EvoPruneDeepTL
combines sparse layers and EA, consequently, neurons in such
layers are pruned to adapt their sparsity pattern to the ad-
dressed problem. EvoPruneDeepTL is able to efficiently explore
the neuron search space (to discover coarsely grained solutions)
or, alternatively, in the connection search domain (fine-grained
solutions).

An important aspect to analyze in EvoPruneDeepTL is that one
of its solution encoding schemes effectively leads to a feature se-
lection mechanism, in which we deactivate the extracted features
and the EA evolves these features to learn which ones fit best as
predictors for the given problem.

EvoPruneDeepTL’ goals include flexibility and adaptability.
EvoPruneDeepTL has been designed to be flexible, and the au-
tomatic configuration of the network can be applied to different
pre-trained networks, used as feature extractors, and different
fully-connected layers. This make our proposal capable of tackling
different problems. The optimization in connections that Evo-
PruneDeepTL generates allows the model to be adaptable to the
specific dataset to be modeled. Thus, when the dataset suffers a
change, the resultant configuration will also be adapted to the
new circumstances.

To assess the performance of EvoPruneDeepTL, we have con-
ducted an extensive experimentation that leads to several valu-
able insights. To begin with, experimental results showcase the
behavior and effectiveness of EvoPruneDeepTL in terms of preci-
sion and in terms of reduction of the complexity of the network.
Thanks to the flexibility of EvoPruneDeepTL, it is applied to per-
form either pruning or FS. Both cases improve the accuracy of
the network when the comparison is made against reference
models and CNN pruning methods from the literature. Moreover,
in most cases, the FS scheme achieves a better performance than
the pruning scheme in terms of the accuracy of the network.
Furthermore, the network pruned by the FS scheme also achieves
a significantly reduced number of connections in its fully con-
nected part, contributing to the computational efficiency of the
network. We have also included several experiments showing
the flexibility of the model, both changing the feature extractor
and showing how changes in the dataset implies a modification
in the final configuration obtained by EvoPruneDeepTL. In short,
this extensive experimentation is used to provide answer to
the following six questions as the thread running through this
experimental study:

(RQ1) Which is the performance of EvoPruneDeepTL against
fully-connected models?

(RQ2) Which would be better, to remove neurons or connec-
tions?

(RQ3) Which is the performance of EvoPruneDeepTL when com-
pared to other efficient pruning methods?

(RQ4) Which would be better, the use of pruning of fully-
connected layers or Feature Selection?

(RQ5) How does EvoPruneDeepTL perform when applied to dif-
ferent pre-trained networks?

(RQ6) Can EvoPruneDeepTL adapt efficiently their pruned knowl-
edge to changes in the modeling task, showing robust-
ness?

J. Poyatos, D. Molina, A.D. Martinez et al.

The rest of the article is structured as follows: Section 2 ex-
poses related work to our proposal present in the literature. Sec-
tion 3 shows the details of the proposed EvoPruneDeepTL model.
Section 4 presents our experimental framework. In Section 5,
we show and discuss the EvoPruneDeepTL'’s results of the ex-
periments of pruning, feature selection and against efficient CNN
pruning methods of the literature. Moreover, EvoPruneDeepTL is
tested with different extractor features and with different varia-
tions of datasets in this section. Section 6 follows by summarizing
the advantages and drawbacks of our proposal when compared
to other pruning approaches. Finally, Section 7 draws the main
conclusions stemming from our work, and outlines future work
departing from our findings.

2. Related work

The purpose of this section is to make a brief review of
contributions to the literature that link to the key elements of
our study: Transfer Learning (Section 2.1), Neural Architecture
Search (Section 2.2), CNN pruning (Section 2.3), Evolutionary Al-
gorithms (Section 2.4) and Feature Selection with Deep Learning
(Section 2.5).

2.1. Transfer learning

TL (Pan & Yang, 2010) is a DL mechanism encompassing a
broad family of techniques (Tan et al.,, 2018, October). Arguably,
the most straightforward method when dealing with neural net-
works is Network-based deep transfer learning, in which a previous
network structure with pre-trained parameters in a similar prob-
lem is used. It offers good results by the behavior of DL models, in
which first layers detect useful features on the images, and later
layers strongly depend on the chosen dataset and task. As finding
these standard features on the first layers seems very common
regardless of the natural image datasets, its trained values can
be used for different problems (Yosinski et al., 2014, December).
Training DL models from scratch is usually time-consuming due
to the great amount of data in most cases. TL gives some benefits
which make it a good option for DL: reduction of time needed for
training (Sa et al., 2016), better performance of the model and less
need of data.

TL has been applied to several real-world applications, such
as sound detection (Jung et al., 2019, May) or coral reef classi-
fication (Gomez-Rios et al., 2019). Moreover, in Tajbakhsh et al.
(2016) two different approaches for TL are discussed: fine-tuning
or full training. They demonstrated that, for medical reasons,
a pre-trained CNN with adequate fine-tuning performed better
in terms of accuracy than a CNN trained from scratch. Another
approach of TL is presented in Mehdipour Ghazi et al. (2017), in
which an optimization of TL parameters for plant identification is
proposed.

There are different deep neural networks proposed in the
literature. One of the most popular is ResNet, which uses resid-
ual learning to improve the training process, obtaining better
performance than other models (He et al., 2016, June). ResNet
models are characterized by the use of deeper neural networks
without loss of information due to their architecture. Differ-
ent ResNet models with TL have been used in several appli-
cations (Scott et al., 2017), such as medical classification like
pulmonary nodule (Nibali et al, 2017) and diabetic retinopa-
thy classification (Wan et al.,, 2018). Moreover, other networks
have shown great performance when used with TL, such as
DenseNet (Huang et al., 2017, July) and VGG (Simonyan & Zisser-
man, 2015, May). An example of DenseNet with TL is presented
in Aneja and Aneja (2019, July), which shows that this network
architecture is able to achieve a great result for the task at

61

Neural Networks 158 (2023) 59-82

hand when combined with TL. Lastly, VGG has also shown an
outstanding performance when it is used in combination with
TL. An example is presented in Wen et al. (2019, May) in which
a pre-trained VGG-19 network is used to solve a fault diagnosis
problem.

2.2. Neural architecture search

The appropriate design of a neural network is a key point
to solve DL problems. Nevertheless, finding the best architecture
that optimally fits the data and, as a result of that, gives the best
outcome for the problem is extremely difficult. Recently, the term
Neural Architecture Search, NAS, has obtained a great importance
in this field. The objective of NAS is the automatic search for the
best design of a NN to solve the problem at hand.

The first work in this field is presented in Stanley and Mi-
ikkulainen (2002) in the beginning of this century, in which they
demonstrate the effectiveness of a GA to evolve topologies of NN.

In Zoph et al. (2018, June), the authors design the NASNet
architecture, a new search space to look for the best topology for
the tackled problem. Moreover, in Liu, Zoph et al. (2018, Septem-
ber) the authors propose to search for structures in increasing
order of their level of complexity, while learning a surrogate
model to guide the search through structure space.

NAS methods usually rely on Reinforcement Learning, RL, and
EA, like (Zoph et al.,, 2018, June) or (Liu, Simonyan et al., 2018,
April), in which the authors explore the search space using a
hierarchical genetic representation. Another example of RL for
NAS is shown in Kokiopoulou et al. (2020, August). The authors
propose a novel method that, by sharing information on multiple
tasks, is able to efficiently search for architectures.

NAS can also be viewed as a multi-objective problem. Among
these methods, one of them is presented in Elsken et al. (2019a,
May), in which the authors propose a multi-objective for NAS that
allows approximating the entire Pareto-front of architectures.
Another example is Neural Architecture Transfer (Lu et al., 2021),
that allows to overcome a common limitation of NAS, that is
requiring one complete search for each deployment specification
of hardware or objective. They use an integrated online transfer
learning and a many-objective evolutionary search procedure.

Recently, one of the most well-known multi-objective EA,
NSGA-II, has been used for NAS (Lu et al, 2019, July), called
NSGA-Net. This novel proposal looks for the best architecture
through a three-step search: an initialization step from hand-
crafted architectures, an exploration step that performs the EA
operators to create new architectures, and finally an exploitation
step that utilizes the knowledge stored in the history of all the
evaluated architectures in the form of a Bayesian Network.

Lastly, there are more advanced techniques of NAS and EA
given by Real et al. (2019, January), in which a new model for
evolving a classifier is presented, and by Real et al. (2020, July), in
which the authors propose AutoML-Zero, an evolutionary search
to build a model from scratch (with low-level primitives for
feature combination and neuron training) which is able to get a
great performance over the addressed problem.

2.3. CNN pruning

The main reason to optimize the architecture of a deep neural
network is to reduce its complexity. That reduction can be done
in different ways (Long, Ben and Liu, 2019). One of them is
by designing compact models from scratch instead of resort-
ing to architectures comprising multiple layers. Another strategy
is via weights-sharing (Ullrich et al., 2017, April). An alterna-
tive method to reduce the complexity of DL models is low-rank
factorization (Long, Ben, Zeng et al., 2019), based on a matrix

J. Poyatos, D. Molina, A.D. Martinez et al.

decomposition to convolutional layers to estimate parameters.
However, one of the most popular is Network Pruning. The ob-
jective of pruning is to remove unnecessary parameters from a
neural network, so that they do not participate during training
and/or inference. It can be done in the convolutional phase on
the channels, kernels and weights or even in the fully connected
phase on the neurons. In Masson et al. (2021) they show a
classification of pruning methods for channels. They categorize
the pruning methods for channel reduction, and they also specify
the criteria used to select these channels: based on weights or
based on feature maps.

We have seen that network pruning has achieved a great
importance in the literature as many researchers have applied
different techniques to simplify a CNN using a pruning scheme.
In Liu et al. (2019, May) they classify the pruning methods in
unstructured and structured pruning, and make a review of all the
state-of-art structured pruning methods. Unstructured pruning
methods remove weights without following any order. For the
structured methods, there are some rules or even constraints
which define how the pruning is done (Anwar et al.,, 2017). Typi-
cally, the pruned layers appertain to the convolutional phase (Luo
et al,, 2017, October). In our proposal, we instead apply a struc-
tured pruning scheme to the fully-connected layers.

Among pruning methods, the value-based weight pruning (Han
et al,, 2015, Dececember) and neuron pruning (Srinivas & Babu,
2015, September) have arisen as the most used, particularly due
to their simplicity. The logic behind this pruning methods is
straightforward: a certain amount (%) of the weights or neurons
that contribute less to the final trained model are removed from
the architecture. This makes the network quicker to perform
inference and endows it with better generalization capabilities.
However, multiple pruning and retraining steps demonstrated
that it is possible to recover fully or partially the knowledge
lost in the pruning phase. Further along the series of pruning
approaches published to date, Polynomial Decay (Zhu & Gupta,
2018, April) is a scheduled pruning method that considers that
a higher amount of weights can be pruned in early stages of
pruning, while systematically less amount of weights should be
pruned in late stages. Between pruning steps, the network is
retrained for some epochs. An implementation of the discussed
methods can be found for Tensorflow.

Pruning a CNN model reduces its complexity, but sometimes
leads to a decrease of the performance of the model, although
there are some proposals that reduce the complexity of the model
with no loss of accuracy (Han et al., 2016, May).

Pruning a neural network can be conceived as an optimization
method in which we start from the original vector, and con-
nections/neurons are decision variables whose value is evolved
towards optimizing a given objective. In this context of evolu-
tion of neural networks, evolutionary algorithms for evolving DL
architectures have been applied (Iba, 2018). While this combi-
nation of EA and DL models seemed to be a great scheme for
the optimization of DL models, especially for CNN network, the
optimization of DL models is still an open problem (Liu, Wang,
Liu et al., 2017). Many proposals have been published about this
problem like in Martinez et al. (2021), where they make a review
of proposals using EAs for optimizing DL models, prescribing
challenges and future trends to effectively leverage the synergy
between these two areas.

Researchers have presented a great variety of proposals about
the optimization of DL models using EA, most commonly for CNN.
In Martin et al. (2018), the authors developed EvoDeep, an EA
with specific mutation and crossover operators to automatically

1 https://www.tensorflow.org/model_optimization/guide/pruning, Tensorflow
Pruning. Last access: 28/01/2022.

62

Neural Networks 158 (2023) 59-82

create DL models from scratch. Moreover, in Real et al. (2017,
August) a novel evolution approach to evolve CNN models using
a GA was proposed. Another example of the optimization of CNN
was developed in Assuncdo et al. (2019), in which a GA was
presented for the optimization of the topology and parameters
of the CNN.

In our proposal, we improve the performance of the models
using a TL approach to extract the features of the images and
apply a reduction of the fully-connected layer using a GA to
optimize a sparse layer.

2.4. Evolutionary algorithms for CNN pruning

In the previous section, several works of CNN pruning have
been presented, but none of them use an EA to prune. In this
section, we mention some studies present in the literature which
have used an EA in order to prune a CNN model. To begin with,
in Liu, Wang and Qiao (2017, February), the authors propose a
sparse approach to reduce CNN complexity. EAs are also a good
way to prune CNN. In Mantzaris et al. (2011), a first attempt
of pruning and GA is proposed for a medical application. They
use a GA to search for redundancy factors in a neural network.
Moreover, in Samala et al. (2018) another EA is presented to
prune deep CNN for breast cancer diagnosis in digital breast to-
mosynthesis. A combined approach of EA and sparse is proposed
by Wang et al. (2020), in which a GA and sparse learning are
applied to a scheme of network channel pruning in the convo-
lutional scheme of the CNN. For pruning CNN, not only GAs but
also other algorithms are used, like Differential Evolution (DE).
In Salehinejad and Valaee (2021) the authors propose to use a
Differential Evolution algorithm to prune the convolutional phase
and the fully-connected phase of some Deep CNN, obtaining a
reduction of the model but a small decrease of its performance.

However, all previous works are focused on reducing the com-
plexity, using the EA to reduce the accuracy loss of the pruned
network. Also, many of them try to reduce the whole model,
changing the complete architecture and making the pre-trained
values unusable. The re-training of the network may be a time-
consuming task, so we assume that TL is useful in this context.
We therefore maintain the original architecture with pre-trained
values. Our model focuses on improving the performance of the
model by pruning connections of the fully-connected layers using
a GA to evolve the connections. In this environment, the search
space of the GA is narrower and a faster convergence of the
algorithm may be reached.

In addition to that, in the field of neural architecture search,
more advanced techniques have been developed. Among them,
in Section 2.2, either (Real et al., 2019, January) and (Real et al,,
2020, July) have been commented. Nonetheless, they also have a
great relevance in this section. The first one evolves a classifier,
whereas in the second one, the authors develop an evolutionary
search to build a model from scratch.

2.5. Feature selection and deep learning

One of the advantages of using TL is reducing the required time
to train a DL architecture. Nonetheless, the result of this process
may lead to recognize patterns that are not useful to address the
problem at hand. For that reason, once TL is applied, a FS process
to obtain the best features might lead to a better performance of
the neural network (Roy et al., 2015, July).

An example of this process is presented in an arrhythmia
detection task addressed in Yildirim et al. (2018), in which the
authors propose a mechanism based on feature extraction and
selection to improve and ultimately obtain one of the best results

https://www.tensorflow.org/model_optimization/guide/pruning

J. Poyatos, D. Molina, A.D. Martinez et al.

(a) Fully-Connected
Layer

(b) Sparse Layer

Fig. 1. Representation of both architectures.

for this problem. In relation to medical problems, the combina-
tion of FS and DL is also used in cancer diagnosis and digital breast
tomosynthesis. In Samala et al. (2018) they use a TL approach and
then a FS process followed by an evolution through a GA that
leads to a reduced network with the same performance. Another
example is described for remote sensing scene classification, in
which the FS makes an impact to improve the performance of
the neural network models (Zou et al,, 2015), as the authors
formulate the FS problem as a feature reconstruction problem.
Their iterative method selects the best features to solve this
problem as the discriminative features.

In our proposal, if we assume that TL is applied and we only
have one fully-connected layer, then the pruning is made in
relation to the extracted features of the network and, therefore,
we are making a selection of the features that adjust at best to
the tackled problem.

3. Evolutionary Pruning for Deep Transfer Learning

This section describes EvoPruneDeepTL, which is a model that
replaces fully-connected layers with sparse layers optimized us-
ing a genetic algorithm in a TL approach. Section 3.1 gives a
notion of the concept of sparse layer and the description of
EvoPruneDeepTL. In Section 3.2, we define the evolutionary com-
ponents of EvoPruneDeepTL. The description of the process of
creating the network and how the pruning is made is shown in
Section 3.3.

