
Applied Soft Computing 147 (2023) 110757

F
a

U
b

c

o
a
u
n
o
t
E
o
g

d
(
h

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Multiobjective evolutionary pruning of Deep Neural Networkswith
Transfer Learning for improving their performance and robustness
Javier Poyatos a, Daniel Molina a,∗, Aitor Martínez-Seras b, Javier Del Ser b,c,
rancisco Herrera a

Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI),
niversity of Granada, Granada, 18071, Spain
TECNALIA, Basque Research & Technology Alliance (BRTA), Derio, 48160, Spain
University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain

a r t i c l e i n f o

Article history:
Received 30 January 2023
Received in revised form 24 July 2023
Accepted 31 July 2023
Available online 15 August 2023

Keywords:
Evolutionary Deep Learning
Multi-objective algorithms
Pruning
Out of Distribution detection
Transfer Learning

a b s t r a c t

Evolutionary Computation algorithms have been used to solve optimization problems in relation with
architectural, hyper-parameter or training configuration, forging the field known today as Neural
Architecture Search. These algorithms have been combined with other techniques such as the pruning
of Neural Networks, which reduces the complexity of the network, and the Transfer Learning, which
lets the import of knowledge from another problem related to the one at hand. The usage of several
criteria to evaluate the quality of the evolutionary proposals is also a common case, in which the
performance and complexity of the network are the most used criteria. This work proposes MO-
EvoPruneDeepTL, a multi-objective evolutionary pruning algorithm. MO-EvoPruneDeepTL uses Transfer
Learning to adapt the last layers of Deep Neural Networks, by replacing them with sparse layers
evolved by a genetic algorithm, which guides the evolution based in the performance, complexity
and robustness of the network, being the robustness a great quality indicator for the evolved models.
We carry out different experiments with several datasets to assess the benefits of our proposal.
Results show that our proposal achieves promising results in all the objectives, and direct relation
are presented among them. The experiments also show that the most influential neurons help us
explain which parts of the input images are the most relevant for the prediction of the pruned neural
network. Lastly, by virtue of the diversity within the Pareto front of pruning patterns produced by the
proposal, it is shown that an ensemble of differently pruned models improves the overall performance
and robustness of the trained networks.

© 2023 Published by Elsevier B.V.
1. Introduction

Evolutionary Computation (EC) refers to a family of global
ptimization algorithms inspired by biological evolution [1]. EC
lgorithms such as Evolutionary Algorithms (EA) [2] have been
sed to solve several complex optimization problems which can-
ot be analytically solved in polynomial time. In many real-world
ptimization problems, there is not only one criterion or objective
o improve, but several objectives to consider. Multi-Objective
volutionary Algorithms (MOEAs) are an family of EAs capable
f efficiently tackle optimization problems comprising several
oals [3].
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Structural search and, in particular, Neural Architecture Search
(NAS), is one of the non-polynomial problems which has been
approached with EAs over the years [4]. This problem consists
of looking for neural network configurations that fit better one
dataset by optimizing the performance or loss of the network in
function of the selected evaluation metric [5]. There have been
several Neural Networks (NN), and particularly when integrated
with Deep Learning (DL) called as Deep Neural Network (DNN),
to which NAS has been applied are well-known networks with
one or more objectives [6,7].

Among other decision variables considered in NAS, this area
has also approached the improvement of a NN by optimally
pruning their neural connections. Pruning techniques seek to
reduce the number of parameters of the network, targeting net-
work architectures with less complexity. Usually this comes at
the cost of a lower performance of the network. When a new
learning task is present, a manner to compensate the lack of
quality of data is the usage of the Transfer Learning (TL), whose
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ost straightforward approximation is the usage of pre-trained
etwork in very large datasets [8] for the extraction of features,
ollowed by a specialization of the last layers of the network. Due
o the fact that the number of trainable parameters of these last
ayers is lower, it is possible to avoid an early overfitting of the
etwork, which can happen if there are few examples for large
odels. For those cases, the search of optimal pruning patterns
sing evolutionary NAS is done for these last layers [9].
Robustness is one of the unavoidable requirements to ensure

roper performance in scenarios where risks must be controlled
nd certain guarantees are needed to ensure the proper perfor-
ance of the models [10,11]. The combination of EAs together
ith techniques that allow evaluating the robustness of the mod-
ls paves the way towards the creation of better models for all
ypes of problems. It could be useful to incorporate robustness
s a target, but unfortunately, robustness has been rarely consid-
red an objective [12]. Robustness can be measured in several
ays for a DNN model, one being the performance in Out-of-
istribution (OoD) detection problems [13]. This problem consists
f detecting whether a new test instance queried to the model be-
ongs to the distribution underneath the learning dataset i.e., the
n-Distribution (InD) dataset or, instead, it belongs to another dif-
erent distribution (correspondingly, the Out-Distribution dataset,
oD).
The natural extension of NAS is the development of proposals

ith several objectives. In this scenario, the MOEAs can take
lace, as they evolve the networks meanwhile an optimization
f several objectives is made [14,15]. The MONAS term arises as
he union of MO algorithms which are used for NAS problems
MONAS). MONAS algorithms usually rely in several objectives,
eing a standard objective the performance of the network. The
omplexity of the network is a common second objective, which
an be modeled as the number of parameters pruned form the
etwork, network compression or other alternatives. More so-
histicated proposals consider another objective based on the
nergy consumption or hardware device in use, among others [16,
7]. The addition of the robustness, with a OoD detection tech-
ique applied to the DL model being optimized, as an additional
bjective unleashes a new vision for the MONAS proposals.
The main hypothesis is the convenience of using a MOEA

o evolve the pruning patterns of the fully-connected layers of
neural network via a sparse representation, simultaneously

ccording to the generalization performance of the network, its
omplexity and the robustness of a OoD detection technique re-
ying on the activation signals inside the network against samples
hat may or may not belong to the distribution of the training
ata.
This work finds its inspiration in the recent work in [9], in

hich dense layers are pruned using a configuration that define
he active neurons. In the previous work, that configuration is
volved by using a binary genetic algorithm guided by the perfor-
ance of the network. In this manuscript, the previous problem

s reformulated to optimize the pruning patterns with a MOEA,
n which the search is guided by the three previously mentioned
bjectives. Intuitively, a highly-pruned network may reduce its
erformance and the robustness of an OoD detection method that
elies on the activations of the pruned network. For that reason, a
inimum fraction of neurons must be active (i.e. non-pruned) to
chieve balanced models with good balance (in the Pareto sense)
etween performance and robustness.
In this context, OoD detection falls within the umbrella of

he Open-World Learning (OWL) paradigm [18,19]. OWL pursues
odels that are capable of learning in non-controlled environ-
ents, so that models become increasingly knowledgeable as

hey are queried with new data. However, OWL can also be

onsidered one of the technologies supporting General Purpose

2

Artificial Intelligence (GPAI), which is largely enabled by AI gen-
erating AI models [20,21]. Since this work proposes a MOEA to
optimize DL models, it can be regarded as an example of AI
enhancing AI.

In detail, this work proposes an approach based on the evo-
lution of the pruning patterns of fully-connected layers using a
MOEA, which we hereafter refer to as Multi-Objective Evolution-
ary Pruning for Deep Transfer Learning (MO-EvoPruneDeepTL).
The goal of MO-EvoPruneDeepTL is to search for the best pruning
patterns in the last layers of the NN to adapt them to the problem
at hand. To accomplish this task, MO-EvoPruneDeepTL utilizes
several techniques. To begin with, TL allows for the extraction of
features by leveraging pretrained neural models, so that the spe-
cialization of the target NN takes place in the last fully-connected
layers of the network hierarchy. At this point of the network
pruning is as suitable mechanism to prune non-important fea-
tures that do not contribute to the flow of information throughout
the last part of the NN, which connects pretrained features to
the output to be predicted. MOEA then emerges as an efficient
method to solve the problem of finding good pruning patterns ac-
cording to the aforementioned different objectives: performance,
complexity and, robustness of the network. To measure the ro-
bustness of a model, an OoD detection technique is used, which
is based on the capability of the model to detect unseen data in
the training step. Ideally, robust models with good performance
and low complexity should be desirable. However, the fact that
pruning affects the activations throughout the last stage of the
network causes that performance and robustness can be affected
by the pruning intensity imposed by any given pruning pattern.
This conflicting nature of the objectives under consideration is
the rationale for seeking the optimal set of pruning patterns that
best balance between them by using a MOEA. Finally, we will
show that a byproduct of the estimated Pareto front is that NNs
pruned by patterns belonging to the front can be combined to-
gether, yielding an ensemble model with increased performance
and/or robustness with respect to any of its compounding NNs.
This exposes that the pruning solutions give rise to NN models
that present a sufficient diversity to improve their performance
in accuracy and robustness over different value ranges of the
objectives driving the search.

To assess the quality of MO-EvoPruneDeepTL, different exper-
iments have been designed that allow inspecting several aspects
of the performance of MO-EvoPruneDeepTL from different per-
spectives. To that end, the main purpose of the experimental
setup is to provide an informed answer to the following research
questions (RQ):

(RQ1) How are the approximated Pareto fronts produced by the
proposal in each of the considered datasets?

(RQ2) Is there any remarkable pruning pattern that appears in
all the solutions of the Pareto front?

(RQ3) Do our models achieve an overall improvement in per-
formance when combined through ensemble modeling?

A general insight about these experiments is the achievement
of optimized networks in these objectives, but also that the
evolutionary process gives rise to pruning patterns that maintain
relevant neurons with information about the input of the model,
and leads to the use of ensembles to further improve modeling
performance in terms of generalization and robustness to OoD.

The rest of the article is structured as follows: Section 2
briefly overviews background literature related to the proposal.
Section 3 shows the details of the proposed MO-EvoPruneDeepTL
model. Section 4 presents the experimental framework designed
to thoroughly examine the behavior of MO-EvoPruneDeepTL with
respect to the RQ formulated above. In Section 5, we show and

discuss in depth the results obtained by MO-EvoPruneDeepTL
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n the different experiments. Several indicators are presented to
how the quality of MO-EvoPruneDeepTL. Finally, Section 6 draws
he main conclusions from this study, as well as future research
ines stimulated by our findings.

. Related work

The aim of this section is to make a review of contributions
o the literature about the key elements of this study: Neural
rchitecture Search (Section 2.1), Transfer Learning and Pruning
f Convolutional Neural Networks (CNN, Section 2.2) and OoD
etection (Section 2.3). The last paragraph of this section resumes
he benefits of MO-EvoPruneDeepTL.

.1. Neural architecture search

The design of the NN that best fits for the problem at hand is a
hallenging task. The search for the best design of the network is
lso considered as another problem, as it is necessary to find the
est architecture that optimally fits the data. In this context, NAS
as achieved a great importance in this area. The main purpose
f NAS proposals is the search for the best design of the NN to
olve the considered problem.
First NAS-based proposals started to emerge in the beginning

f this century. NEAT, presented in [5] was a pioneering proposal
bout how EAs – specifically, a Genetic Algorithm (GA) – can be
sed to evolve NNs. They showed that a constructive modeling
f the NN with the benefits of the GA can lead to optimized NN
opologies. The natural extension of this seminal work allowing
or the evolution of DNN was presented years after in [22], in
hich the authors use a co-evolutionary algorithm based on the
o-operation scheme to evolve DNN.
In the last years, more NAS proposals have been developed.