3.1. Global scheme of Evolutionary Pruning for Deep Transfer Learn-
ing

In a fully-connected layer, all neurons of each side are con-
nected. Sometimes, all these connections may not be necessary,
and the learning process can be reduced. For that reason, the
fully-connected layer can be replaced by a sparse layer, in which
some connections are eliminated.

In this work, our goal is to improve the performance of the
neural network and, at the same time, to decrease the maximum
number of connections or neurons. To this end, we use a sparse
layer, which is composed of a subset of all connections of a
fully-connected layer.

Fig. 1(a) shows the fully-connected network architecture,
while Fig. 1(b) represents the sparsely connected architecture
with a connection matrix of 4 x 3 because we have 3 classes
(blue circles) and 4 neurons of the previous layer.

In this section, we discuss the basic notions of pruning
and sparse layers. Moreover, the encoding strategies of

63

Neural Networks 158 (2023) 59-82

EvoPruneDeepTL are described, together with the decoding pro-
cess of the chromosome encoding the pruning pattern (genotype)
that yields the pruned sparse layer(s) (phenotype). Nonetheless,
for the sake of a clear vision of EvoPruneDeepTL, Fig. 2 shows a di-
agram that exposes its general components. We next complement
the detailed description provided in the following subsections
with a short, albeit illustrative introduction to the key parts and
overall workflow of EvoPruneDeepTL:

First, the TL process departs from a source dataset modeled by
a CNN model, which adjusts the value of its coefficients by means
of its learning algorithm. Then, those parameters are transferred
to another network aimed to model a target task. This implicitly
assumes that both tasks are correlated with each other, such
that the knowledge delivered from the source to the target task
via the transferred network weights can positively contribute to
the learning process of the target task. These weights are kept
fixed, frozen, in this study. Then, EvoPruneDeepTL specializes the
fully-connected part of the neural network of the target task by
resorting to a GA. This metaheuristic wrapper prunes unnecessary
neurons of these layers driven by the improvement of a perfor-
mance measure (e.g. accuracy). The outcome of the process is a
pruned network with a potentially improved accuracy by virtue
of an optimized pruning mask.

In this study, we propose a novel method to prune the neu-
rons, that considers the removal of both single connections and
groups of connections of the input connections of a specific
neuron, as can be observed in Fig. 3. Fig. 3(b) shows a sparse
layer that leads to the encoding strategy used in this work. This
encoding, which is represented by the chromosome of the GA, is
required to know exactly which connections are removed.

EvoPruneDeepTL model utilizes a GA designed to optimize the
connections of a sparse layer. The GA takes each individual as a
mask for the neural network and creates a sparse layer activating
from the mask. This optimized mask gives rise to a pruned neural
network suitable for the problem under consideration.

The optimization is performed using both methods, either by
groups of connections or by single connections. The genome rep-
resentation of each chromosome of the GA is binary-coded and
represents the active neurons or the active connections. The GA
evolves the configuration of the network towards its best pruned
variant in terms of accuracy. Next, we describe both encoding
strategies:

e Neurons: each gene of the chromosome represents the
number of active neurons. A value 1 in position i means
that the neuron i is active, and a 0 that is inactive. A non-
active neuron implies that all the input connections are
removed both in training and inference times. The length
of the chromosome in this case is the number of neurons of
the sparse model.

e Connections: each gene represents the connection between
the layers. The interpretation of the binary values is as
follows: if a gene is 1, the connection between the cor-
responding layers exists, otherwise, that connection does
not exist. Therefore, the length of the chromosome is the
maximum number of connections, noted as D = D; x D,
where D; is the number of neurons in the previous layer,
and D, is the number of neurons in that layer.

An example of both encoding strategies is shown in Fig. 3. In
both cases, the pruned connections are from the input on the
layer, i.e. the right layer. The left image shows a representation
of neuron-wise encoding, in which a group of neurons is selected
to be active and the rest are pruned. The right image depicts how
single connections are pruned.

J. Poyatos, D. Molina, A.D. Martinez et al.

Neural Networks 158 (2023) 59-82

Source
dataset

Transferred
filter coefficients

[(@701)3 <@>C2>7] (

. > 2
: >
S .3
& ;5
. g
> 5
‘ Training
{/xTraining
) X 9
3 W50 9 =
2 €. : oA
- Y : a:
-
Target
dataset EvoPruneDeepTL

Fig. 2. Diagram of EvoPruneDeepTL.

[10101] [100010001110001]

(b) Single Connection
Encoding

(a) Neuron Encoding

Fig. 3. Representation of encoding strategies.

3.2. Evolutionary components of EvoPruneDeepTL

In this subsection, we introduce the evolutionary components
of EvoPruneDeepTL. It is a steady-state genetic algorithm, which
means that two new individuals, called offsprings, are created in
each generation, for the previous mentioned encoding strategies
(neuron encoding vs single connection encoding, Fig. 3): in each
iteration two individuals are selected and crossed, producing two
offsprings that could also be mutated. The offspring candidates
are introduced in the population only if they improve the worst
candidates in the population, replacing them.

64

As previously mentioned, in EvoPruneDeepTL each chromo-
some is a binary array and each gene represents a connection
between two layers. Each generation follows the classical scheme
of selection, crossover, mutation and replacement. The best solu-
tions found during the evolutionary search are kept in a popula-
tion of individuals. Next, we describe the different components:

Selection: the implemented selection operator is Negative As-
sorting Mating (NAM) (Fernandes & Rosa, 2001, May). The first
parent is picked uniformly at random, while the second parent
is selected between three possible candidates. These candidates
are also picked uniformly at random from the population. The
candidate with higher Hamming distance from the first parent
is chosen as the second parent, thereby ensuring that the re-
combined parents are diverse. This selection method allows for
a higher degree of exploration of the search space.

Crossover: EvoPruneDeepTL uses the uniform crossover oper-
ator shown in Expression (1). Given two parents P and Q, where

P = {p;}? , and Q = {g;}2,. Then two offsprings P’ = {p/}?_, and
Q = {q}}, are created following the equations:
P ifr <05
pt = qi otherwise)
, g ifr<05
4= pi otherwise

where r is the realization of a continuous random variable with
support over the range [0.0, 1.0]. This operator takes two parents
P and Q of length D and creates two new offspring P’ and Q' of the
same size. Each new offspring is composed of the parents genes.
Each gene (position of the new array) is set equal to the gene of
the first or second parent. This process is repeated until the whole
offspring is composed.

Mutation: EvoPruneDeepTL adopts the so-called single point
mutation. A mutation probability for each individual is defined

J. Poyatos, D. Molina, A.D. Martinez et al.

by pmur. Then, a gene of that individual is uniformly randomly
selected and its bit is flipped , i.e., if the mutation is performed,
then that neuron or connection changes its value, which implies
that the connection or the neurons is activated or deactivated.
In this operator, py, is the value that establishes the probability
that a mutation is performed.

Replacement Strategy: at the end of every generation, the two
offsprings resulting from the crossover and mutation operators
compete against the worst two elements. As a result, the pop-
ulation is updated with the best two individuals among them,
i.e. those whose fitness value is better. EvoPruneDeepTL main-
tains a pool of four individuals: two offsprings and the two
worst individuals selected from the population. Then, the best
two of them are in the new population. The criterion to select
the best two is based on the fitness as the best of them are
selected. In case of same values, the individuals with fewer active
neurons/connections are those selected to be retained in the new
population.

Initialization: the genes composing the individuals are initial-
ized to 0 or 1 as per the following probabilistic condition with a
Done Probability:

1
-]

where r is the realization of a uniform continuous random vari-
able with support [0.0, 1.0].

Evaluation of individuals: the fitness value of every individual
is given by the accuracy over a test dataset of the neural net-
work pruned as per the decoded individual, and trained over the
training dataset of the task at hand. Each individual, named p,
is decoded to yield a sparse neural network, which we hereafter
refer to SparseNet,. Then this network is trained as previously
commented over the train dataset, giving the TrainedSparseNet,
network. Lastly, the test dataset is evaluated in this network, pro-
ducing the fitness of the individual, which we call ChildFitness),.

Algorithm 1 shows the pseudocode of EvoPruneDeepTL. First,
we need to understand what EvoPruneDeepTL requires to start its
evolution process, and what results from this process. The input
of EvoPruneDeepTL is determined by:

if 1 < Pone
otherwise

(2)

e Dataset and task to be modeled.

e Configuration of the GA: parameters needed for the algo-
rithm.

e Configuration of the network: parameters needed for the
network.

o Feature extractor: a pre-trained neural network used for fea-
ture extraction and TL, e.g., ResNet-50 trained over Imagenet
or any other available architecture alike.

The algorithm starts by initializing the individuals of the pop-
ulation (line 1) using the previous operator and then evaluating
them (line 2). The evolutionary process is performed in lines 3-
15. Two parents are selected using the NAM operator (line 4)
and then the two offsprings are generated using the crossover
operator (line 5). If the mutation condition is met, then mutation
is performed (lines 6-8). The child population is now evalu-
ated (lines 9-14). The evaluation is held over three steps, in
which each individual is decoded (variable SparseNet, in line 10),
and then the network created with its configuration is trained
(named TrainedSparseNet, in line 11) using the train dataset
and then evaluated (called ChildFitness, in line 12) over the test
dataset. Lastly, the replacement strategy is triggered (line 15).
The stopping criterion is the evaluation of a maximum number
of networks.

65

Neural Networks 158 (2023) 59-82

Algorithm 1: EvoPruneDeepTL

Input : Dataset, configuration of the GA, configuration of
the network and feature extractor

Output: Best pruned network

1 Initialization of individuals of the population using the

initialization operator;

2 Evaluation of the initial population (see lines 9-14);

3 while evaluations < max_evals do

4 Parent selection using NAM operator;

Generate offsprings using crossover operator;

if rand() < p_mut then
\ Perform mutation using mutation operator;

end

for each child p in children population do

SparseNet, <— Create sparse network using the
decoded individual of the population;

TrainedSparseNet, <— Train SparseNet, using train
dataset;

ChildFitness, < Accuracy of TrainedSparseNet,
evaluated in test dataset;

evaluations+=1;

end

Replacement Strategy: child population vs worst
individuals of population;

© g o u

1

12

13
14
15

16 end

3.3. EvoPruneDeepTL network

This subsection is devised to fully understand the components
associated with the networks that involve EvoPruneDeepTL. Evo-
PruneDeepTL stands for the usage of transfer learning, which
means that the convolutional phase before the fully-connected
layers is imported from other pre-trained model. Thus, the chosen
CNN works as a feature extractor, i.e, obtains the main feature
or characteristics for the task at hand. In our study, we have
chosen ResNet-50 as feature extractor, although others can also
be used, such as VGG or DenseNet. In Section 5, a comparison
between these three extractors is made to analyze the goodness
of EvoPruneDeepTL with them.

These features are used as the input for the fully-connected
layers. We introduce two different compositions of these fully-
connected layers:

e Single fully-connected layer: it is composed of a single layer
with 512 neurons, followed by the output layer.

e Two fully-connected layers: this architecture has two layers
of 512 each, and the output layer connecting the output of
the last fully connected layer to as many neurons as the
number of classes to be discriminated in the dataset.

EvoPruneDeepTL stands for the usage of sparse layers. By
definition, a sparse layer has few active connections. A key object
in this environment is the adjacency matrix. This matrix is key
in our study because it is used to create a sparse layer from it.
It allows decoding an individual evolved via the GA to yield, as a
result, a neural network with a sparse layer. Taking a look about
this matrix, EvoPruneDeepTL performs the pruning in relation to
the connections/neurons that compose the input of the neuron.
Consequently, there may be some neurons of the second layer
which have no connection from the previous layer.

Based on the two network architectures described above, we
consider different scenarios where EvoPruneDeepTL can be ap-
plied. We present these scenarios in the following figures, in
which the red-dashed lines indicate the effects of the pruning.

J. Poyatos, D. Molina, A.D. Martinez et al.

Output

Network
Features

(a) Pruning one layer

Neural Networks 158 (2023) 59-82

=0
Output

Network
Features

(b) Pruning extracted features

Fig. 4. Visualization of pruning architectures with one layer.

e

[N

- =0

- - 0
= ——®

® ‘ Output

P = Layer 1 Layer 2

/" 28
[

Network
Features

(a) Pruning the first layer

&
q’t
[
[2

=)
®

=9
[

Z - = —@
o Output
o
v
o

Network
Features

(b) Pruning the second layer

Fig. 5. Visualization of pruning architectures with two layers.

In addition to that, we have grouped the models in terms of the
number of the last layers. The first model is the application of the
EvoPruneDeepTL to prune model with one layer, which is shown
in Fig. 4(a). Moreover, when the pruning is made with networks
with two layers, three cases come up: pruning the first layer (see
Fig. 5(a)), pruning the second layer (see Fig. 5(b) for these cases),
or both at the same time, which is the combination of the last two
cases. Lastly, EvoPruneDeepTL is also able to prune the charac-
teristics that are extracted from the network. This approximation
is called Feature Selection because EvoPruneDeepTL prunes the
features that are less important to enhance the accuracy of the
network. Fig. 4(b) illustrates how pruning in this last scenario
reduces to a selection of features.

4. Experimental framework

In this section, we describe the experimental framework fol-
lowed in our study. First, we give a brief description of the
analyzed datasets. Then, the training setup is presented, empha-
sizing the parameters of EvoPruneDeepTL and the experimental
conditions.

4.1. Datasets

In our study, we have chosen several diverse and represen-
tative datasets that are suitable for TL due to their size, as they
require less training and inference time. Therefore, these datasets
are suitable for population metaheuristics, as many individuals
are evaluated. The selected datasets are shown in Table 1, which
portrays their main characteristics for our experiments.

These datasets are diverse and taken from the literature:

66

Table 1
Datasets used in the experiments.
Dataset Image size # classes # Instances (train/test)
SRSMAS (299, 299) 14 333/76
RPS (300, 300) 3 2520/372
LEAVES (256, 256) 4 476/120
PAINTING (256, 256) 5 7721/856
CATARACT (256, 256) 4 480/121
PLANTS (100, 100) 27 2340/236

e SRSMAS ([dataset] Gomez-Rios et al, 2019) is a dataset
to classify coral reef types with different classes and high
distinction difficulty.

e RPS ([dataset] Laurence Moroney, 2019) is a dataset to iden-
tify the gesture of the hands in the popular Rock Paper
Scissors game from images that have different positions and
different skin colors.

e LEAVES is composed of images of healthy and unhealthy
citrus leaves, with different shades of green ([dataset] Hafiz
Tayyab Rauf et al., 2019).

e PLANTS is another dataset from the natural environment
([dataset] Singh et al., 2020, May), in which the task is
to differentiate between leaves of different plants such as
tomato, apple or corn, among others.

o CATARACT comes from the medical domain ([dataset] Sung-
joon Choi, 2020), whose purpose is to classify different types
of eye diseases.

e PAINTING is related to the painting world ([dataset] Virtual
Russian Museum, 2018). The images in this dataset have

J. Poyatos, D. Molina, A.D. Martinez et al.

Fig. 6. Images of datasets. Top: SRSMAS examples. Middle: RPS examples.
Bottom: LEAVES examples.

Table 2
Parameters of EvoPruneDeepTL.

Parameter Value

200 (one layer)

Maximum Evals 300 (both layer)

Runs 5
Population size 30
NAM 3
Pmut 0.07
Batch size 32

been taken from a museum and the task is to recognize
different types of paintings.

Examples for several of the above datasets are shown in Fig. 6.
4.2. Training setup

The evaluation of EvoPruneDeepTL requires splitting the im-
ages of the datasets in train and test subsets. As the results could
strongly depend on the train and test sets, we have applied in
SRSMAS and LEAVES a 5-fold cross-validation?

For the remaining datasets, the train and test had already
been defined beforehand, so we have used them for the sake of
replicability.

The training is done using SGD as optimizer, a batch size of 32
images, and maximum 600 epochs, but the training stops when
no improvement of loss is obtained in ten consecutive epochs.
The model with the greater accuracy on the training set is saved.
As we apply TL, only the last layers are trained, whereas the
remaining ones are frozen with the parameter values imported
from the pre-trained ResNet-50 network.

The parameters of EvoPruneDeepTL are indicated in Table 2.
We have set the maximum evaluations to two different values,

2 Sets for 5 fold CV for SRSMAS and LEAVES: https://drive.google.
com/drive/folders/1Xf70eZyWDDG-_Y4VX_nnAdfz3Kwhy8LU?usp=sharing. Last
Access: 28/01/2022.

Neural Networks 158 (2023) 59-82

Table 3

Average time per run of EvoPruneDeepTL.
Dataset First layer Second layer Both layers
SRSMAS 9 h 41 min 10 h 45 min 15 h 27 min
RPS 4 h 23 min 5 h 13 min 8 h 00 min
LEAVES 10 h 26 min 16 h 01 min 17 h 45 min
PAINTING 13 h 1 min 15 h 24 min 22 h 45 min
CATARACT 2 h 3 min 2 h 22 min 3 h 26 min
PLANTS 6 h 3 min 6 h 11 min 10 h 00 min

200 and 300, because there are some experiments we carry out to
analyze the behavior of EvoPruneDeepTL that need an adaptation
of this value because the search space in these experiments is
wider. The size of the population of networks that our model
evolves at each generation is set to 30, the mutation probability
is pmye and the NAM operator chooses the second parent among
3 candidates. The best solution found in terms of accuracy is
returned. We note that in case of several solutions with the
same accuracy, the returned solution is the configuration with
the lowest percentage of active neurons. Note that the number
of runs and total function evaluations is kept low to meet a
computationally affordable balance between performance and
the high execution times required for simulation. This is shown
in Table 3, in which the average time per execution of the models
with two layers is indicated. Unfortunately, this limited number
of runs per experiment impedes the application of statistical tests
to assess the significance of the reported differences, as tests
conventionally used for this purpose require larger sample sizes
to reach meaningful conclusions.

All the following experiments have been carried out using
Python 3.6 and a Keras/Tensorflow implementation deployed and
running on a Tesla V100-SXM2 GPU. The code is published in a
open repository in GitHub.?

5. Results and discussion

In this section, we analyze the behavior of EvoPruneDeepTL. In
order to show the benefits of using EvoPruneDeepTL, we propose
four research questions (RQ) that they are going to be answered
with different and diverse experiments over several datasets are
carried out. We will show tables with the results of these ex-
periments and we will analyze them to ensure the benefits of
EvoPruneDeepTL. These RQ are the following ones:

(RQ1) Which is the performance of EvoPruneDeepTL against
fully-connected models?
We compare EvoPruneDeepTL against non-pruned mod-
els comprising fully-connected layers to study which
model obtains a better performance in the experiments.
Moreover, we remark the flexibility of EvoPruneDeepTL
applying it with one and several layers.

(RQ2) Which would be better, to remove neurons or connec-
tions?
We compare EvoPruneDeepTL using the two alternatives
explained in the previous section: (1) pruning the neu-
rons or (2) each individual represents exact connections
between neurons, allowing for a more finely grained op-
timization. The goal of this section is to check which
representation obtains the best results. On the one hand,
the neuron representation of the length of chromosomes
is shorter, so the domain search is smaller. On the other
hand, the connections representation is a more fine-detail
representation, so it could potentially allow the algorithm
to obtain better results.

3 EvoPruneDeepTL repository: https://github.com/ari-dasci/S-EvoDeepTLPruni
ng.

https://drive.google.com/drive/folders/1Xf7OeZyWDDG-_Y4VX_nnAdfz3Kwhy8LU?usp=sharing
https://drive.google.com/drive/folders/1Xf7OeZyWDDG-_Y4VX_nnAdfz3Kwhy8LU?usp=sharing
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning
https://github.com/ari-dasci/S-EvoDeepTLPruning

J. Poyatos, D. Molina, A.D. Martinez et al.

(RQ3) Which is the performance of EvoPruneDeepTL when com-
pared to efficient pruning methods?
We compare the performance of EvoPruneDeepTL against
several efficient pruning methods published in the lit-
erature for compressing CNN networks: Polynomial De-
cay (Zhu & Gupta, 2018, April), Weight Pruning (Han et al.,
2015, Dececember) and Neuron Pruning (Srinivas & Babu,
2015, September). This comparison of EvoPruneDeepTL
and the CNN models is made in terms of accuracy and
model compression.
(RQ4) Which would be better, pruning fully-connected layers or
performing Feature Selection?
A particular case of EvoPruneDeepTL stands when the op-
timization of the network is done with one fully-
connected layer and features are evolved towards the
fittest for the problem at hand. Our aim is to check if this
scheme improves the overall performance of the model
over a dataset in terms of the accuracy of the models.
How does EvoPruneDeepTL perform when applied to dif-
ferent pre-trained networks?
We compare EvoPruneDeepTL with different feature ex-
tractors. From RQ1 to RQ4, ResNet-50 is used to ex-
tract the features or characteristics for the considered
datasets. Experiments devised for this RQ aim to examine
whether EvoPruneDeepTL adapts suitably to other feature
extractors such as DenseNet-121 and VGG-19, so that
better-performing pruned networks are produced by our
proposal also for these feature extractors.
Can EvoPruneDeepTL adapt efficiently their pruned
knowledge to changes in the modeling task, showing
robustness?
We analyze the behavior of EvoPruneDeepTL when the
datasets change. In this case, we have selected some
datasets from our study, and we have done several mod-
ifications, removing partially or totally a class. Within
these changes, we want to show both the robustness of
the EvoPruneDeepTL in different situations and that the
pruning models obtained by the GA of EvoPruneDeepTL
have been adapted to each one of these situations.

(RQ5

-

(RQ6

=

This section is divided in Section 5.1, where the comparison
of the diverse representations of pruning that EvoPruneDeepTL
makes against the reference models is presented to answer RQ1.
Next, Section 5.2 discusses whether EvoPruneDeepTL should op-
erate over neurons or connections to analyze RQ2. Section 5.3
provides a complete comparison among EvoPruneDeepTL and
other efficient pruning methods in order to solve RQ3. Sec-
tion 5.4 explains the approximation of Feature Selection. A whole
comparison against all the previous models is made to assess
the importance of the Feature Selection to answer RQA4.
Section 5.5 shows the comparison of the best two models of
EvoPruneDeepTL with different feature extractors. Lastly, in Sec-
tion 5.6, EvoPruneDeepTL is challenged, with several modifica-
tions of the used datasets, to grasp the relevant features of these
datasets and to analyze the robustness of our proposal.

5.1. Answering RQ1: Pruning

In this section, we assess the performance gaps between the
proposed EvoPruneDeepTL against other reference models to an-
swer RQ1. In each subsection, several and diverse experiments
are carried out to present results that assure the quality of Evo-
PruneDeepTL when it is compared to other models. This pruning
section is composed of Section 5.1.1, in which we compare Evo-
PruneDeepTL against reference models with only one layer; of
Section 5.1.2 we make the same experiments but with two layers

68

Neural Networks 158 (2023) 59-82

Table 4
Average results of EvoPruneDeepTL against not pruned models with one
fully-connected layer.

Dataset Measure Not Best EvoPrune
Pruned Fixed DeepTL
Accuracy 0.832 0.866 0.885
SRSMAS % Active neur. 100 20 25
RPS Accuracy 0.938 0.938 0.954
% Active neur. 100 40 46
Accuracy 0.923 0.927 0.935
LEAVES % Active neur. 100 80 38
Accuracy 0.939 0.945 0.951
PAINTING % Active neur. 100 60 46
Accuracy 0.703 0.719 0.732
CATARACT % Active neur. 100 70 39
Accuracy 0.432 0.432 0.480
PLANTS % Active neur. 100 10 49

and the optimization of one of them, and of Section 5.1.3, that
shows the optimization of two consecutive layers at the same
time.

In the following, we describe the different reference models:

e The first reference is composed of fully-connected layers of
512 units and the output layer. That is equivalent to the
model with all neurons in active mode (all gens to 1). This
model is the one with all active neurons, we call it Not
Pruned.

e A grid search scheme is compared to EvoPruneDeepTL to
check whether the improvement made by EvoPruneDeepTL
could be obtained with a simple search over the percentage
of neurons of the fully-connected layer. We have tested the
fully-connected model with different number of neurons:
10% to 90% of its total units increasing this percentage by
10% (including both), and for each dataset we have identified
the number of neurons which gives the best accuracy.

e The best result of the above models is also noted and it
is called Best Fixed. When implemented over both layers,
pruning is referred to as Best Fixed Both.

5.1.1. Pruning neurons of one fully-connected layer

This section introduces the results of pruning models with
only one fully-connected layer. Table 4 shows the comparison of
EvoPruneDeepTL against the reference models. In this case, the
reference model only has one fully-connected layer composed by
512 units and the output layer.

For each dataset, the first row shows the obtained average
accuracy by the models over the test set, whereas the second row
informs about the average percentage of active neurons.

These results show how EvoPruneDeepTL is capable of dis-
tinguishing the pruning configurations that lead towards an im-
provement of performance of the models, as it obtains a greater
accuracy in all the datasets for every reference model. More-
over, in most datasets, a higher compression ratio than the best
fully-connected model is also achieved.

5.1.2. Pruning neurons of two fully-connected layers

In this section, our challenge is to improve the performance
of a two fully-connected layer network. For that reason, Evo-
PruneDeepTL is applied to each layer individually.

The results of applying EvoPruneDeepTL to each layer individ-
ually are shown in Table 5, where First Layer indicates the case
of the optimization of the first layer, and Second Layer describes
the other case. In this case, Both Not Pruned and Best Fixed are the
reference models with two fully-connected layer.

J. Poyatos, D. Molina, A.D. Martinez et al.

Table 5

Neural Networks 158 (2023) 59-82

Average results of EvoPruneDeepTL against not pruned models with two fully-connected layers.

Dataset Measure First layer Second layer
Not Best EvoPrune Not Best EvoPrune
Pruned Fixed DeepTL Pruned Fixed DeepTL
SRSMAS Accuracy 0.858 0.858 0.883 0.858 0.860 0.884
% Active neur. 100 100 46 100 80 47
RPS Accuracy 0.922 0.938 0.959 0.922 0.949 0.969
% Active neur. 100 30 37 100 30 16
LEAVES Accuracy 0.919 0.926 0.937 0.919 0.929 0.935
% Active neur. 100 40 28 100 60 12
Accuracy 0.939 0.944 0.950 0.939 0.941 0.951
PAINTING % Active neur. 100 60 53 100 90 53
Accuracy 0.703 0.711 0.740 0.703 0.703 0.735
CATARACT % Active neur. 100 70 63 100 100 59
PLANTS Accuracy 0.402 0.448 0.479 0.402 0.441 0.483
% Active neur. 100 10 45 100 50 37
In this case, results follow the same path as the previous one: Table 6

in all the datasets, EvoPruneDeepTL achieves an improvement of
the accuracy over the reference models. Moreover, the Second
Layer case obtains more compressed networks than the First
Layer option.

Comparing the results of the scheme of one and two layers,
both have similar results, only in RPS and CATARACT the differ-
ence in terms of accuracy is higher. Thus, these experiments have
shown the ability of EvoPruneDeepTL of improving the overall
performance of networks and, at the same time, reducing their
complexity.

5.1.3. Pruning neurons of both layers

In the previous sections, we have tested EvoPruneDeepTL to
single-layer optimization problems. In this section we increase
the difficulty of the problem: the optimization of two consecutive
fully-connected layers.

From the previous experiments, we have run EvoPruneDeepTL
with 200 evaluations, but we have noticed that this number of
evaluations might not be enough. This is due to the fact that
we have now individuals of size 1024, 512 for each layer, and
the search space is larger than in the rest of experiments. We
have therefore also carried out the experiments with 300 function
evaluations.

In Table 6, we show the results for reference models and Evo-
PruneDeepTL with 300 evaluations. The reference models stand
the same as in the previous cases, but as they are implemented
over both layers, the pruning is now referred to as Best Fixed Both.

In some cases, the percentage of remaining active neurons is
higher than in the first and second layer models, but that is due to
the complexity of this new problem. However, the performance of
the network in these experiments indicates that the best option
for pruning is achieved when the optimization is done to two
consecutive layers.

These results prove the attainment of a sequential process to
make pruning of DL models by adding layers and then, evolving
their neurons to achieve a reduced configuration of the network.
This process rises the performance of the models in terms of
accuracy.

5.2. Answering RQ2: which would be better, to remove neurons or
connections?

This section is devised to formally answer the RQ2, which is to
decide if it is better to perform pruning of whole neurons or ei-
ther single connections, by comparing different EvoPruneDeepTL
chromosome representations: neurons and connections, as we
described in Section 3. Two representations are shown in this

69

Average results of EvoPruneDeepTL against not pruned methods optimizing two
consecutive layers.

Dataset Measure Not Best Fixed EvoPrune
Pruned Both DeepTL
Accuracy 0.858 0.863 0.885
SRSMAS % Active neur. 100 50 64
RPS Accuracy 0.922 0.946 0.978
% Active neur. 100 90 12
Accuracy 0.919 0.934 0.936
LEAVES % Active neur. 100 15 34
Accuracy 0.939 0.949 0.953
PAINTING % Active neur. 100 40 51
Accuracy 0.703 0.735 0.746
CATARACT % Active neur. 100 85 63
Accuracy 0.402 0.466 0.491
PLANTS % Active neur. 100 55 41

section: the neuron representation, in which a gen represents the
connections of a neuron, and the connections representation, in
which a gene represents a specific connection in the sparse layer.
Neuron representation obtains shorter chromosomes than the
connections one. Meanwhile, the connection representation leads
to a more detailed representation and a larger domain search.

Table 7 shows for each dataset and representation the mean
accuracy and % of active connections for both pruning methods.
The connection strategy is named Edges. The results show that
even though there are some cases in which the edges optimiza-
tion achieves a similar performance of the network, the neuron
optimization presents more robust results. The models working
at the neuron level are even able to further reduce the number of
active neurons in some datasets.

As a conclusion of this experiment, we can confirm that using
the neuron approach is the best representation and that the
second layer model gives us more consistent results than the first
layer pruning model, both in accuracy and in reduction of the
model.

5.3. Answering RQ3: Comparing EvoPruneDeepTL with efficient
methods for CNN pruning

This section is devised to analyze the RQ3 comparing Evo-
PruneDeepTL to other well known network pruning methods
to present results that measure the performance of our model
against these methods. This comparison is conducted in terms of
quality and computational complexity, aimed to prove the poten-
tial of EvoPruneDeepTL with respect to other pruning counter-
parts. To this end, we implement two different pruning methods,

J. Poyatos, D. Molina, A.D. Martinez et al.

Neural Networks 158 (2023) 59-82

Table 7
Average results of EvoPruneDeepTL against edges models.
Dataset Measure One layer Two layers
Edges EvoPruneDeepTL Edges EvoPruneDeepTL EvoPruneDeepTL
layer 1 layer 2
Accuracy 0.875 0.885 0.875 0.883 0.884
SRSMAS % Active neur. 43 25 46 46 47
RDS Accuracy 0.952 0.954 0.952 0.959 0.969
% Active neur. 29 46 37 37 16
Accuracy 0.932 0.935 0.933 0.937 0.935
LEAVES % Active neur. 45 38 45 28 12
Accuracy 0.949 0.951 0.950 0.950 0.951
PAINTING % Active neur. 48 46 53 48 53
Accuracy 0.729 0.732 0.737 0.740 0.735
CATARACT % Active neur. 69 49 66 63 59
Accuracy 0.457 0.480 0.463 0.479 0.483
PLANTS % Active neur. 64 49 45 45 37
namely, weight pruning and neuron pruning. These methods have Table 8 '
a parameter in common, S; € R(0, 1), which denotes the target ~ Parameter values of Polynomial Decay.
pruning percentage. It is set to the same percentage of reduction Parameter Value
that EvoPruneDeepTL has obtained in the experiments discussed Si 0.1
previously. Next, we briefly describe each of such methods: 5?’ gb ’s
’ .
. . F b-5
e weight (Han et al, 2015, Dececember): Parameters with o go
lower values are pruned at once. This method operates
over the whole parameter set in the layer to be optimized.
(Parameters: 5y) Xab]e ¢ results of EvoPruneDeepTL against eficient CNN f I del
. . verage results o vorrunevee against erricien Oor one layer modeis.
e polynomial decay (Zhu & Gupta, 2018, April): Parameters g P8 v
. . Dataset Measure One layer
are pruned guided by a Polynomial Decay schedule to the — l
specified sparsity value. Between pruning steps, the net- Weight Poly. - Neuron EvoPrune
. R . . Decay DeepTL
work is allowed to fine tune for 5 epochs. This model is A 0805 0823 071 0885
also applied over the whole parameter set in the layer to SRSMAS ;;‘é:f‘feyneur by b b s
be optimized. Parameters used in the experimentation are
listed in Table 8 RPS Accuracy 0.917 0.927 0.869 0.954
Srini : & Babu. 2015. S b N ith % Active neur. 46 46 46 46
riniv mber):
* ?euron (1Vas o, <41, lepte er) iluropns wit LEAVES Accuracy 0918 0.920 0.886 0.935
ower mean input connc(]ectlon values are pruned. (Parame- % Active neur. 38 38 38 38
ters: S¢) as in Figs. 4 and 5. (Parameters: Ss) Accuracy 0993 0994 0574 0951
PAINTING % Active neur. 46 46 46 46
Table 8 summarizes the value of the parameters of Polynomial -
Decay algorithm, which have been adapted to our experiments. CATARACT ~ Accuracy 0.678 0679 0658 0.732
. . . o % Active neur. 39 39 39 39
Then, given a desired sparsity value of S, the sparsity is updated . 0406 o 0368 0,280
over a span of k pruning steps following the next equation PLANTS f;ﬂ:ﬁg eur. 49 a0 " a0

Ky — K;
K — K;

wherein parameters are described as follows:

Sk (3)

_sf+(si—sf).(1—) if K, mod F = 0

e S;; € R(0, 1) are the initial and final sparsity percentages.

e S¢ depends on the experiment. It is the percentage of prun-
ing that EvoPruneDeepTL has achieved and the end of the
generations.

e iy € N configures at what training step the pruning
algorithm starts and ends.

e K € N(K;, Kr) is the current step.

e nb is the number of batches. It is calculated as the length of
the training set divided by the batch size.

e F configures the frequency at which Eq. (3) is computed.