ne of them is EvoDeep [23], in which the authors create an
A with specific operators to create and evolve DL models from
cratch. More examples of the importance of NAS come with the
ext proposals. In [24], authors propose another EA to perform
he evolution of NN, similarly to the previous proposal, but with
difference in relation to the fitness function, which is influ-
nced by the accuracy and complexity of the network. The other
xample is presented in [25]. In this case, the evolution comes
n two different ways: topology and parameters of the Convo-
utional Neural Networks (CNN). In [26], the authors propose a
A that evolves the weights of the softmax layer to improve
he performance of the NN. Suganuma et al. propose in [27] a
1+λ) evolutionary strategy to evolve DNN. In 2020, [21] presents
n advanced technique that automatically searches for the best
odel, operating from scratch and obtaining a good performance
ith the problems at hand. The use of NAS has been applied in
ther areas like the Reinforcement Learning (RL). In that area,
here is a great example of NAS [28]. In that work, authors use
recurrent network (RNN) to generate the model descriptions of
N and train this RNN with RL to maximize the expected accuracy
f the generated architectures on a validation set.
There are more examples of NAS in the literature like the NAS

lgorithm which comprises of two surrogates through a supernet,
ith the objective of improving the gradient descent training
fficiency [29]. Another NAS comes in [30], in which the authors
ropose a pipeline with also a surrogate NAS applied to real-time
emantic segmentation. They manage to convert the original NAS
ask into an ordinary MO optimization problem.

Lastly, there are more advanced techniques of NAS and EA
iven by Real et al. [31], in which a new model for evolving a
lassifier is presented, and by Real et al. [21], in which the authors
ropose AutoML-Zero, an evolutionary search to build a model
rom scratch (with low-level primitives for feature combination
3

and neuron training) which is able to get a great performance
over the addressed problem.

The main characteristic of the previous NAS proposals is the
evolution of the DL model guided by a single objective, usually
the accuracy or another that measures the performance of the
network. The following proposals share a common aspect: the
evolution of the model is done using more than one objective.
This leads to the algorithms in the field of MONAS.

We can find several approaches of MONAS that have been ap-
plied to diverse fields with great results. One of them is presented
in [32]. This work proposes a MONAS that lets the approximation
of the Pareto-front of all the architectures. In relation to medical
images area, in [33] a MONAS that evolves both accuracy and
model size is proposed. Moreover, following this research in
medical images, in [34], the authors use a MO evolutionary based
algorithm that minimizes both the expected segmentation error
and number of parameters in the network. Another interesting
work is presented in [35], in which they have created a pipeline
for the automatic design of neural architectures while optimizing
the network’s accuracy and size.

Typically, MONAS evaluate two or three objectives. A common
objective is usually the performance of the network. The others
objectives are related with the complexity of the network and
other empirical and measurable objectives. In [36], the authors
propose a MOEA for the design of DNN for image classifica-
tion, adopting the classification performance and the number of
floating-point operations as its objectives. Another example is
DeepMaker, [37], which is a MOEA approach that considers both
the accuracy of the network and its size to evolve robust DNN
architectures for embedded devices.

There are some well-known MOEAs in the literature. One of
them is NSGA-II. A new version of it has been developed to
use it for NAS [38], called NSGA-Net. This proposal looks for
the best architecture through a three-step search based on an
initialization step, followed by an exploration step that performs
the EA operators to create new architectures, and an exploita-
tion step that uses the previous knowledge of all the evaluated
architectures.

2.2. Transfer learning and pruning

One of the objectives that EAs used for NAS usually aim to
optimize is the complexity of the network. NN are structures
with a great amount of parameters. These networks are composed
of two main parts. The first one extracts the main features of
the problem, i.e., learns to distinguish the patterns of the images
(when working with image classification) and the second part is
responsible to classify these patterns into several classes.

In this context, TL appears as a figure that helps in the learning
process when there are few data, i.e., prevents the overfitting
when the input examples is not large [39]. TL is a DL mechanism
encompassing a broad family of techniques. The most common
method of TL with DL is the usage of a previous network structure
with pre-trained parameters in a similar problem to the related
task, being trained with huge datasets like [8]. This fact involves
the usage of a DL model with fixed and pre-trained weights in
the convolutional layers with a dataset and then add and train
several layers to adapt the network to a different classification
problem [40].

Another technique to reduce the complexity of the networks
is pruning. Pruning a CNN model consists of reducing the pa-
rameters of the model, but it may lead into a decrease of the
performance of the model. Several approaches to prune networks
have been developed over the years, such as [41,42]. These meth-
ods have been already used in several problems, rendering great
performance.
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An example of the fusion of EAs, DNN and pruning is shown
in [43], which proposes a novel approach based on a combination
of pruning CNN of sparse layers (layer with fewer connections
between neurons) guided by a GA. The main consequence of this
study is the reduction of a great fraction of the network, but at
the penalty of a lower generalization performance of the network.

Following the idea of EAs and DNN, in [9] the authors propose
also propose a combination of sparse layers and a GA. They have
shown that pruning can be done in a TL scheme with sparse layers
and EAs. Their proposal is only guided by the performance of the
model, but they also achieve a great reduction in the optimized
sparse layers.

2.3. Out of distribution detection

Robustness is a term that has been used with related yet
different meanings among the literature of the Machine Learning
(ML) community. In this work, we refer to the model’s ability to
handle the unknown, to detect whether it has been queried with
an example of a not learned distribution, therefore refusing to
make the classification it has been trained to do. This is precisely
what the OoD detection framework measures.

In this problem, a model learns to classify instances in the
different classes from a training dataset that is sampled from
a distribution, namely the InD. After the process, the model is
asked to correctly distinguish between test examples that are
drawn equally from either the InD or from a semantically dif-
ferent distribution, the OoD dataset [44]. The term semantically
different refers to the fact that the classes contained in this
foreign distribution are distinct from the ones present in the InD.
As ML and DNN model are not natively prepared for this task, an
OoD detection technique is wrapped around the model to allow
this behavior. Typically, these techniques are based on creating
a score for every example processed by the model, such that the
score obtained by an OoD instance is significantly different from
the one obtained by a InD example. Then, by simply defining a
threshold on this score, the model can decide whether an instance
is from the in or out distribution.

A great variety of methods exist in the literature, which was
started by [13], where the so-called baseline method was in-
troduced. It relies on the simple observation that InD instances
tend to have greater Maximum Softmax Probability, the softmax
probability of the predicted class. By simply applying a threshold
to this score, they achieved acceptable performance on many
classification problems. In [45], this idea was refined by applying
temperature scaling to the softmax probabilities, what further
separates apart from each other the distributions of the scores of
the in- and out- distribution samples probabilities. Authors also
implemented an input preprocessing pipeline that enhanced a
bit the performance by adding a small quantity of gradient and
softmax dependent noise. The paper presented in [46], instead of
using the softmax probabilities, exploits the feature space of the
layer right before softmax and assumes that it follows a multi-
variate Gaussian distribution, enabling the calculation of its mean
and variance for every sample. After creating a class-conditional
distribution utilizing the training samples, the score for every test
sample is the closest Mahalanobis distance between the sample
and the calculated Gaussian class-conditional distributions.

The technique proposed in [47], in contrast to previous works,
focuses on modifying model’s training by adding a term to the
loss function (that depends on the classification of the task,
density estimation, etc.), helping the model learn heuristics that
will improve the performance of other OoD methods applied
afterwards. This new term needs to be trained with OoD data,
which can be obtained by leveraging the large amount of data
publicly available on the internet. Authors prove that the learned
4

heuristics for arbitrary OoD datasets generalize well to other
unseen OoD data. Thereafter, [48] based its detector in what they
called the free energy function, that combines concepts of the
energy-based models with modern neural networks and their
capability of assigning a scalar to every instance fed to the model
without changing its parametrization. Specifically, the free energy
function is based on the logits of the network, and the work
empirically demonstrates that OoD instances tend to have higher
energy, enabling the distinction between InD and OoD data. In the
following work in [49] exploited the idea that easy OoD samples
can be detected by leveraging low-level statistics. On this basis,
several intermediate classifiers are trained at different depths and
each example is outputted through one of them depending on its
complexity. To measure complexity, a function based on the num-
ber of bits used to encode the compressed image is harnessed. The
OoD scoring function employed is the above presented energy
function adapted to the corresponding depth.

Although only a few research contributions are presented in
this work, it must be noted that the OoD problem has been widely
studied in the literature [50], with proposals ranging from the
more complex and well performing ones to the more simple
yet effective ones. As the aim of this paper is to show that the
robustness in the OoD can be affected when the pruning of the
network is done. Therefore, the OoD detection method will be
selected to be computationally cheap yet effective, to not add
computational complexity to the MOEA.

In this section, a review of the related work from three differ-
ent perspectives has been presented. Terms like MONAS, MOEA
are important as this work presents a new work about these
topics. Moreover, it is based on a TL scheme in which an evolu-
tionary pruning of the last layers is done. In the last years, several
proposals have been published over these topics, i.e, MOEAs
that search for the best architecture attending to one or more
objectives and also pruning approaches for CNNs. However, this
study introduces a new manner to guide the evolutionary prun-
ing of the models with the usage of a OoD mechanism. MO-
EvoPruneDeepTL tries to solve the problem of achieving robust
models with high performance and least active neurons. This
scheme, a MOEA that performs pruning in the last layers (TL
paradigm) with three objectives is a new contribution to all this
fields at the same time.

3. Multi-objective evolutionary pruning for deep transfer learn
ing

This section is devised to explain the details of
MO-EvoPruneDeepTL. First, in Section 3.1 the formulation to the
problem at hand is presented. In Section 3.2, we will describe
the objectives used to guide the search. Then, in Section 3.3, the
description of the OoD detector is explained. The DL and network
schemes are shown in Section 3.4. Finally, in Section 3.5, the
evolutionary parts of MO-EvoPruneDeepTL are described.

3.1. Problem formulation

This section aims at defining and explaining the mathematical
components that circumscribe MO-EvoPruneDeepTL. We explore
different concepts needed to fully understand the basics of our
study.

We define the concept of dataset. Mathematically, we define
a training dataset D .

= {(xi, yi)}Ni=1 composed by N (instance,
abel) pairs. Such a dataset is split in training, validation and test
artitions, such that D = Dtr ∪ Dval ∪ Dtest with |Dtr | = Ntr .
Another important concept to keep in mind is the model. We

efine a model Mθ to represent the relationship between its input
and its corresponding output y ∈ {1, . . . , Y }, where Y denotes
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he number of classes present in D. Learning the parameter values
∗ that best model this relationship can be accomplished by using
learning algorithm θ∗ = ALG(M;Dtr ) that aims to minimize a
easure of the difference (loss) between the model’s output and

ts ground truth over the training instances in Dtr (e.g. gradient
ack-propagation in neural networks). In what follows Mθ is

assumed to be a NN, so that θ represent the totality of trainable
eights in its neural connections.
In the context of TL for classification tasks, the NN Mθ is

assumed to be composed by a pre-trained feature extractor Fφ(x)
whose parameters φ are kept fixed while ALG(·) operates), and
dense (i.e. fully-connected) part Gθ (·) that maps the output of

he feature extractor to the class/label to be predicted. Therefore,
fter tuning the trainable parameters of the network as θ∗ =
LG(G;Dtr ), the class ŷ ∈ {1, . . . , Y } predicted for an input
nstance x is given by:

= (F ◦ Gθ∗ )(x) = Gθ∗ (F (x)), (1)

here ◦ denotes composition of functions. When predictions are
ssued over the validation partition Dval, a measure of accuracy
an be done by simply accounting for the ratio of correct pre-
ictions to the overall size of the set, i.e. ACCval = (1/Nval) ·
i∈Dval

I(̂yi = yi), where I(·) equals 1 if its argument is true (0
otherwise).