Parameters of the Polynomial Decay model are chosen to
achieve a tradeoff between network recovery and the number of
training epochs. Given the nature of this model, Polynomial Decay
implies more training epochs than the implemented neuron and
weight pruning methods. This fact could make the comparison
between such methods unfair if the additional training epochs
introduced by the Polynomial Decay model are high compared
to the initial training epochs (i.e. 600). To avoid this situation,

70

Polynomial Decay is configured so that it sufficiently guarantees
network recovery for all datasets while a minimal amount of
extra training epochs are carried out, just an extra 4% from the
initial 600 epochs (i.e. 25 extra epochs).

Our analysis aims to verify whether the performance
of the above efficient pruning methods are comparable to
EvoPruneDeepTL in terms of solution quality (accuracy) when
they are configured to prune the same amount of parameters.
Thus, the experimentation is carried out for the previously four
cases discussed, selecting the average outcomes from the exper-
imentation conducted in this point.

First, we show the results of this comparison when only a
fully-connected layer is used for the optimization. Table 9 shows
the results for this case. EvoPruneDeepTL outperforms the CNN
models in five out of the six cases, but only in PAINTING these
results are better for the Polynomial Decay or Weight models.

Second, Table 10 shows the results for the optimization of
models with two layers, where First Layer indicates the cases of
the optimization of the first layer and Second Layer describes the
cases of the second layer. Results point out that EvoPruneDeepTL
outperforms most of the methods in all the models and datasets.

J. Poyatos, D. Molina, A.D. Martinez et al.

Neural Networks 158 (2023) 59-82

Table 10
Average results of EvoPruneDeepTL against efficient CNN pruning methods for two layers models.
Dataset Measure First layer Second layer Both layers
Weight Poly. Neuron EvoPrune Weight Poly. Neuron EvoPrune Weight Poly. Neuron EvoPrune
Decay DeepTL Decay DeepTL Decay DeepTL
SRSMAS Accuracy 0.795 0815 0.775 0.883 0.834 0.837 0.779 0.884 0.845 0.847 0.647 0.885
% Active neur. 46 46 46 46 47 47 47 47 64 64 64 64
RS Accuracy 0.886 0911 0.803 0.959 0.845 0911 0.696 0.969 0.694 0.899 0.490 0.978
% Active neur. 37 37 37 37 16 16 16 16 12 12 12 12
LEAVES Accuracy 0.913 0918 0812 0.937 0.904 0919 0712 0.935 0.911 0925 0747 0.936
% Active neur. 28 28 28 28 12 12 12 12 34 34 34 34
PAINTING Accuracy 0.995 0.993 0.850 0.950 0.937 0938 0.920 0.951 0.934 0940 0.853 0.953
% Active neur. 53 53 53 53 53 53 53 53 51 51 51 51
CATARACT Accuracy 0.668 0.684 0.673 0.740 0.694 0.689 0.648 0.737 0.686 0.696 0611 0.746
% Active neur. 63 63 63 63 59 59 59 59 63 63 63 63
PLANTS Accuracy 0.408 0.403 0.343 0.479 0.392 0.420 0313 0.482 0.393 0411 0.278 0.491
% Active neur. 45 45 45 45 37 37 37 37 41 41 41 41
Table 11
Times in seconds per run of EvoPruneDeepTL against efficient CNN pruning methods with one and two layers models.
Dataset One layer Two layers
Weight Poly. Neuron EvoPruneDeepTL Weight Poly. Neuron EvoPruneDeepTL EvoPruneDeepTL EvoPruneDeepTL
Decay Decay layer 1 layer 2 both layers
SRSMAS 1995 2125 1995 34,510 2395 2545 2398 34,856 38,731 55,596
RPS 1674 1893 1674 19,851 1229 1379 1229 15,758 18,790 28,774
LEAVES 2425 2560 2425 35,243 2430 2565 2430 37,561 57,695 63,897
PAINTING 1386 1508 1386 61,734 2903 3243 2903 46,856 55,414 81,913
CATARACT 594 627 584 6,768 449 473 449 7,392 8,529 12,350
PLANTS 298 407 298 28,456 270 370 270 21,788 22,235 35,998
This case presents similar results as the one layer case because Table 12 ' ' '
only in the PAINTING dataset EvoPruneDeepTL has a lower per- Average results for Feature Selection against non pruning methods.
formance in relation to the literature methods. As a result of that, Dataset Measure Not Best Feature
) . . Pruned Fixed Selection
EvoPruneDeepTL's robustness in performance over the literature
methods has been shown in one-layer and two-layer networks. SRSMAS //\Cf\‘é;a\fey heur ?‘(;3032 (2)'(?66 (613;84
Lastly, we compare the execution times for all the models. -
Evolutionary approaches are known to converge slowly in highly- RPS Accuracy 0.938 0.938 0.985
& 0 i’ pp o 0 e g o y & Fy % Active neur. 100 40 45
imensional search spaces, as the one tackled in this paper. For
h in thi 13_ 1 hp p ired LEAVES Accuracy 0.923 0.927 0.943
t. at re?son, in this section, w((je aso W?lnt to compare the requge % Active neur. 100 30 59
time o EvoPruneDengL an the other traditional approaches. DAINTING Accuracy 0939 0945 0.958
Table 11 shows the time in s.econds fo1~ each model. From these % Active neur. 100 60 55
results, in terms of computational efﬁaency, our method spffers CATARACT Accuracy 0.703 0719 0.747
from the convergence slowness derived from the exploration of % Active neur. 100 70 55
large search spaces.)) PLANTS Accuracy 0.432 0.432 0.472
To summarize, in this section we have fairly compared Evo- % Active neur. 100 10 68

PruneDeepTL to other well-known pruning methods, such as
weight pruning and neuron pruning, guided by different pruning
techniques. EvoPruneDeepTL is distinguished from other pruning
methods due to the fact that they are advocate for shrinking
the through their pruning process, but with an admissible de-
crease of the accuracy. Although our model is slower in terms
of execution time, it scores higher accuracy levels than those
of traditional pruning counterparts. Therefore, we conclude that
EvoPruneDeepTL excels at determining which parameters to tune
in neural networks with imported knowledge from other related
tasks.

5.4. Answering RQ4: Feature Selection

The RQ4 establishes the dichotomy of choosing pruning or
feature selection for the given problem. For that reason, in this
section we analyze the FS model by conducting the same group
of experiments of the previous sections, to compare it against
EvoPruneDeepTL to decide which one scores best among them.
The FS scheme is a particular case of EvoPruneDeepTL if only one
fully-connected layer composes the configuration of the network

71

and the pruning and GA are focused on the extracted features of
the ResNet-50 model.

Table 12 shows the results for this model against the reference
methods. This case follows the same similarities of the previous
ones, as FS obtains the best average results for all the datasets.

Similarly to the previous sections, we have also compared this
model with the CNN pruning methods with only one layer, as
shown in Table 13. In this case, in four out of six datasets the
Feature Selection outperforms these methods, but in LEAVES and
PAINTING Weight and Polynomial Decay perform better than our
model.

In this section, we have compared our FS scheme against
reference models and efficient pruning methods published in the
literature. The results shed light over the benefits of this model as
it is also able to achieve a great performance over the reference
models and also, in most cases, against the CNN pruning methods.

The global results for EvoPruneDeepTL and its different ver-
sions are presented in Table 14. The rows show the achieved

J. Poyatos, D. Molina, A.D. Martinez et al.

Table 13
Average results of feature selection against efficient CNN pruning methods.

Dataset Measure Feature Selection
Weight Poly. Neuron Feature
Decay Selection
Accuracy 0.841 0.878 0.802 0.884
SRSMAS % Active neur. 60 60 60 60
RPS Accuracy 0.913 0.926 0.869 0.985
% Active neur. 45 45 45 45
Accuracy 0.947 0.940 0.946 0.943
LEAVES % Active neur. 59 59 59 59
Accuracy 0.962 0.968 0.883 0.958
PAINTING % Active neur. 55 55 55 55
Accuracy 0.696 0.689 0.687 0.747
CATARACT % Active neur. 55 55 55 55
Accuracy 0.421 0.317 0.402 0.472
PLANTS % Active neur. 68 68 68 68
Table 14

Results and percentage of improvement for each version of EvoPruneDeepTL in
relation to each reference model.

Dataset Measure Pruning model Pruning model Feature
one layer both layers Selection
Accuracy 0.885 0.885 0.884
SRSMAS % Improvement 1.9 22 1.8
RPS Accuracy 0.954 0.978 0.985
% Improvement 1.6 3.2 4.7
Accuracy 0.935 0.936 0.943
LEAVES % Improvement 0.8 0.2 1.6
Accuracy 0.951 0.953 0.958
PAINTING % Improvement 0.6 0.4 1.3
Accuracy 0.732 0.746 0.747
CATARACT % Improvement 1.3 1.1 2.8
Accuracy 0.480 0.491 0.472
PLANTS % Improvement 4.8 25 4.0

accuracy and the percentage of improvement in relation to the
best reference models for each model.

Reviewing the results of EvoPruneDeepTL and FS, we confirm
that FS is the best model, as it obtains the best accuracy levels
in four out of six datasets. Furthermore, the pruning of both
layers carried out by EvoPruneDeepTL also attains very notable
performance levels.

Moreover, if we consider the optimization using the pruning
model, the optimization of both layers yields the best results
in terms of mean accuracy for each dataset. However, when
comparing pruning and FS, the latter has more robust models:
it achieves the best performance in four datasets, and it is also
shown in the improvement percentage for each dataset.

In conclusion, it is shown with empirical evidence that pruning
can be done by optimizing the fully-connected layers, specifically,
by evolving their neurons to get the fittest configuration that
reports an improvement of the network performance. An evo-
lutionary feature selection based on the extracted features also
achieves a great network performance, both in improving the
accuracy and in reducing its complexity.

5.5. Answering RQ5: Comparing different EvoPruneDeepTL with dif-
ferent feature extractors

This section is devised to formally compare EvoPruneDeepTL
with different networks that serve as feature extractor for each
dataset to analyze. CNNs have shown their capability to overcome
different and diverse classification problems by learning visual
features that best correlate with the target variable of the task

72

Neural Networks 158 (2023) 59-82

at hand. Transferring this knowledge to other problems with a
similar domain, which is what TL stands for, also helps to the
capability of generalization of the model that is devised for the
target task, specially when the volume of data for that task is low.

In previous sections, we have observed that the combination
of EvoPruneDeepTL with ResNet-50 has improved both refer-
ence models and pruning methods of the literature. However, in
this section, we explore two other feature extractors and assess
whether such performance gaps prevail. To determine perfor-
mance gains of EvoPruneDeepTL when using these alternative
feature extractors, both are tested over the two best performing
scenarios of EvoPruneDeepTL, namely pruning both layers and
feature selection. Moreover, we also include in the comparison
these feature extractors with pruning algorithms from the liter-
ature, following the same experimental procedure described in
preceding sections.

The chosen feature extractors are DenseNet-121 and VGG-
19. The experiments with these networks have been carried out
in the same conditions that the previous ones have been done.
Table 15 shows the comparison of these networks against the
reference models based on fully-connected layers.

The results from the previous table show the ability of Evo-
PruneDeepTL to adapt itself to several feature extractors. For both
DenseNet-121 and VGG-19, it improves the reference models.
Taking a deep look at the three networks, ResNet-50 is the best
of them, as it has the best improvement over several datasets.
Nonetheless, the straight conclusion which is derived from these
experiments is that EvoPruneDeepTL is able to adapt to different
feature extractors and datasets.

Once we have seen that EvoPruneDeepTL has achieved better
results than the reference models, now we inspect the perfor-
mance of different pruning methods from the literature. For that
reason, we compare the model which prunes two consecutive
layers against its similar models from the pruning methods. Ta-
ble 16 shows the comparison of the three networks against these
methods. Note that, for this comparison, we have used the best
to models of the CNN pruning methods: Weights and Polynomial
Decay. This holds for the rest of this section.

The results shown in Table 16 give rise to interesting insights.
To begin with, the first three columns are related to ResNet-50,
which have a great performance over these reference models, and
we know it from the previous sections. However, DenseNet and
VGG are totally new in this kind of experiments. The reality is that
both of these networks improve the CNN pruning methods when
they are applied to fully-connected layers in most cases. Only in
a few experiments are better than obtained by our proposal.

A global vision of these experiments suggests that DenseNet
and VGG, just like ResNet, contribute to the discovery of pruned
neural networks that maximize accuracy and reduce the num-
ber of active neurons. Moreover, these results verify that Evo-
PruneDeepTL is able to achieve for different networks better
results than reference and efficient CNN pruning methods when
the pruning is made in two consecutive layers. Thus, we have
shown the adaption ability of EvoPruneDeepTL for this case using
several networks (ResNet, DenseNet, and VGG).

The following scenario is the feature selection model which
derives from EvoPruneDeepTL. This scenario, which encourages
the pruning of the features extracted by the pre-trained network,
has yielded the best results so far. Next, Table 17 shows the com-
parison of these networks when feature selection is performed.