Bearing this notation in mind, pruning can be defined as a
binary vector p = {pj}Pj=1, where P denotes the length of the
eature vectors extracted by Fφ(x) for every input instance to
he network. As such, pj = 0 indicates that neural links that
onnect the jth component of the feature vector to the rest of
eurons in the dense part Gθ (·) of the network are disconnected,
ausing that all trainable parameters from this disconnected input
o the output of the overall model are pruned. Conversely, if
j = 1 the jth input neuron is connected to the densely connected
ayers of the neural hierarchy. By extending the previous notation,
he training algorithm is redefined to θ∗(p) = ALG(G;Dtr , p)
o account from the fact that the network has been pruned as
er p. This dependence of the trained parameters on the pruned
ector propagate to the measure of accuracy over the validation
nstances, yielding ACCval(p). Likewise, a measure of the reduction
f the number of trainable parameters can be also computed for
given pruning vector p relative to the case when no pruning is
erformed (i.e., p = 1 .

= {1}Pj=1) as MEM(p) = |θ (p)|/|θ (1)|.
Intuitively, a good pruning strategy should consider the bal-

nce between the reduced number of trainable parameters and
ts impact on the accuracy when addressing the modeling task
t hand. Reducing the amount of parameters to be stored has
ractical benefits in terms of memory space, and can yield a lower
nference latency when the trained model is queried.

A third dimension of the network that can be affected by
runing is its capacity to detect OoD instances. A significant
raction of the techniques proposed so far for identifying query
amples that deviate from the distribution of training data rely on
he network dynamics between neurons while the instance flows
hrough the network. This is the case of ODIN [45], BASELINE [13]
nd ENERGY [48], among others. To quantify the capability of a
runed network Mθ∗(p) to detect OoD instances, we utilize other
atasets D′ = {D′d}

DOoD
d=1 different from D, whose instances (x′, y′)

re assumed to be representative of the OoD test instances with
hich the model can be queried in practice. An OoD detection
echnique TOoD(x;Mθ∗(p)) ≡ TOoD(x) processes the activations trig-
gered by x throughout the trained pruned model Mθ∗(p) so as to
ecide whether x is an InD (TOoD(x) = 0) or an OoD instance (corr.

TOoD(x) = 1). This being said, true positive and false negative
rates can be computed for T (x) over the test subset Dtest of D and
random Nval/DOoD-sized samples drawn from every other dataset
D′ , which can be aggregated in a compound performance metric.
d

5

Among other choices for this purpose, we consider the AUROC
measure AUROC(p), which measures the ability of T (·) to discrim-
nate between positive and negative examples. This measure is
et dependent on p in accordance with previous notation, as T (x)
operates on the neural activations stimulated by x.

3.2. Objectives of mo-evoprunedeeptl

This section introduces the objectives that guide
MO-EvoPruneDeepTL during its evolutionary process. We define
them using the notation previously commented in Section 3.1.

The optimization problem addressed in this work aims to
discover the set of Pareto-optimal pruning vectors {popt

k }
K
k=1 that

best balance between three objectives:

1. The modeling performance of the pruned model over
dataset D. This performance is measured with the accuracy
over the test dataset (Dtest ). It is the percentage of well
classified images out of the total set of images.

2. The number of active neurons left after the pruning op-
eration. The number of active neurons corresponds with
the remaining active connections after the pruning and
evolutionary process.

3. The capability of an OoD detection technique to discrimi-
nate between OoD and InD data by inspecting the activa-
tions inside the pruned model.

Mathematically:

{popt
k }

K
k=1 = argp∈{0,1}P [max ACCval(p),minMEM(p),maxAUROC(p)] ,

(2)

s.t. D : In-distribution dataset, (3)

D′1, . . . ,D
′

DOoD
: Out-of-distribution datasets, (4)

Fφ(x) : Pre-trained feature extractor, (5)

T (x) : Out-of-distribution detection technique. (6)

3.3. Out of distribution detector of mo-evoprunedeeptl

In the following subsection the technique selected to assess
the OoD performance of the pruned models is presented, along
with a clarification about the metrics used to measure it.

Due to the fact that every new child of the population in the
evolutionary algorithm must have its OoD performance correctly
assessed, the chose method should not entail a big computational
burden while maintaining a sufficient effectiveness in detecting
OoD samples. The technique presented in [51], ODIN, fulfills these
requirements and is the selected one.

Before explaining ODIN, the already mentioned performance
metric used in this study must be clarified, namely the AUROC
or Area Under the Receiver Operation Characteristic curve. It is a
threshold-independent metric for binary classification that can
be considered as the probability that the model ranks a ran-
dom positive example with higher score than a random negative
example. Is defined as TPR/FPR, which stand for True Positive
Rate and False Positive Rate respectively and can be computed as
TPR = TP/(TP+ FN) and FPR = FP/(FP+ TN). Therefore, in order
to compute the AUROC, the FPR value for every TPR needs to be
calculated. In this work, TP is used to refer to an in-distribution
sample correctly classified as such, whereas a TN represents an
OoD sample detected correctly by the OoD detector.

The basic principle of ODIN is to use maximum softmax proba-
bility with temperature scaling as the OoD score for every sample,
defined by the expression

f (x; T ) = max (S (x; T )) = S (x; T ), (7)
ODIN i i ŷ



J. Poyatos, D. Molina, A. Martínez-Seras et al. Applied Soft Computing 147 (2023) 110757

w
i
s

S

Fig. 1. Pruning method of MO-EvoPruneDeepTL.
here Si(x; T ) is the softmax probability of the ith class for the
nput instance x, scaled by a temperature parameter T ∈ R+. This
caled softmax can be calculated as:

i(x; T ) =
exp(hi(x)/T )∑N
j=1 exp(hi(x)/T )

. (8)

where hi(x) | i ∈ {1, . . . , Y } are the logits, the values prior to
the softmax activation function. Then, and in accordance with
notation presented in Section 3.1, the OoD detection technique
TOoD, ODIN in this case TODIN , will output a 1 if the instance’s
score is below a defined threshold, indicating that is considered
an out-of-distribution sample, outputting a 0 otherwise:

x belongs to

⎧⎪⎪⎨⎪⎪⎩
in-distribution if TODIN (x; T ; λ) = 0

⇐⇒ fODIN (x; T ) ≥ λ,

out-distribution if TODIN (x; T ; λ) = 1
⇐⇒ fODIN (x; T ) < λ.

(9)

It is important to remark that ODIN also uses an input prepro-
cessing pipeline to further improve its performance in the OoD
detection problem, but that in this study it will be discarded for
the sake of reducing the computational burden of the algorithm.

So, in order to implement ODIN, the below presented steps
must be followed. First, the model Mθ must be trained using
the training set Dtr of the in-distribution dataset D. Then the
logits of the instances of the test set Dtest must be extracted for
the sake of calculating the temperature scaled softmax outputs
using Eq. (8). The OoD score of each input instance fODIN (x; T ) will
be the maximum of these scaled softmax outputs, i.e., the value
corresponding to the predicted class, as expression (7) indicates.

Next, same operation must be repeated with the out-of-
distribution detection set, composed by samples drawn from
every other dataset D′d as indicated in Section 3.1. In this manner,
we have created two distributions of OoD scores: one for the in-
distribution samples of Dtest and other for the out-of-distribution
ones. Now, the threshold on the score for each TPR is defined
by using the score distribution of test instances and Eq. (9).
The corresponding FPR for each TPR is computed by employing
the OoD distribution and the defined threshold, obtaining a set
of [TPR, FPR] values that compose the ROC curve. Finally, from
this curve the AUROC can be computed, therefore obtaining the
desired robustness score for the model Mθ and in-distribution
dataset D.
6

In this study, in order to evaluate the robustness of each
model, a practical approach is used, which involves the usage
of the OoD detector with the other datasets that are not cov-
ered in training phase. However, the design of the algorithm
accommodates any other dataset as an OoD evaluation dataset.

3.4. Network characteristics of mo-evoprunedeeptl

In this subsection, we introduce the characteristics of the used
network in MO-EvoPruneDeepTL. In our study, we use the TL
paradigm, i.e., the weights of the convolutional phase are im-
ported and fixed from another trained network in a similar task.
For that reason, the DL model we use works as a feature extractor.
The images pass through the network and it extracts their main
features. These features correspond with the neurons which are
evolved by the evolutionary components of MO-EvoPruneDeepTL.

The chosen network for this study is ResNet-50. The output of
this network is a vector of 2048 features or characteristics. They
are used as the input for the last layers of the neural network.
In our case, following the research in [9], the last part of the
neural network is composed by an input layer that receives an
input vector of 2048 features (i.e., the output of the ResNet-50),
followed by a hidden layer of 512 neurons and, finally, an output
layer with as many neurons as classes defined in the problem
at hand. This architecture is depicted in Fig. 1, wherein Layer 1
corresponds to our intermediate layer of 512 neurons, and Net-
work Features denote the vector of 2048 features extracted from
ResNet-50. We highlight in red the connections affected when
a neuron is pruned. More specifically, each feature contributes
to the neurons of the intermediate layer. The solver learns to
distinguish which features are the most important and which are
not, so that the whole set of connections from irrelevant features
onward is eliminated, thereby not contributing to the rest of the
intermediate layer.

Following the previous idea, this network has fewer connec-
tions than a standard fully-connected layer, in which each neuron
is connected to the next group of neurons. This type of layer
is referred to as sparse layer. The genetic algorithm is in charge
of finding an optimal pruning pattern for that sparse layer, in
which the chromosome representing the pruning pattern can be
decoded to an adjacency matrix. Fig. 1 shows that this matrix
defines the structural composition (connections) of the layer in



J. Poyatos, D. Molina, A. Martínez-Seras et al. Applied Soft Computing 147 (2023) 110757

t
m
c
a
t

3

o
S
n
b
a
O
r
i
e

d
a
s
c
o

i
u
p

1

1

1

1

1

1

1

1

he neural network. In particular, binary entries in the adjacency
atrix correspond to the connections between the blue and green
ircles, so that certain connections will be removed (red lines) as
result of the pruning operation, rendering the sparse nature of
he matrix and the layer itself.

.5. Evolutionary components of mo-evoprunedeeptl

In this section, we introduce the evolutionary components
f MO-EvoPruneDeepTL. It is a MOEA, called Non-Dominated
orting Genetic Algorithm II (NSGA-II) [52]. The population of
etworks is evolved using the common operators from this GA,
ut, in this case, only two individuals are used for the evolution
s parents. As a result, two offspring individuals are produced.
ur MO-EvoPruneDeepTL uses a binary encoding strategy, which
epresents if a neuron is active or not. A neuron is active if its gen
s 1 or not active if it is 0. Thanks to this direct encoding approach,
ach gen determines uniquely a neuron in the decoded network.
The initialization of the chromosomes correspond with a ran-

om discrete initialization in [0, 1], the selection is done using
binary tournament selection method, whereas the replacement
trategy is the dual strategy of ranges of Pareto dominance and
rowding distance of NSGA-II. Finally, the crossover and mutation
perator are outlined:
Crossover: the crossover operator used in MO-EvoPruneDeepTL

s the uniform crossover. This operator defines two new individ-
als from two parents. Mathematically, given these two parents
and q, where p = {pi}Pi=1 and q = {qi}Pi=1 and their length is P ,

the resultant offsprings p′ = {p′i}
P
i=1 and q′ = {q′i}

P
i=1 (also with

length P) are generated using these equations:

p′i =
{

pi if r ≤ 0.5
qi otherwise

q′i =
{

qi if r ≤ 0.5
pi otherwise

(10)

where r is the realization of a continuous random variable with
support over the range [0.0, 1.0]. This operator creates two in-
dividuals using information of the genes of both parents. Each
position i of the new individual takes the value of the gene of
p or q until the offspring is fully created.