In the previous sections, we have shown that EvoPruneDeepTL
is able to prune the extracted features derived from the network,
and this model has reached the best results of EvoPruneDeepTL.
Table 17 shows that the pruning of the features that they have
been extracted using different networks (DenseNet and VGG) also
increases the performance of the networks, which is shown in

J. Poyatos, D. Molina, A.D. Martinez et al.

Neural Networks 158 (2023) 59-82

Table 15
Average results of EvoPruneDeepTL with different networks optimizing two consecutive layers against non pruning methods.
Dataset Measure ResNet-50 DenseNet-121 VGG19
Not Best Fixed EvoPrune Not Best Fixed EvoPrune Not Best Fixed EvoPrune
Pruned Both DeepTL Pruned Both DeepTL Pruned Both DeepTL
SRSMAS Accuracy 0.858 0.863 0.885 0.861 0.881 0.890 0.837 0.853 0.885
% Active neur. 100 50 64 100 50 72 100 85 55
RPS Accuracy 0.922 0.946 0.978 0.704 0.723 0.754 0.814 0.879 0.922
% Active neur. 100 90 12 100 70 43 100 40 50
LEAVES Accuracy 0919 0.934 0.936 0.896 0.904 0.915 0.903 0911 0.917
% Active neur. 100 15 34 100 60 39 100 50 68
PAINTING Accuracy 0.939 0.949 0.953 0.940 0.943 0.947 0.923 0.938 0.945
% Active neur. 100 40 51 100 40 67 100 70 34
CATARACT Accuracy 0.703 0.735 0.746 0.694 0.727 0.741 0.661 0.727 0.759
% Active neur. 100 85 63 100 55 51 100 45 42
PLANTS Accuracy 0.402 0.466 0.491 0411 0.428 0.456 0.292 0.364 0.374
% Active neur. 100 55 41 100 55 78 100 50 64
Table 16
Average results of EvoPruneDeepTL against efficient CNN pruning methods for pruning consecutive layers.
Dataset Measure ResNet50 DenseNet-121 VGG19
Weight Poly. EvoPrune Weight Poly. EvoPrune Weight Poly. EvoPrune
Decay DeepTL Decay DeepTL Decay DeepTL
SRSMAS Accuracy 0.845 0.847 0.885 0.862 0.865 0.890 0.933 0.869 0.885
% Active neur. 64 64 64 72 72 72 55 55 55
RPS Accuracy 0.694 0.899 0.978 0.815 0.817 0.754 0.803 0.842 0.922
% Active neur. 12 12 12 43 43 43 50 50 50
LEAVES Accuracy 0911 0.925 0.936 1.000 0.907 0.915 1.000 0916 0917
% Active neur. 34 34 34 39 39 39 68 68 68
PAINTING Accuracy 0.934 0.940 0.953 0.897 0.901 0.947 0.923 0.922 0.945
% Active neur. 51 51 51 67 67 67 34 34 34
Accuracy 0.686 0.696 0.746 0.587 0.593 0.741 0.661 0.686 0.759
CATARACT % Active neur. 63 63 63 51 51 51 42 42 42
PLANTS Accuracy 0.393 0.411 0.491 0.251 0.249 0.456 0.284 0.292 0.374
% Active neur. 41 41 41 78 78 78 64 64 64
Table 17
Average results for feature selection with different networks against non-pruning methods.
Dataset Measure ResNet-50 DenseNet-121 VGG19
Not Best Feature Not Best Feature Not Best Feature
Pruned Fixed Selection Pruned Fixed Selection Pruned Fixed Selection
SRSMAS Accuracy 0.832 0.866 0.884 0.858 0.881 0.896 0.753 0.766 0.869
% Active neur. 100 20 60 100 60 68 100 40 87
RPS Accuracy 0.938 0.938 0.985 0.720 0.720 0.839 0.887 0.890 0.982
% Active neur. 100 40 45 100 100 48 100 60 53
LEAVES Accuracy 0.923 0.927 0.943 0.896 0.902 0.921 0.852 0.876 0.924
% Active neur. 100 80 59 100 10 60 100 10 68
PAINTING Accuracy 0.939 0.945 0.958 0.934 0.941 0.956 0.924 0.924 0.943
% Active neur. 100 60 55 100 90 63 100 100 77
CATARACT Accuracy 0.703 0.719 0.747 0.669 0.702 0.787 0.628 0.661 0.765
% Active neur. 100 70 55 100 30 57 100 10 66
PLANTS Accuracy 0.432 0.432 0.472 0.394 0.415 0.464 0.335 0.352 0.376
% Active neur. 100 10 68 100 90 67 100 40 66

the accuracy of these networks over the datasets. There are some
cases in which non pruning methods have less active neurons,
but their accuracy is lower than the models of EvoPruneDeepTL.
For that reason, the feature selection keeps being the best of
EvoPruneDeepTL models, as it has the best results so far.

The next, and final, step is to check the performance of this
feature selection model against efficient CNN pruning methods
from the literature. In this section, we have checked that, for
models which prune two consecutive layers, EvoPruneDeepTL
performs better than the pruning methods. Consequently, now
we focus on this comparison, but in terms of the models which

73

prune the extracted features. Table 18 shows the results of this
comparison for the different networks.

The results show, not only that ResNet-50 has a great perfor-
mance (same results as previous sections), that both DenseNet
and VGG outperform the pruning methods when applied to prune
the features extracted from the networks. Both new networks
show a better performance in all the datasets than the reference
methods. For that reason, we conclude that the usage of Evo-
PruneDeepTL with these three networks has proven the capability
to perform better than the pruning methods.

In this section, we have compared ResNet-50 with other two
networks in two different scenarios: pruning consecutive layers

J. Poyatos, D. Molina, A.D. Martinez et al.

Table 18

Neural Networks 158 (2023) 59-82

Average results of EvoPruneDeepTL with different networks against efficient CNN pruning methods for feature selection models.

Dataset Measure ResNet50 DenseNet-121 VGG19
Weight Poly. Feature Weight Poly. Feature Weight Poly. Feature
Decay Selection Decay Selection Decay Selection

SRSMAS Accuracy 0.841 0.878 0.884 0.869 0.868 0.896 0.826 0.825 0.869

% Active neur. 60 60 60 68 68 68 87 87 87
RPS Accuracy 0913 0.926 0.985 0.675 0.699 0.839 0.981 0.834 0.982

% Active neur. 45 45 45 48 48 48 53 53 53
LEAVES Accuracy 0.947 0.940 0.943 0.858 0.891 0.921 0.904 0.843 0.924

% Active neur. 59 59 59 60 60 60 68 68 68
PAINTING Accuracy 0.962 0.968 0.958 0.937 0.934 0.956 0.928 0.928 0.943

% Active neur. 55 55 55 63 63 63 77 77 77

Accuracy 0.696 0.689 0.747 0.676 0.682 0.787 0.666 0.688 0.765
CATARACT % Active neur. 55 55 55 57 57 57 66 66 66
PLANTS Accuracy 0.421 0.317 0472 0.387 0.394 0.464 0.322 0.311 0.376

% Active neur. 68 68 68 67 67 67 66 66 66

and pruning the extracted features from the networks. The exper-
iments show that EvoPruneDeepTL has proven its ability to adapt
to other networks in both cases and has improved both reference
models and pruning methods of the literature. For that reason,
and in light of the results from the previous sections, we conclude
that EvoPruneDeepTL has shown the ability of facing diverse
tasks, as EvoPruneDeepTL has achieved a great performance when
different networks are used either for pruning consecutive layer
or pruning the features extracted from the network.

5.6. Answering RQ6: Analyzing the ability of EvoPruneDeepTL to
adapt to relevant classes and robustness

The purpose of this section is twofold. First, we want to an-
alyze the goodness of EvoPruneDeepTL when modeling varying
problems. In this case, we want to see how it adapts to the
different classes that make up the datasets so that it captures the
relevance of each of them. For a given dataset, we analyze each
of its classes to determine if EvoPruneDeepTL is also able to have
a good performance over it, and then, compare these results with
the whole dataset.

The second objective of this section is the analysis of these
results. Once EvoPruneDeepTL has modeled each of the classes
for a dataset at hand, we check the quality of the obtained results.
For that reason, we must check that results are not affected by the
stochasticity induced by the usage of a genetic algorithm at the
core of the proposed EvoPruneDeepTL. Recall that stochasticity
implies that the output of the algorithm may not be the same,
even with the same input. For that reason, our second objective
is related to this factor, and we want to show that the effect of
randomness has a low impact on EvoPruneDeepTL, i.e., the good
results do not depend on the randomness.

In order to measure the effect of randomness in the pruned
networks evolved by EvoPruneDeepTL, we resort to a similar-
ity measure called Centered Kernel Alignment, CKA (Kornblith
et al,, 2019, June). CKA measures the similarity of trained neural
networks, in compliance with several invariance properties that
must be met for these particular computing structures (namely
invariance to invertible linear transformation, invariance to or-
thogonal transformation and invariance to isotropic scaling). We
compare the trained networks as a result of the application of
EvoPruneDeepTL. This comparison answers the question about
the robustness of EvoPruneDeepTL.

CKA is based on the Hilbert-Schmidt Independence Criterion,
HSIC (Gretton et al., 2005, October). It compares two matrices (K
and L) and determines the level of independence between them,
as it is shown in (4). In our case, these matrices are the structures
that contain the weights of the trained neural networks. CKA

takes a maximum value of 1 when the two inputs of CKA are

the same matrix. The range of this measure is [0, 1]. This means

that both matrix are very similar (in that case because they are

identical). Thus, if the CKA value is high, then both matrix are

similar.

CKAK. L) = HSIC(K, L) (@)
JHSIC(K, K)HSIC(L, L)

CKA is a measure which allows us make a double comparison.
Note that this measure helps us to compare the genotype (chro-
mosomes of the GA) against the phenotype (pruned networks
of EvoPruneDeepTL). The interpretation of this measure follows
that if the similarity of the chromosomes is high, then the CKA
value should be also high (close to one, which is its maximum).
Five independent executions have been made of EvoPruneDeepTL,
so we have taken the output of each of them, and we have
performed a double comparison based on this trained neural
network, which is explained next:

1. Comparison against the closest element (CKAcipsest): we
have the Output element as the best one for an execution.
Then, we calculate the Hamming distance of the best el-
ement with respect to all the elements evaluated in the
evolutionary process of EvoPruneDeepTL. The element with
the smallest Hamming distance to the best one is denoted
as Closest. Then, Output is compared against Closest. The
robustness of EvoPruneDeepTL is tested in this comparison
because high values of CKA when similar chromosomes
are compared is essential, as it will show that the re-
sults are not due to randomness, but to the process that
EvoPruneDeepTL performs.

2. Comparison against fully-connected, reference models
(CKAger): in this case, we compare Output against a fully-
connected network with all the neurons activated. This
comparison sheds light on the ability of EvoPruneDeepTL
to learn which neurons are the best to solve the problem
at hand. It also permits to explain the difference in terms
of accuracy between the models that EvoPruneDeepTL de-
velops against the reference models. This value of CKA
quantifies the differences in accuracy between our models
and the reference models, as EvoPruneDeepTL searches for
the best neurons to remove the unnecessary ones, while
reference models simply train the models without taking
into account the neurons which should be removed.

In this section, we select the best two models of
EvoPruneDeepTL for these experiments: pruning consecutive lay-
ers (both case) and pruning the features extracted from the

74

J. Poyatos, D. Molina, A.D. Martinez et al.

Neural Networks 158 (2023) 59-82

Table 19

Average results of CATARACT-Class with pruning consecutive layers and feature selection.
Dataset Measure EvoPruneDeepTL No pruning EvoPruneDeepTL No pruning

both both feature selection feature selection

CATARACT - Accuracy 0.844 0.801 0.871 0.697
Retina % Active neur. 43 100 54 100
CATARACT - Accuracy 0.846 0.789 0.857 0.554
Glaucoma % Active neur. 44 100 63 100
CATARACT - Accuracy 0.735 0.732 0.761 0.614
Cataract % Active neur. 76 100 49 100
CATARACT - Accuracy 0.833 0.805 0.843 0.655
Normal % Active neur. 53 100 57 100
CATARACT - Accuracy 0.746 0.703 0.747 0.703
Full % Active neur. 63 100 55 100

networks (feature selection). Moreover, three datasets are con-
sidered in the experiments designed for this section: CATARACT,
PAINTING and RPS. Lastly, we show different tables with the fol-
lowing structure: DATASET-Class. This means that the mentioned
DATASET is analyzed without the class called Class.

For the CKA comparison, we will show two groups of ta-
bles, one per each type of model (pruning consecutive layer
and feature selection). Moreover, each table is composed of the
problem at hand and the mean values of the Hamming distance
and CKA averaged over five executions of EvoPruneDeepTL. The
rows of each table correspond to each DATASET-Class and the
four columns represent in pairs the previously explained com-
parisons, CKAcsest and CKAges, as we show the mean Hamming
distance and its corresponding CKA mean value for each of the
comparisons.

5.6.1. Analyzing the relevance of each class for a given dataset

Given a dataset of n classes, this approach performs a pro-
cedure that removes a whole class of the dataset and then,
EvoPruneDeepTL is applied with that remaining data both in
pruning consecutive layers and in feature selection. As a result
of that process, n experiments are done for each dataset.

The structure of the these tables correspond with the usual
structure of the rest of the paper, but now we show four columns.
These columns represent, in pairs based on the model, the results
of EvoPruneDeepTL versus the reference model without pruning.
The difference between the pairs of columns is the model at
hand: pruning consecutive layers or feature selection. We note
that for the first two columns, the optimization process which
lies in EvoPruneDeepTL is made with 300 evaluations and two-
layers networks, meanwhile for the last columns, the process
of pruning the extracted features is made with only one-layer
networks and 200 evaluations, i.e., under the same conditions as
the experiments in the previous sections.

The first results show the CATARACT dataset under these
conditions. Table 19 shows these results. We conclude from these
results that Cataract class is the easiest class in the dataset, as
both models struggle with that class (third row of the table), but
they improve their results with it. However, the results of Evo-
PruneDeepTL are better than the reference model. The number of
active neurons at the end of the evolutionary process are reduced,
in most cases, nearly by half. Moreover, the feature selection
model is also able to decrease this number from its previous
results (55% of remaining active neurons) in some cases. The same
conclusion can be drawn in relation to pruning consecutive layers,
as the full dataset has a mean percentage of active neurons of 63%
and in three of fours cases this number is reduced. The results
show that the pruning of the extracted features of the network,
i.e., the feature selection which derives from EvoPruneDeepTL, is
the best approximation for this dataset.

We focus now on the following dataset, RPS. Table 20 shows
the results of these experiments. Results show that the Paper

75

class makes an easier dataset, as all the approaches reach the
maximum accuracy. The other two experiments show that Evo-
PruneDeepTL achieves a better performance to the reference
models. For pruning consecutive layers, the number of remaining
active neurons is higher in comparison with the full dataset, but
in the feature selection model this number is very similar or even
for RPS-Scissors is lower.

The last considered dataset is PAINTING. Table 21 shows the
results for each of the experiments which have been made for
this dataset. The table shows that both of EvoPruneDeepTL mod-
els are constantly achieving better results than the reference
models. However, the difference between the accuracy is higher
in the feature selection models than the pruning consecutive
layers. Taking into consideration the remaining active neurons,
the feature selection has a similar degree of pruning in relation
with the experiments which have been carried out for the full
dataset experiments (55%). Similar conclusion can be drawn for
the other model, as the mean percentage of active neuron for
pruning consecutive layers is 51% and we have models with fewer
active neurons, but also with higher percentage.

These experiments shed light on a conclusion that it is not far
from the previous sections. The feature selection model, which
performs the pruning of the extracted features of the network,
constitutes the best model for all the experiments, as it has the
most difference between EvoPruneDeepTL and reference mod-
els. Nonetheless, the effect of pruning consecutive layers is also
positive, as it is shown in the results of the previous tables.

The next part of this section is crucial to determine the robust-
ness of EvoPruneDeepTL. Moreover, the differences in accuracy
of the previous tables are going to be explained in the following
tables. The key element of the comparison is the CKA measure
and the Hamming distance of the solutions. The combination of
these values determine the key points that we have discussed at
the beginning of this section.

Therefore, we are showing the CKA tables for each experiment
to perform the commented double comparison in this section.
These tables have a different structure from the last tables, so we
explain how to interpret them. Both of them present a similar
structure, but the table which shows the results for pruning
consecutive layers has another column. This column shows the
value of the CKA measure for the layer at hand. In the case of the
prune of the extracted feature of the network (feature selection),
as they only has one layer, this column is not required.

We show this pair of tables for each DATASET-Class. The first
table shows the results of the feature selection model, and the
second one presents the results of the pruning of consecutive
layers.

The composition of the tables for feature selection models is
the following one. After the first column which show the dataset
at hand, the next two columns represent the comparison among
the phenotype and genotype of EvoPruneDeepTL, i.e, chromo-
somes and pruned networks. Both mean Hamming distance of

J. Poyatos, D. Molina, A.D. Martinez et al.

Neural Networks 158 (2023) 59-82

Table 20
Average results of general RPS pruning consecutive layers and feature selection.
Dataset Measure EvoPruneDeepTL No pruning EvoPruneDeepTL No pruning
both both feature selection feature selection
RPS - Accuracy 1.000 1.000 1.000 1.000
Paper % Active neur. 51 100 51 100
RPS - Accuracy 0.985 0.979 1.000 0.996
Rock % Active neur. 51 100 49 100
RPS - Accuracy 0.994 0.955 1.000 0.955
Scissors % Active neur. 33 100 23 100
RPS Accuracy 0.978 0.922 0.985 0.938
Full % Active neur. 12 100 45 100
Table 21
Average results of general PAINTING pruning consecutive layers and feature selection.
Dataset Measure EvoPruneDeepTL No pruning EvoPruneDeepTL No pruning
both both feature selection feature selection
PAINTING - Accuracy 0.942 0.932 0.947 0.857
Sculpture % Active neur. 64 100 53 100
PAINTING - Accuracy 0.959 0.946 0.961 0.820
Painting % Active neur. 42 100 50 100
PAINTING - Accuracy 0.942 0.920 0.949 0.835
Iconography % Active neur. 30 100 57 100
PAINTING - Accuracy 0.979 0.974 0.979 0.883
Engraving % Active neur. 74 100 56 100
PAINTING - Accuracy 0.994 0.989 0.996 0.944
Drawings % Active neur. 57 100 57 100
PAINTING Accuracy 0.953 0.939 0.958 0.939
Full % Active neur. 51 100 55 100
the five executions and CKA(ss; are shown. The following group Table 22

of two columns shows the other explained comparison of the
reference models, which have all the neurons active. The metrics
are the same as the previous case, but now the CKA (CKAgef)
corresponds to the mean value from the best model to this
reference model.