Mutation: the mutation performed by MO-EvoPruneDeepTL is
the Bit Flip mutation. This operator needs a mutation probability
defined by mutp. Thus, for each chromosome, all of its genes can
be mutated if the mutation is really performed, which means
changing the value of the gene from active to not active or vice
versa. The parameter that controls if a gene is flipped or not is
mutp.

Next, we give a brief explanation about the process that MO-
EvoPruneDeepTL performs. First, we need to know the data re-
quired by MO-EvoPruneDeepTL, which is the dataset for training
the network and its test dataset, the InD data, and also the OoD
data, so that each model can also be tested on it. Lastly, the
configuration of the GA and of the network are also required.

Once all the data is gathered, then the evolutionary pro-
cess takes place. Algorithm 1 shows the pseudocode of MO-
EvoPruneDeepTL. The beginning of the process is the standard
procedure of initialization and evaluation of the initial popula-
tion (lines 1 and 2). Then, the evolution is performed. In each
generation, the operators are being executed sequentially. The
parents are selected using the selection operator (line 4). After
that, they generate their offspring using the crossover operator
(line 5) which are mutated using the mutation operator (line 6).
Then, both children are evaluated to obtain the values of the
objectives that guide the evolutionary process. Thus, for each
child, its chromosome is decoded into a sparse network (line 8)
7

which is trained using the train set of the InD data (line 9). Then,
the information contained in the logits is passed through the OoD
detector which determines the robustness of the child using the
AUROC metric (line 10). The accuracy is calculated using the test
set of the InD (line 11) and the complexity of the network is also
achieved using the number of neurons which are active in the
child chromosome (line 12). Then, the objectives are retained as
part of the information of the child for further generations (line
13).
Algorithm 1: MO-EvoPruneDeepTL

Input : InD dataset, OoD dataset, configuration of the GA
and configuration of the network

Output: Evolved pruned network
1 Initialization of individuals of the population using the

initialization operator;
2 Evaluation of the initial population (see lines 9-14);
3 while evaluations < max_evals do
4 Parent selection using binary tournament;
5 Generate offsprings using uniform crossover;
6 Mutation of individuals using the bit flip mutation;
7 for each child p in children population do
8 SparseNetworkp ← Decodification of child

chromosome;
9 SparseTrainedNetworkp ← Train SparseNetworkp

using the train set of InD data;
0 AurocChildp ← Robustness metric of child using

OoD data;
1 AccChildp ← Accuracy of SparseTrainedNetworkp

evaluated in test set of InD data;
2 ComplexChildp ← Number of active neurons in

SparseNetworkp;
3 SolutionVector(AccChild,ComplexChild,AurocChild)p;

4 evaluations+=1;
5 end
6 Replacement Strategy;
7 end

4. Experimental framework

This section is intended to describe the framework surround-
ing the experiments conducted in this study. In Section 4.1, a
detailed description of the datasets is given. Then, Section 4.2
shows the values of the parameters and the network setup of
MO-EvoPruneDeepTL in the experiments.

4.1. Dataset information

In this study we have selected several datasets which fit in
our working environment. These datasets represent a good choice
for TL approaches due to their size, as the training and inference
times are lower. Thus, these datasets are suitable for problems
related with population metaheuristics, since a large number of
individuals will be evaluated. We present a brief description of
each dataset:

• CATARACT [53] is a dataset related with the medical envi-
ronment. It classifies different types of eye diseases.
• LEAVES [54] is a dataset that is composed of images of

different types of leaves, since healthy to unhealthy with
different shades of green.
• PAINTING is related to the painting environment [55]. This

dataset is composed of images which represent different
types of paintings.
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Fig. 2. Images of datasets. Left: LEAVES examples. Middle: RPS examples. Right: SRSMAS examples.
Table 1
Datasets used in the experiments.
Dataset Image size L

(# classes)
# Instances
(train/test)

Accuracy
(no Pruning)

AUROC
(no Pruning)

CATARACT (256, 256) 4 480/121 0.732 0.870
LEAVES (256, 256) 4 476/120 0.935 0.960
PAINTING (256, 256) 5 7721/856 0.951 0.990
PLANTS (100, 100) 27 2340/236 0.480 0.820
RPS (300, 300) 3 2520/372 0.954 0.934
SRSMAS (299, 299) 14 333/76 0.885 0.999
a
l

• PLANTS is dataset which presents a great variety of leaves
and plants, which ranges from tomato, or corn plants to
other leaves, among others [56].
• RPS [57] is a dataset whose purpose is to distinguish the ges-

ture of the hands in the popular Rock Paper Scissors game
from artificially-created images with different positions and
skin colors.
• SRSMAS is based on the marine world whose aim is to

classify different coral reef types [58].

Next, we show some examples for several of the above
atasets are shown in Fig. 2.
Finally, we highlight the main characteristics in quantitative

erms of instances, classes and metrics with non-pruned net-
orks for each dataset. Table 1 show these numbers.

.2. Training and network setup

In this subsection, we describe both the training and network
etup of MO-EvoPruneDeepTL. First, we explain how our datasets
re split. Then, the network setup is presented. Lastly, we discuss
he parameters of MO-EvoPruneDeepTL.