The composition of the table for the pruning of consecutive
layers is similar to the previous case. However, another column
is required for a more detailed explanation. This column gives
information about the CKA value for the layer at hand. Due to
the fact that we are comparing the whole chromosome, both
Hamming distance values are common to both layers, but the CKA
value is layer dependent. Then, in this table, we want to highlight
that the best chromosome EvoPruneDeepTL obtains good values
of the CKA measure for each of the layers of the model.

First, we show the CKA values for the CATARACT dataset in
its four different cases of DATASET-Class. Tables 22 and 23 show
the results for feature selection and pruning consecutive layers,
respectively. The results show for both models the robustness
of EvoPruneDeepTL because the mean CKA of the best versus its
closest chromosome in the history is a value extremely close to
1, which is the maximum value (this value is reached when the
best solution is compared to itself).

Taking a more deep look at the results of the feature selection,
we see that the Hamming distance is very low, which is a good
result and also proves the robustness of EvoPruneDeepTL. The
second group of columns, in which the comparison is made
against a model with all neurons active, we see that the Hamming
distance is higher and this has an impact on the CKA value, which
is higher. The conclusion which derives from these experiments is
that EvoPruneDeepTL learns to distinguish the valuable neurons
which have an impact on the model. This CKA value is the expla-
nation of the difference in accuracy in the previous experiments
of this dataset between EvoPruneDeepTL models and reference
models.

The results that they are shown in Table 23 confirm the
robustness of EvoPruneDeepTL. This insight is the same as in

76

Comparison of the CKA measure for feature selection in CATARACT-Class.

Dataset Feature Selection
Hamming distance CKAcosest Hamming distance CKAges
EvoPruneDeepTL no pruned model
CATARACT ©0.005 0.981 0.457 0.283
Retina
CATARACT - 0.002 0.991 0.372 0.376
Glaucoma
CATARACT - 0.001 0.994 0514 0.200
Cataract
CATARACT T 0011 0.961 0.423 0.250
Normal

the previous table: low values of Hamming distance in the best
chromosomes of EvoPruneDeepTL implies high values of CKA in
the closest element. Moreover, the Hamming distance from the
elements of pruning consecutive layers is higher than in the other
case, but the CKA values are also higher. This is a fair result
because the difference in accuracy between EvoPruneDeepTL and
the reference models is lower than in the other case. Note that the
class Cataract from this dataset is the class with the fewest gap in
accuracy, and this is shown in its CKA value. The Glaucoma class
is the opposite of Cataract, and the CKA value is lower. In all the
cases, EvoPruneDeepTL confirms the ability to learn the neurons
that they are indispensable to achieve a greater performance, and
that is the main difference between the reference models.

The second dataset under analysis is RPS. Table 24 shows the
results of the feature selection models for RPS-Class. We see that
the pair Hamming distance and CKA of the closest have a great
result in two of the three cases. Moreover, the results of the
other metrics achieve a great results, similarly to CATARACT-Class
with this model. For that reason, we confirm that, for this model,
EvoPruneDeepTL is also able to learn the neurons that maximize
the accuracy for the problem.

J. Poyatos, D. Molina, A.D. Martinez et al.

Table 23

Neural Networks 158 (2023) 59-82

Comparison of the CKA measure for pruning consecutive layers in CATARACT-Class.

Dataset Pruning consecutive layers

Layer Hamming distance CKACjosest Hamming distance CKARger

EvoPruneDeepTL no pruned model

CATARACT - Layer 1 0.980 0.685
Retina Layer 2 0.020 0.983 0.567 0.769
CATARACT - Layer 1 0.996 0.680
Glaucoma Layer 2 0.001 0.997 0.556 0.745
CATARACT - Layer 1 0.998 0.891
Cataract Layer 2 0.001 0.998 0.240 0.916
CATARACT - Layer 1 0.975 0.784
Normal Layer 2 0.027 0.979 0.469 0.843

Table 24
Comparison of the CKA measure for feature selection in RPS-Class.

Dataset

Feature Selection

Hamming distance CKAClosest Hamming distance CKARef
EvoPruneDeepTL no pruned model
RPS - 0.199 0.416 0.485 0.224
Paper
RPS - 0.020 0.926 0.507 0.195
Rock
RPS - 0.040 0.863 0.766 0.104
Scissors

A special case is RPS-Paper. When RPS does not have this
class, the problem seems to be a very easy task, because all the
models in the previous experiments for this dataset achieve the
maximum accuracy. This is the only case in which the CKA for
the best and its closest element is lower in comparison with the
others. This is due to the fact that the problem at hand can be
solved with many chromosomes, as they all have the maximum
accuracy value, so the chromosomes might not be very similar,
because the range of possible solutions is wide.

Table 25 shows the pruning of consecutive layers that it is
performed by EvoPruneDeepTL. Similar conclusions are obtained
from these results. First, we see that the Paper class has the same
problem which appears in the previous table. However, the other
two groups of experiments are harder to solve and this have been
drawn in the CKA of the closest element, because both layers have
a great value of this measure. In the counterpart, the CKA values
for the reference also has a similar understanding, which belongs
to the fact that EvoPruneDeepTL pruning of consecutive layers
learns the best neurons for both layers.

In overall, EvoPruneDeepTL is also a robust model for this
dataset both in feature selection and pruning consecutive layers,
and it also proves that the difference in accuracy between our
models and the reference models is stated in the CKAg,;.

The last dataset in this section is PAINTING. The first table re-
lates to the feature selection model of EvoPruneDeepTL. Table 26,
once more, shows that the lowest Hamming distance of the best
chromosome when it is compared with its closest, brings high
values of CKA. The conclusion is clear, EvoPruneDeepTL is robust.
Moreover, the values of CKAg, are also a good estimation of how
EvoPruneDeepTL looks for the best neurons. Both CATARACT and
PAINTING have lots of similarities in the feature selection model.

Table 27 shows the results for pruning consecutive layers
in the dataset PAINTING. These results, again, prove that the
closest and best elements of EvoPruneDeepTL achieve a great
value of CKA given a low value of Hamming distance, which is
the best output that we can have. Moreover, the CKA values for
the reference models are high, but this is due to the fact that
the difference in accuracy between the models is lower. However,
this also proves that EvoPruneDeepTL also learns the best neurons
for this problem.

77

In this section, we have shown that EvoPruneDeepTL is able
to capture the relevance of the diverse classes and datasets that
they are shown. Thanks to that adaption, EvoPruneDeepTL has
shown its robustness and its ability to search for the best neurons
to tackle the problem at hand.

5.6.2. Effects of a gradual aggregation of a class in the problem at
hand

This section is devised to analyze the impact of a class when
it appears as a new class in a dataset, and it increases its number
of examples over time. We have selected the class Iconography of
PAINTING for these experiments. The reason lies in the fact that
the class with a low percentage of examples is a minority class of
this dataset, but it becomes the majority class of PAINTING when
all the examples are used. Adding more examples of this class
lets us check how EvoPruneDeepTL is able to adapt to different
scenarios for the same dataset when a class is gradually growing
on its importance in the dataset.

This section has a similar structure to the previous one. First,
we show the results of the experiments for pruning consecutive
layers and feature selection models of EvoPruneDeepTL. Then,
the CKA values is also presented to perform the same double
comparison as it has been done in the last section. For this
section, the notation for the dataset is PAINTING-Iconography
we talk about the dataset resulting from adding more examples,
and in the tables this is shown as PAINTING-Pct%, where Pct =
20, 40, 60 and 80.

The first experiments we show are in Table 28. These experi-
ments have been carried out with the dataset PAINTING with the
different percentage, as we have previously explained. The results
show that, as the percentage of data increases, the models tend to
become better. If we compare these results with those obtained
with the full dataset, we see that the model with 80% of the data
(and with 60% of the data also for feature selection) is the closest
to the full model (see Tables 6 and 12).

Reviewing the results tables with the full dataset and compar-
ing them with these results, we observe that for the consecutive
layer pruning model, the number of active neurons is lower in
these experiments. The same phenomenon occurs in most of the
feature selection cases, except when 40% of the data is used,
where this number increases as the model improves the accuracy
for that dataset at the cost of increasing the percentage of active
neurons.

Next, we follow the same process as for the previous section,
in which the different classes of various datasets were analyzed.
We show the value of CKA for the feature selection model and for
the pruning consecutive layers model. Table 29 shows the results
for the different feature selection models applied to the various
data percentage options of the Iconography class. The CKA value,
which compares the best with its closest element in the history of
the execution, is very high. This implies that EvoPruneDeepTL is
a robust model, since the phenotype obtained from the genotype

J. Poyatos, D. Molina, A.D. Martinez et al.

Table 25

Neural Networks 158 (2023) 59-82

Comparison of the CKA measure for pruning consecutive layers in RPS-Class.

Dataset Pruning consecutive layers

Layer Hamming distance CKAClosest Hamming distance CKARger

EvoPruneDeepTL no pruned model

RPS - Layer 1 0.725 0.764
Paper Layer 2 0.217 0.761 0.486 0.825
RPS - Layer 1 0.977 0.757
Rock Layer 2 0.032 0.983 0.492 0.852
RPS - Layer 1 0.982 0.597
Scissors Layer 2 0.010 0.974 0.667 0.668

Table 26
Comparison of the CKA measure for feature selection in PAINTING-Class.

Dataset

Feature Selection

Hamming distance CKAcjosess ~Hamming distance CKAges
EvoPruneDeepTL no pruned model
PAINTING - 0.002 0.992 0.471 0.259
Sculpture
PA.INTING ~0.003 0.986 0.502 0.202
Painting
PAINTING - 0.002 0.993 0.433 0.236
Iconography
PAINTING - 4 506 0.984 0.441 0.291
Engraving
PAINT]NG T 0.021 0.925 0.432 0.236
Drawings

is very similar. In addition, the other CKA value reported by the
reference model indicates that EvoPruneDeepTL is capable of the
neurons important for the model, thus explaining the difference
in accuracy between the two approaches.

The following table, Table 30. The robustness of the proposal
becomes evident when comparing the best element with its
closest element in each of the runs, which has also occurred in
the previous case. CKA values are extremely high when these
elements are compared.

The comparison with respect to the reference models shows
results similar to those of other cases of consecutive layer prun-
ing. The difference in accuracy is reflected in the CKA, which is
higher than in the feature selection cases, because this difference
is larger when it comes to the pruning of the extracted features
of the network.

This section has allowed us to see EvoPruneDeepTL in different
situations it has had to face. From datasets with fewer classes
so that our proposal is able to adapt to all the subclasses that
compose it (first subsection), to the gradual increase of a class
from being the minority to the majority (second subsection). The
study which has been performed in this section relies on a mea-
sure which allows us to study the robustness of EvoPruneDeepTL
and, in addition, allows us to see the differences in accuracy of
the models that they have been developed.

The results in both sets of experiments show that the stochas-
ticity that might be present in the proposal is not influential.
The results of the CKA measure when comparing the best trained
network found by EvoPruneDeepTL and its closest trained net-
work for each of the runs show the high degree of robustness of
EvoPruneDeepTL.

The comparison of EvoPruneDeepTL with networks with all
neurons active (CKAge) shows us a twofold conclusion. When
we are dealing with the feature selection models, those that
performed the pruning of the extracted features of the network,
the difference in accuracy is reflected in the value of CKA, which
is very low and that means that the models are very different
On the other hand, for the case of pruning consecutive layers, the

78

CKAges value reflects models with less difference in comparison to
the previous case. However, both in feature selection and pruning
consecutive layers it is observed that EvoPruneDeepTL is able to
search for the neurons that best approximate the problem to be
solved.

6. Advantages and disadvantages of EvoPruneDeepTL

This section is devised to discuss the advantages and disad-
vantages of EvoPruneDeepTL, considering the diverse and large
experimentation which has been done in the manuscript. The
advantages of EvoPruneDeepTL can be summarized as follows:

e Specialization of the last layers of networks.
An important element of EvoPruneDeepTL is the transfer
learning. This is one of the most commonly used tech-
niques. We have refined its process, which is the extraction
of pre-trained features and then, the specialization of the
fully-connected layers. In this context, EvoPruneDeepTL, and
specifically the GA which is composed of, when applied to
these layers does not limit the network learning compared
to other evolutionary models in the literature that require
high computational time to evaluate the datasets, as they
train the whole network. For that reason, EvoPruneDeepTL
can be applied to more complex datasets.

¢ Performance over reference models and efficient pruning
methods from the literature.
The usage of an evolutionary model that focuses on prun-
ing neurons of the fully-connected layers achieves a better
performance than other pruning methods when applied un-
der the same conditions of EvoPruneDeepTL. The positive
effect of the genetic algorithm is the selection of the best
neurons of these layers, so that the evolution towards the
best configuration for the networks is obtained thanks to
EvoPruneDeepTL.

e Constructive modeling over the last layers of the net-
works.
In the different experiments that have been carried out in
the sections, we have observed that performing the pruning
constructively based on the number of layers achieves good
results. Pruning one-layer networks achieves good results,
but when the number of layer increases, it is shown that
performing the pruning over a single layer of two-layer
networks improves the one-layer networks. Nonetheless,
the simultaneous pruning of the both layers achieves a
better modeling of the datasets than all the previous pruning
models.

e Pruning the extracted features of the network against
pruning fully-connected layers.
EvoPruneDeepTL obtains better results by pruning the self-
generated features resulting from transfer learning versus
pruning the fully-connected layers. This is an intuitive idea
because the learned patterns or features are different for
each problem, and the learned features for the original prob-
lem may not be useful for the target problem. Knowing

J. Poyatos, D. Molina, A.D. Martinez et al.

Table 27

Neural Networks 158 (2023) 59-82

Comparison of the CKA measure for pruning consecutive layers in PAINTING-Class.

Dataset Pruning consecutive layers

Layer Hamming distance CKAosest Hamming distance CKARger

EvoPruneDeepTL no pruned model
PAINTING - Layer 1 0.998 0.832
Sculpture Layer 2 0.001 0.999 0359 0.879
PAINTING - Layer 1 0.998 0.701
Painting Layer 2 0.004 0.998 0.578 0.777
PAINTING - Layer 1 0.998 0,593
Iconography Layer 2 0.001 0.998 0.701 0.672
PAINTING - Layer 1 0.999 0.895
Engraving Layer 2 0.001 0.999 0.255 0.931
PAINTING - Layer 1 0.998 0.797
Drawings Layer 2 0.003 0.998 0.427 0.874
Table 28
Average results for PAINTING-Iconography with pruning consecutive layers and feature selection.
Dataset Measure EvoPruneDeepTL No pruning EvoPruneDeepTL No pruning
both both feature selection feature selection

PAINTING - Accuracy 0.944 0.931 0.945 0.826
20% % Active neur. 47 100 56 100
PAINTING - Accuracy 0.945 0.929 0.950 0.826
40% % Active neur. 39 100 65 100
PAINTING - Accuracy 0.946 0.931 0.954 0.839
60% % Active neur. 53 100 51 100
PAINTING - Accuracy 0.947 0.927 0.953 0.839
80% % Active neur. 41 100 47 100
PAINTING Accuracy 0.953 0.939 0.958 0.939
Full % Active neur. 51 100 55 100

Table 29

Comparison of the CKA measure for feature selection in PAINTING-Iconography.

Dataset Feature Selection
Hamming distance CKAgsess ~Hamming distance CKAger
EvoPruneDeepTL no pruned model
PAENTING ©0.001 0.995 0.442 0.277
20%
PA!NTING ©0.007 0.976 0.352 0.461
40%
PALNTING © 0019 0.934 0.484 0.205
60%
PAINTING - 0.001 0.998 0.530 0.177

80%

which characteristics matter is crucial to the problem at
hand. The evolutionary process allows pruning these fea-
tures and selecting those that best solve the modeling prob-
lem under consideration.

Generalization of EvoPruneDeepTL to other feature ex-
tractors.

One of the advantages of EvoPruneDeepTL is that the model
is generalizable to diverse feature extractors. This is an
important advantage because EvoPruneDeepTL is able to
achieve a great performance over different datasets and
with diverse networks. These are used to extract the fea-
tures of the dataset, thanks to the transfer learning tech-
nique. EvoPruneDeepTL has improved the reference models
and pruning models from the literature in both the pruning
of two consecutive layers and the pruning of the features
extracted by the networks.

Adaptation to relevant classes and gradual aggregation of
data for the problem at hand.

EvoPruneDeepTL has achieved a great performance in dif-
ferent situations. However, it is also important to see how

79

it adapts to different situations within the datasets them-
selves. EvoPruneDeepTL has improved the performance of
the reference models, but a measure is needed to support
the quality of these models. However, this increase in per-
formance has been proven by CKA not to be the result of
chance, so EvoPruneDeepTL models are able to search for
the best neurons to maximize the accuracy of the problem.
The good results of EvoPruneDeepTL do not depend on
randomness.

The evolutionary algorithm in which EvoPruneDeepTL lies in
is a stochastic algorithm and the results may be affected by
randomness. This is a risk about the model, so it is required
to check if the good results are biased by the randomness.
For that reason, we have introduced a new measure, CKA.
This measure compares the differences between the pruned
networks, and it is a way to measure the robustness of
EvoPruneDeepTL. The values of the CKA for the various ex-
periments of the previous section shed light on the fact that
EvoPruneDeepTL results do not depend on the randomness.

The main disadvantage of EvoPruneDeepTL is:

Execution time of EvoPruneDeepTL.

The main drawback of EvoPruneDeepTL it is the time that
is required to execute the model. In comparison with the
pruning methods from the literature and the reference mod-
els, the table of execution times (see Table 11) shows the
speed of the other models, but EvoPruneDeepTL is slower
than these models. The time difference is made up by im-
proved network performance, thanks to the usage of Evo-
PruneDeepTL. Nonetheless, there are some practical cases in
which the training time is not a problem, like in medical
diagnosis, because the main objective is obtaining a better
percentage of the models in terms of accuracy.

J. Poyatos, D. Molina, A.D. Martinez et al.

Table 30

Neural Networks 158 (2023) 59-82

Comparison of the CKA measure for pruning consecutive layers in PAINTING-Iconography.

Dataset Pruning consecutive layers

Layer Hamming distance CKAClosest Hamming distance CKARger

EvoPruneDeepTL no pruned model

PAINTING - Layer 1 0.999 0.732
20% Layer 2 0.001 0.998 0529 0.794
PAINTING - Layer 1 0.998 0.677
40% Layer 2 0.001 0.999 0.607 0.755
PAINTING - Layer 1 0.999 0.758
60% Layer 2 0.001 0.999 0.466 0.828
PAINTING - Layer 1 0.998 0.694
80% Layer 2 0.001 0.998 0.594 0.762

7. Conclusions

This paper has introduced EvoPruneDeepTL, a novel model
that sparsifies the architecture of the last layers of a DL model
initialized using TL. EvoPruneDeepTL is a combination of sparse
layers and EA, so that the neurons of these layers are pruned
using the EA, in order to adapt them to the problem to tackle and
deciding which neurons/connections to leave active or inactive.

EvoPruneDeepTL is a flexible model that optimizes models
with one and two layers and even two layers at the same time.
Our results show that the pruning over complete neurons is
better than pruning connections individually, establishing the last
one as the best encoding strategy. The evolution of the sparse
layer improves these models in terms of accuracy and also in
terms of complexity of the network. In comparison with com-
pared reference models and pruning methods from the literature,
EvoPruneDeepTL achieves a better performance than all of them.
The choice of one among the pruning models or feature selection
has been answered and informed with experimental evidence:
the FS scheme derived from EvoPruneDeepTL has shown a better
performance, in most cases, than the pruning methods . The
ability of adaptation of EvoPruneDeepTL to other feature extrac-
tors has been tested. Lastly, EvoPruneDeepTL has also shown its
capability to adapt to the relevance of diverse problems and it has
also achieved an outstanding level of robustness, which implies
that the results do not depend on random nature of the search
operators used by the GA that lies at the core of the proposed
evolutionary pruning method.

From an overarching perspective, this work aligns with a
growing strand of contributions where evolutionary computation
and DL have synergized together to yield optimized models that
attain better levels of performance and/or an increased com-
putational efficiency. Indeed, this fusion of concepts (forged as
Evolutionary Deep Learning) has been used for other optimization
processes, including hyperparameter or structural tuning. An-
other recent case of the symbiosis of EA’s and DL are represented
in AutoML-Zero that use an evolutionary search to automatically
search the best DL structure. AutoML-Zero and EvoPruneDeepTL
are two great examples of the benefits of combining EA’s and
DL that outline the potential and promising path of successes
envisioned for this research area.

Future research work stemming from the results reported in
this study is planned from a two-fold perspective. To begin with,
we plan to achieve larger gains from the combination of DL and
EA by extending the evolutionary search over higher layers of the
neural hierarchy, increasing the number of optimized layers and
neurons per layer. To this end, we envision that exploiting the
layered arrangement in which neurons are deployed along the
neural architecture will be essential to ensure an efficient search.
The second research line relates to this last thought, aiming to
improve the search algorithm itself by resorting to advanced
concepts in evolutionary computation (e.g. niching methods or
co-evolutionary algorithms).

80

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Both data and code are freely available online and they are
referenced in the manuscript.

Acknowledgments

F. Herrera, D. Molina and]. Poyatos are supported by the
Andalusian Excellence project P18-FR-4961, the infrastructure
project with reference EQC2018-005084-P and the R&D and Inno-
vation project with reference PID2020-119478GB-I00 granted by
the Spain’s Ministry of Science and Innovation and European Re-
gional Development Fund (ERDF). Aritz D. Martinez and Javier Del
Ser would like to thank the Basque Government for the funding
support received through the EMAITEK and ELKARTEK programs,
as well as the Consolidated Research Group MATHMODE (IT1456-
22) granted by the Department of Education of this institution,
Spain.

References

Aneja, N., & Aneja, S. (2019, July). Transfer learning using CNN for handwritten
devanagari character recognition. In 1st international conference on advances
in information technology (ICAIT), Chikmagalur, India, 2019.

Anwar, S., Hwang, K., & Sung, W. (2017). Structured pruning of deep convolu-
tional neural networks. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 13(3), Article 32. http://dx.doi.org/10.1145/3005348.

Assungdo, F., Louren¢o, N., Machado, P., & Ribeiro, B. (2019). DENSER: deep
evolutionary network structured representation. Genetic Programming and
Evolvable Machines, 20(1), 5-35. http://dx.doi.org/10.1007/s10710-018-9339-

y.

Back, T., Fogel, D. B.,, & Michalewicz, Z. (1997). Handbook of evolutionary
computation (1st ed.). IOP Publishing Ltd..

Chambers, L. D. (2000). The practical handbook of genetic algorithms: Applications
(2nd ed.). Chapman and Hall/CRC.

[dataset] Gémez-Rios, A., Tabik, S., Luengo, J., Shihavuddin, A., & Herrera, F.
(2019). Coral species identification with texture or structure images using a
two-level classifier based on convolutional neural networks. Knowledge-Based
Systems, 184, Article 104891. http://dx.doi.org/10.1016/j.knosys.2019.104891.

[dataset] Hafiz Tayyab Rauf, Saleem, B. A, Lali, M. L. U., Khan, M. A., Sharif, M.,
& Bukhari, S. A. C. (2019). A citrus fruits and leaves dataset for detection
and classification of citrus diseases through machine learning. Data in Brief,
26, Article 104340. http://dx.doi.org/10.1016/j.dib.2019.104340.

|dataset] Laurence Moroney (2019). Rock, paper, scissors dataset. Retrieved from
http://[www.laurencemoroney.com/rock-paper-scissors-dataset/. Accessed
September 10, 2020.

[dataset] Singh, D., Jain, N, Jain, P., Kayal, P., Kumawat, S., & Batra, N. (2020,
May). Plantdoc: a dataset for visual plant disease detection. In 7th ACM IKDD
CoDS and 25th COMAD, Hyderabad, India, 2020.

[dataset] Sungjoon Choi (2020). Cataract dataset. Retrieved from https://www.
kaggle.com/jr2ngb/cataractdataset. Accessed September 10, 2020.

http://refhub.elsevier.com/S0893-6080(22)00405-1/sb1
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb1
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb1
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb1
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb1
http://dx.doi.org/10.1145/3005348
http://dx.doi.org/10.1007/s10710-018-9339-y
http://dx.doi.org/10.1007/s10710-018-9339-y
http://dx.doi.org/10.1007/s10710-018-9339-y
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb4
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb4
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb4
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb5
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb5
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb5
http://dx.doi.org/10.1016/j.knosys.2019.104891
http://dx.doi.org/10.1016/j.dib.2019.104340
http://www.laurencemoroney.com/rock-paper-scissors-dataset/
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb9
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb9
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb9
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb9
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb9
https://www.kaggle.com/jr2ngb/cataractdataset
https://www.kaggle.com/jr2ngb/cataractdataset
https://www.kaggle.com/jr2ngb/cataractdataset

J. Poyatos, D. Molina, A.D. Martinez et al.

[dataset] Virtual Russian Museum (2018). Art images: draw-
ing/painting/sculptures/engravings. Retrieved from https://www.kaggle.com/
thedownhill/art-images-drawings- painting-sculpture-engraving, Accessed
September 10, 2020.

Elsken, T., Metzen, J. H., & Hutter, F. (2019a, May). Efficient multi-objective neural
architecture search via lamarckian evolution. In 7th international conference
on learning representations (ICLR), New Orleans, LA, USA, 2019.

Elsken, T., Metzen,]J. H., & Hutter, F. (2019b). Neural architecture search: A
survey. Journal of Machine Learning Research, 20(1), 1997-2017, https://dl.
acm.org/doi/10.5555/3322706.3361996.

Fernandes, C., & Rosa, A. (2001, May). A study on non-random mating and
varying population size in genetic algorithms using a royal road function.
In Proceedings of the 2001 congress on evolutionary computation, Seoul, Korea,
2001.

Frankle, J., & Carbin, M. (2019, May). The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In 7th international conference on learning
representations (ICLR), New Orleans, LA, USA, 2019.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine
learning (1st ed.). Addison-Wesley Longman Publishing Co., Inc..

Goémez-Rios, A., Tabik, S., Luengo, J., Shihavuddin, A., Krawczyk, B., & Herrera, F.
(2019). Towards highly accurate coral texture images classification using
deep convolutional neural networks and data augmentation. Expert Sys-
tems with Applications, 118, 315-328. http://dx.doi.org/10.1016/j.eswa.2018.
10.010.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (1st ed.). MIT
Press.

Gretton, A., Bousquet, O., Smola, A, & Scholkopf, B. (2005, October). Mea-
suring statistical dependence with Hilbert-Schmidt norms. In International
conference on algorithmic learning theory, Singapore, 2005.

Han, S., Mao, H., & Dally, W. (2016, May). Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. In
4th international conference on learning representations (ICLR), San Juan, Puerto
Rico, 2016.

Han, S., Pool, J., Tran, J., & Dally, W. (2015, Dececember). Learning both weights
and connections for efficient neural network. In Proceedings of the 28th
international conference on neural information processing systems, Montreal
Canada, 2015.

He, K., Zhang, X., Ren, S., & Sun, J. (2016, June). Deep residual learning for image
recognition. In IEEE conference on computer vision and pattern recognition, Las
Vegas, NV, USA, 2016.

Huang, G., Liu, Z,, Van Der Maaten, L., & Weinberger, K. Q. (2017, July). Densely
connected convolutional networks. In IEEE conference on computer vision and
pattern recognition (CVPR), Honolulu, HI, USA, 2017.

Iba, H. (2018). Evolutionary approach to machine learning and deep neural
networks: Neuro-evolution and gene regulatory networks (1st ed.). Springer.

Iguyon, I, & Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of Machine Learning Research, 3, 1157-1182, https://dl.acm.org/doi/10.
5555/944919.944968.

Jung, S., Park, J., & Lee, S. (2019, May). Polyphonic sound event detection using
convolutional bidirectional Istm and synthetic data-based transfer learning.
In IEEE international conference on acoustics, speech and signal processing
(ICASSP), Brighton, UK, 2019.

Khan, S., Islam, N, Jan, Z, Din, I. U, & Rodrigues, J. J. C. (2019). A novel
deep learning based framework for the detection and classification of breast
cancer using transfer learning. Pattern Recognition Letters, 125, 1-6. http:
//dx.doi.org/10.1016/j.patrec.2019.03.022.

Kokiopoulou, E., Hauth, A., Sbaiz, L., Gesmundo, A., Barték, G., & Berent, J. (2020,
August). Task-aware performance prediction for efficient architecture search.
In 24th European conference on artificial intelligence, Santiago de Compostela,
Spain, 2020.

Kornblith, S., Norouzi, M., Lee, H., & Hinton, G. (2019, June). Similarity of neural
network representations revisited. In Proceedings of the 36th international
conference on machine learning, California, CA, USA, 2019.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012, December). Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, Lake Tahoe, NV, USA, 2012.

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
http://dx.doi.org/10.1109/5.726791.

Lee, H., Pham, P., Largman, Y., & Ng, A. Y. (2009, December). Unsupervised feature
learning for audio classification using convolutional deep belief networks. In
Advances in neural information processing systems, Vancouver, B.C., Canada.
2009.

Liu, H. Simonyan, K., Vinyals, O., Fernando, C., & Kavukcuoglu, K. (2018,
April). Hierarchical representations for efficient architecture search. In 6th
international conference on learning representations (ICLR), Vancouver, B.C.,
Canada. 2018.

Liu, Z, Sun, M., Zhou, T., Huang, G. & Darrell, T. (2019, May). Rethinking
the value of network pruning. In 7th international conference on learning
representations (ICLR), New Orleans, LA, USA, 2019.

81

Neural Networks 158 (2023) 59-82

Liu, W., Wang, Z., Liu, X, Zeng, N., Liu, Y., & Alsaadi, F. (2017). A survey of
deep neural network architectures and their applications. Neurocomputing,
234, 11-26. http://dx.doi.org/10.1016/j.neucom.2016.12.038.

Liu,], Wang, Y., & Qiao, Y. (2017, February). Sparse deep transfer learning for
convolutional neural network. In 31st AAAI conference on artificial intelligence
(AAAI), San Francisco, CA , USA.

Liu, C, Zoph, B, Shlens, J., Hua, W., Li, L-]., Fei-Fei, L., Yuille, A., Huang, J.,
& Murphy, K. (2018, September). Progressive neural architecture search. In
European conference on computer vision, Munich, Germany 2018.

Long, X., Ben, Z., & Liu, Y. (2019). A survey of related research on compression
and acceleration of deep neural networks. Journal of Physics: Conference
Series, 1213, Article 052003. http://dx.doi.org/10.1088/1742-6596/1213/5/
052003.

Long, X., Ben, Z, Zeng, X, Liu, Y. Zhang, M., & Zhou, D. (2019). Learning
sparse convolutional neural network via quantization with low rank reg-
ularization. IEEE Access, 7, 51866-51876. http://dx.doi.org/10.1109/ACCESS.
2019.2911536.

Lu, Z., Sreekumar, G. Goodman, E. Banzhaf, W. Deb, K, & Boddeti, V.
(2021). Neural architecture transfer. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43, 2971-2989. http://dx.doi.org/10.1109/TPAMI.2021.
3052758.

Lu, Z., Whalen, 1., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., & Banzhaf, W.
(2019, July). NSGA-Net: Neural architecture search using multi-objective
genetic algorithm. In GECCO 2019 - Proceedings of the 2019 genetic and
evolutionary computation conference, Prague, Czech Republic, 2019.

Luo, J.-H., Wu,]., & Lin, W. (2017, October). ThiNet: A Filter Level Pruning Method
for Deep Neural Network Compression. In IEEE international conference on
computer vision, Venice, Italy, 2017.

Mantzaris, D., Anastassopoulos, G., & Adamopoulos, A. (2011). Genetic algorithm
pruning of probabilistic neural networks in medical disease estimation.
Neural Networks, 24, 831-835. http://dx.doi.org/10.1016/j.neunet.2011.06.
003.

Martin, A., Lara-Cabrera, R., Fuentes-Hurtado, F., Naranjo, V., & Camacho, D.
(2018). EvoDeep: a new evolutionary approach for automatic deep neural
networks parametrisation. Journal of Parallel and Distributed Computing, 117,
180-191. http://dx.doi.org/10.1016/j.jpdc.2017.09.006.

Martinez, A. D., Del Ser,]., Villar-Rodriguez, E., Osaba, E., Poyatos,]., Tabik, S.,
Molina, D., & Herrera, F. (2021). Lights and shadows in Evolutionary Deep
Learning: Taxonomy, critical methodological analysis, cases of study, learned
lessons, recommendations and challenges. Information Fusion, 67, 161-194.
http://dx.doi.org/10.1016/j.inffus.2020.10.014.

Masson, H., Bhuiyan, A., Nguyen-Meidine, L. T., Javan, M., Siva, P., Ayed, L
B., & Granger, E. (2021). Exploiting prunability for person re-identification.
EURASIP Journal on Image and Video Processing, 2021, Article 22. http://dx.
doi.org/10.1186/s13640-021-00562-6.

Mehdipour Ghazi, M., Yanikoglu, B., & Aptoula, E. (2017). Plant identification
using deep neural networks via optimization of transfer learning parameters.
Neurocomputing, 235, 228-235. http://dx.doi.org/10.1016/j.neucom.2017.01.
018.

Mohapatra, R, Saha, S. Coello, C. A. C, Bhattacharya, A., Dhavala, S. S, &
Saha, S. (2022). AdaSwarm: Augmenting gradient-based optimizers in deep
learning with swarm intelligence. IEEE Transactions on Emerging Topics in
Computational Intelligence, 6, 329-340. http://dx.doi.org/10.1109/TETCL.2021.
3083428.

Muhammad, K., Khan, S., Ser,]J. D., & Albuquerque, V. H. C. d. (2021). Deep learn-
ing for multigrade brain tumor classification in smart healthcare systems:
A prospective survey. IEEE Transactions on Neural Networks and Learning
Systems, 32, 507-522. http://dx.doi.org/10.1109/TNNLS.2020.2995800.

Muhammad, K., Ullah, A, Lloret, J., Ser, J. D.,, & de Albuquerque, V. H. C.
(2020). Deep learning for safe autonomous driving: Current challenges
and future directions. IEEE Transactions on Intelligent Transportation Systems,
22(7), 4316-4336. http://dx.doi.org/10.1109/TITS.2020.3032227.

Nibali, A., He, Z., & Wollersheim, D. (2017). Pulmonary nodule classification with
deep residual networks. International Journal of Computer Assisted Radiology
and Surgery, 12(10), 1799-1808. http://dx.doi.org/10.1007/s11548-017-1605-
6

Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H. G., & Ogata, T. (2015). Audio-
visual speech recognition using deep learning. Applied Intelligence, 42(4),
722-737. http://dx.doi.org/10.1007/s10489-014-0629-7.

Pan, S. & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10), 1345-1359. http://dx.doi.org/10.
1109/TKDE.2009.191.

Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019, January). Regularized evolution
for image classifier architecture search. In Proceedings of the AAAI conference
on artificial intelligence, Honolulu, HI, USA, 2019.

Real, E., Liang, C., So, D., & Le, Q. (2020, July). Automl-zero: evolving machine
learning algorithms from scratch. In International conference on machine
learning, 2020.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L, Tan, J.,, Le, Q. V., &
Kurakin, A. (2017, August). Large-scale evolution of image classifiers. In
International conference on machine learning, Sydney, Australia, 2017.

https://www.kaggle.com/thedownhill/art-images-drawings-painting-sculpture-engraving
https://www.kaggle.com/thedownhill/art-images-drawings-painting-sculpture-engraving
https://www.kaggle.com/thedownhill/art-images-drawings-painting-sculpture-engraving
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb12
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb12
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb12
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb12
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb12
https://dl.acm.org/doi/10.5555/3322706.3361996
https://dl.acm.org/doi/10.5555/3322706.3361996
https://dl.acm.org/doi/10.5555/3322706.3361996
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb14
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb14
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb14
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb14
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb14
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb14
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb14
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb15
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb15
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb15
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb15
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb15
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb16
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb16
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb16
http://dx.doi.org/10.1016/j.eswa.2018.10.010
http://dx.doi.org/10.1016/j.eswa.2018.10.010
http://dx.doi.org/10.1016/j.eswa.2018.10.010
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb18
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb18
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb18
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb19
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb19
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb19
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb19
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb19
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb20
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb20
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb20
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb20
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb20
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb20
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb20
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb21
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb21
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb21
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb21
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb21
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb21
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb21
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb22
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb22
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb22
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb22
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb22
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb23
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb23
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb23
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb23
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb23
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb24
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb24
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb24
https://dl.acm.org/doi/10.5555/944919.944968
https://dl.acm.org/doi/10.5555/944919.944968
https://dl.acm.org/doi/10.5555/944919.944968
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb26
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb26
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb26
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb26
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb26
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb26
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb26
http://dx.doi.org/10.1016/j.patrec.2019.03.022
http://dx.doi.org/10.1016/j.patrec.2019.03.022
http://dx.doi.org/10.1016/j.patrec.2019.03.022
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb28
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb28
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb28
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb28
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb28
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb28
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb28
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb29
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb29
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb29
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb29
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb29
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb30
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb30
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb30
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb30
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb30
http://dx.doi.org/10.1109/5.726791
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb32
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb32
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb32
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb32
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb32
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb32
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb32
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb33
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb33
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb33
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb33
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb33
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb33
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb33
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb34
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb34
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb34
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb34
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb34
http://dx.doi.org/10.1016/j.neucom.2016.12.038
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb36
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb36
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb36
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb36
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb36
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb37
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb37
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb37
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb37
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb37
http://dx.doi.org/10.1088/1742-6596/1213/5/052003
http://dx.doi.org/10.1088/1742-6596/1213/5/052003
http://dx.doi.org/10.1088/1742-6596/1213/5/052003
http://dx.doi.org/10.1109/ACCESS.2019.2911536
http://dx.doi.org/10.1109/ACCESS.2019.2911536
http://dx.doi.org/10.1109/ACCESS.2019.2911536
http://dx.doi.org/10.1109/TPAMI.2021.3052758
http://dx.doi.org/10.1109/TPAMI.2021.3052758
http://dx.doi.org/10.1109/TPAMI.2021.3052758
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb41
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb41
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb41
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb41
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb41
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb41
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb41
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb42
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb42
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb42
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb42
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb42
http://dx.doi.org/10.1016/j.neunet.2011.06.003
http://dx.doi.org/10.1016/j.neunet.2011.06.003
http://dx.doi.org/10.1016/j.neunet.2011.06.003
http://dx.doi.org/10.1016/j.jpdc.2017.09.006
http://dx.doi.org/10.1016/j.inffus.2020.10.014
http://dx.doi.org/10.1186/s13640-021-00562-6
http://dx.doi.org/10.1186/s13640-021-00562-6
http://dx.doi.org/10.1186/s13640-021-00562-6
http://dx.doi.org/10.1016/j.neucom.2017.01.018
http://dx.doi.org/10.1016/j.neucom.2017.01.018
http://dx.doi.org/10.1016/j.neucom.2017.01.018
http://dx.doi.org/10.1109/TETCI.2021.3083428
http://dx.doi.org/10.1109/TETCI.2021.3083428
http://dx.doi.org/10.1109/TETCI.2021.3083428
http://dx.doi.org/10.1109/TNNLS.2020.2995800
http://dx.doi.org/10.1109/TITS.2020.3032227
http://dx.doi.org/10.1007/s11548-017-1605-6
http://dx.doi.org/10.1007/s11548-017-1605-6
http://dx.doi.org/10.1007/s11548-017-1605-6
http://dx.doi.org/10.1007/s10489-014-0629-7
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TKDE.2009.191
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb54
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb54
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb54
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb54
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb54
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb55
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb55
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb55
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb55
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb55
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb56
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb56
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb56
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb56
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb56

J. Poyatos, D. Molina, A.D. Martinez et al.

Roy, D., Murty, K. S. R,, & Mohan, C. K. (2015, July). Feature selection using deep
neural networks. In 2015 international joint conference on neural networks
(IICNN), Killarney, Ireland, 2015.

Sa, L, Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). Deepfruits:
A fruit detection system using deep neural networks. Sensors, 16(8), Article
1222. http://dx.doi.org/10.3390/s16081222.

Salehinejad, H., & Valaee, S. (2021). Edropout: Energy-based dropout and pruning
of deep neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 1-14. http://dx.doi.org/10.1109/TNNLS.2021.3069970, in press.

Samala, R., Chan, H.-P., Hadjiiski, L., Helvie, M., Richter, C., & Cha, K. (2018).
Evolutionary pruning of transfer learned deep convolutional neural net-
work for breast cancer diagnosis in digital breast tomosynthesis. Physics in
Medicine and Biology, 63(9), Article 095005. http://dx.doi.org/10.1088/1361-
6560/aabb5b.

Scott, G.], England, M. R, Starms, W. A,, Marcum, R. A, & Davis, C. H. (2017).
Training deep convolutional neural networks for land-cover classification of
high-resolution imagery. IEEE Geoscience and Remote Sensing Letters, 14(4),
549-553. http://dx.doi.org/10.1109/LGRS.2017.2657778.

Shin, H.-C,, Roth, H., Gao, M., Lu, L, Xu, Z, Nogues, I, Yao,], Mollura, D., &
Summers, R. (2016). Deep Convolutional Neural Networks for Computer-
Aided Detection: CNN Architectures, Dataset Characteristics and Transfer
Learning. [EEE Transactions on Medical Imaging, 35(5), 1285-1298. http://dx.
doi.org/10.1109/TM1.2016.2528162.

Simonyan, K., & Zisserman, A. (2015, May). Very deep convolutional networks
for large-scale image recognition. In 3rd international conference on learning
representations, San Diego, CA, USA, 2015.

Srinivas, S., & Babu, R. V. (2015, September). Data-free parameter pruning for
deep neural networks. In Proceedings of the British machine vision conference
(BMVC), Swansea, UK, 2015.

Stanley, K., & Miikkulainen, R. (2002). Evolving neural networks through aug-
menting topologies. Evolutionary Computation, 10(2), 99-127. http://dx.doi.
org/10.1162/106365602320169811.

Sultana, F., Sufian, A., & Dutta, P. (2018, November). Advancements in image
classification using convolutional neural network. In 2018 fourth interna-
tional conference on research in computational intelligence and communication
networks (ICRCICN), Kolkata, India, 2018.

Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T, Kendall, C. B., Gotway, M. B.,
& Liang, J. (2016). Convolutional neural networks for medical image analysis:
Full training or fine tuning? IEEE Transactions on Medical Imaging, 35(5),
1299-1312. http://dx.doi.org/10.1109/TMI.2016.2535302.

82

Neural Networks 158 (2023) 59-82

Tan, C, Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018, October). A
survey on deep transfer learning. In International conference on artificial
neural networks (ICANN), Rhodes, Greece, 2018.

Ullrich, K., Welling, M., & Meeds, E. (2017, April). Soft weight-sharing for
neural network compression. In 5th international conference on learning
representations (ICLR), Toulon, France, 2017.

Wan, S, Liang, Y., & Zhang, Y. (2018). Deep convolutional neural networks
for diabetic retinopathy detection by image classification. Computers &
Electrical Engineering, 72, 274-282. http://dx.doi.org/10.1016/j.compeleceng.
2018.07.042.

Wang, Z, Li, F, Shi, G., Xie, X.,, & Wang, F. (2020). Network pruning using
sparse learning and genetic algorithm. Neurocomputing, 404, 247-256. http:
//dx.doi.org/10.1016/j.neucom.2020.03.082.

Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning.
Journal of Big Data, 3(1), Article 9. http://dx.doi.org/10.1186/s40537-016-
0043-6.

Wen, L., Li, X, Li, X, & Gao, L. (2019, May). A new transfer learning based on
VGG-19 network for fault diagnosis. In IEEE 23rd international conference on
computer supported cooperative work in design (CSCWD), Porto, Portugal, 2019.

Yildirim, O., Ptawiak, P., Tan, R.-S., & Acharya, U. (2018). Arrhythmia detection
using deep convolutional neural network with long duration ECG signals.
Computers in Biology and Medicine, 102, 411-420. http://dx.doi.org/10.1016/
j.compbiomed.2018.09.009.

Yosinski,]., Clune,]., Bengio, Y., & Lipson, H. (2014, December). How transferable
are features in deep neural networks? In Advances in neural information
processing systems, Montreal, Canada, 2014.

Zhou, X., Gong, W., Fu, W., & Du, F. (2017, May). Application of deep learning in
object detection. In IEEE/ACIS 16th international conference on computer and
information science (ICIS), Wuhan, China, 2017.

Zhu, M., & Gupta, S. (2018, April). To prune, or not to prune: Exploring the
efficacy of pruning for model compression. In 6th international conference on
learning representations (ICLR), Vancouver, B.C. , Canada, 2018.

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. (2018, June). Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE
computer society conference on computer vision and pattern recognition, Salt
Lake City, UT, USA, 2018.

Zou, Q., Ni, L., Zhang, T., & Wang, Q. (2015). Deep learning based feature selection
for remote sensing scene classification. IEEE Geoscience and Remote Sensing
Letters, 12(11), 2321-2325. http://dx.doi.org/10.1109/LGRS.2015.2475299.

http://refhub.elsevier.com/S0893-6080(22)00405-1/sb57
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb57
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb57
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb57
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb57
http://dx.doi.org/10.3390/s16081222
http://dx.doi.org/10.1109/TNNLS.2021.3069970
http://dx.doi.org/10.1088/1361-6560/aabb5b
http://dx.doi.org/10.1088/1361-6560/aabb5b
http://dx.doi.org/10.1088/1361-6560/aabb5b
http://dx.doi.org/10.1109/LGRS.2017.2657778
http://dx.doi.org/10.1109/TMI.2016.2528162
http://dx.doi.org/10.1109/TMI.2016.2528162
http://dx.doi.org/10.1109/TMI.2016.2528162
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb63
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb63
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb63
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb63
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb63
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb64
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb64
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb64
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb64
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb64
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1162/106365602320169811
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb66
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb66
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb66
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb66
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb66
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb66
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb66
http://dx.doi.org/10.1109/TMI.2016.2535302
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb68
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb68
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb68
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb68
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb68
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb69
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb69
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb69
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb69
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb69
http://dx.doi.org/10.1016/j.compeleceng.2018.07.042
http://dx.doi.org/10.1016/j.compeleceng.2018.07.042
http://dx.doi.org/10.1016/j.compeleceng.2018.07.042
http://dx.doi.org/10.1016/j.neucom.2020.03.082
http://dx.doi.org/10.1016/j.neucom.2020.03.082
http://dx.doi.org/10.1016/j.neucom.2020.03.082
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1186/s40537-016-0043-6
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb73
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb73
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb73
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb73
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb73
http://dx.doi.org/10.1016/j.compbiomed.2018.09.009
http://dx.doi.org/10.1016/j.compbiomed.2018.09.009
http://dx.doi.org/10.1016/j.compbiomed.2018.09.009
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb75
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb75
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb75
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb75
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb75
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb76
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb76
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb76
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb76
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb76
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb77
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb77
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb77
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb77
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb77
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb78
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb78
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb78
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb78
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb78
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb78
http://refhub.elsevier.com/S0893-6080(22)00405-1/sb78
http://dx.doi.org/10.1109/LGRS.2015.2475299

	EvoPruneDeepTL: An evolutionary pruning model for transfer learning based deep neural networks
	Introduction
	Related work
	Transfer Learning
	Neural Architecture Search
	CNN Pruning
	Evolutionary Algorithms for CNN Pruning
	Feature Selection and Deep Learning

	Evolutionary Pruning for Deep Transfer Learning
	Global scheme of Evolutionary Pruning for Deep Transfer Learning
	Evolutionary components of EvoPruneDeepTL
	EvoPruneDeepTL network

	Experimental Framework
	Datasets
	Training setup

	Results and Discussion
	Answering RQ1: Pruning
	Pruning neurons of one fully-connected layer
	Pruning neurons of two fully-connected layers
	Pruning neurons of both layers

	Answering RQ2: which would be better, to remove neurons or connections?
	Answering RQ3: Comparing EvoPruneDeepTL with efficient methods for CNN pruning
	Answering RQ4: Feature Selection
	Answering RQ5: Comparing different EvoPruneDeepTL with different feature extractors
	Answering RQ6: Analyzing the ability of EvoPruneDeepTL to adapt to relevant classes and robustness
	Analyzing the relevance of each class for a given dataset
	Effects of a gradual aggregation of a class in the problem at hand

	Advantages and disadvantages of EvoPruneDeepTL
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