In this study, we use six different datasets in our experiments.
e need to split the images of these datasets into a train and test

ubsets, as the evaluation of MO-EvoPruneDeepTL requires it. We
ave created a 5-fold cross-validation evaluation environment,
eanwhile for the rest of the datasets, their train and test subsets
ad already been predefined.
Another component of MO-EvoPruneDeepTL is the used net-

ork along all the experiments. In our case, we have chosen
esNet-50 as the pre-trained network. We have selected ResNet-
0 as the baseline feature extraction method following up the
8

conclusions drawn in [9], in which several experiments with
other feature extractors such as DenseNet and VGG were found
to perform worse than ResNet-50. Although other larger feature
extractors may provide better performance, the choice of ResNet-
50 is also related to the number of features obtained from the
network, which directly influences the evaluation time of a so-
lution. Based on these criteria, ResNet-50 is established as the
pretrained backbone for our experiments, given its good balance
between performance and complexity. This election has been
taken to maintain the balance between the number of features,
which leads to a higher computational space, and the perfor-
mance obtained in the TL process. The combinatorial problem can
be huge for typical values of feature extractors commonly used
in problems where TL is in use. Using this network yields feature
vectors Fφ(x) comprising P = 2048 components, leading to a total
of 22048

≈ 3.23 · 10616 possible pruning patterns. Furthermore,
the evaluation of pruned networks during the search requires
repeatedly training over the instances in the test subset can be
computationally expensive. Note that, although in our experi-
ments a CNN model is used, the pruning can also be performed
with other type or architectures, like Long Short-Term Memory
(LSTM) [59].

These extracted features are passed through the last layers,
which are the layers that are going to be trained. The model with
the larger accuracy on the training set is saved. The optimizer of
the training environment is the standard SGD. The parameters of
MO-EvoPruneDeepTL are shown in Table 2. The maximum num-
ber of training epochs is 600, but the training phase stops if no
improvement is achieved in ten consecutive rounds. The last im-
portant parameter appears in the OoD phase. It is called TempODIN
nd it controls how the softmax values are computed using the
ogits from the Ind and OoD. The parameters of this study (see
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Table 2
Parameters of MO-EvoPruneDeepTL.
Parameter Value

Maximum Evals 200
# Runs 10
Population size 30
pmut

1
P

Batch Size 32
TempODIN 1000

Table 3
Average time in evaluations of MO-EvoPruneDeepTL.
Dataset Total Evaluation Training and inference OoD detection

CATARACT 332 min 1.66 min 0.66 min 1 min
LEAVES 1600 min 8 min 3 min 5 min
PAINTING 1700 min 8.5 min 7.5 min 1 min
PLANTS 800 min 4 min 3 min 1 min
RPS 900 min 4.5 min 3.5 min 1 min
SRSMAS 1500 min 7.5 min 2.5 min 5 min

Table 2) have been selected by following recommendations of
the authors. The values of the parameters controlling the genetic
search operators have been taken from [9]. The characteristics
of the neural network are also those utilized in this previous
work. Moreover, the OoD detection mechanism is based on [45].
In that work different temperature values were tested, reporting
the value of the parameters of the technique that rendered the
best results in their experiments. For this reason, in this work we
have chosen the same value (namely, temperature equal to 1000).

The last contribution of this section is the discussion of the
arameters of MO-EvoPruneDeepTL. The maximum evaluations
f MO-EvoPruneDeepTL is set to 200 and the size of the pop-
lation of networks for each generation is 30. Table 3 shows
he evaluation time for each individual, so that the total time
f execution is the time of the first column multiplied by the
umber of evaluations. Each OoD detection requires a minute, but
n the datasets with the 5-fold cross-validation, this time reaches
he five minutes. Moreover, we also indicate the inference time
or test and the required time to calculate the AUROC metric
n the OoD phase. Those times force us to keep a low number
f runs and evaluations to meet a computationally affordable
alance between the performance of our models and the high
xecution times required for our simulations. Moreover, although
tatistical tests are important to assess the significance of the
ifferences in the results, but due to these limited number of runs,
e cannot apply them, as large number of runs is required to
chieve statistically reliable insights.
The experiments have been carried out using Python 3.6 and

Keras/Tensorflow implementation deployed and running on a
esla V100-SXM2 GPU.

. Results and discussion

This section is devised to analyze the behavior of
O-EvoPruneDeepTL. To this end, we define three research ques-

ions (RQ) which are going to be answered in the following
ubsections with diverse experiments over the previous datasets.
e will show and analyze several plots to illustrate the benefits
f MO-EvoPruneDeepTL. The RQ can be stated as follows:

(RQ1) How are the approximated Pareto fronts produced by the
proposal in each of the considered datasets?
The Pareto front can be defined as the set of non-
dominated solutions, being chosen as optimal, if no ob-
jective can be improved without sacrificing at least one
other objective. The problem at hand is approximated
9

using a multi-objective approach. For that reason, we
want to check that not only we have promising solutions
in the extreme values of the Pareto front, but also to
have a wide population of diverse solutions in the whole
Pareto. As a consequence of that, to answer this RQ, we
will analyze how is the Pareto front for each dataset
and if there exists any direct connection between the
objectives of the study: accuracy, complexity of the net-
work, and robustness. In addition, a comparison to other
pruning methods from the literature will be performed
to check whether our proposal performs competitively
against such methods.

(RQ2) Is there any remarkable pruning pattern that appears in
all the solutions of the Pareto front?
We compare the pruning patterns of all the models of the
Pareto fronts of MO-EvoPruneDeepTL to show if there are
some important patterns which are key to identify the
most important zones of the input images. We employ a
well-known technique called Grad-CAM [60], which uses
the gradient of the classification score with respect to
the convolutional features of the network to check which
parts of the image are most important for the classifi-
cation task. Grad-CAM lies in the group of Explainable
Artificial Intelligence (XAI) techniques, as it produces de-
tails to make easy to understand which neurons are the
relevant ones in all the experiments [61]. These neurons
lead to specific pixels or group of them of the original
images that are passed through the network.

(RQ3) Do our models achieve an overall improvement in per-
formance when merged through ensemble modeling?
MO-EvoPruneDeepTL trains a great variety of models
which leads to a wide diversity of models in the Pareto
front for each dataset. The aim of this RQ is to check
whether the diversity of pruning patterns in the Pareto
front can be used to improve our DL models through
ensemble strategies. Our aim is to check if an ensemble
of differently pruned models can yield more accurate
predictions, leading to a better overall performance than
their compounding models in isolation. Beyond improv-
ing the accuracy through ensembles, we will also explore
whether ensemble modeling allows obtaining more ro-
bust models, so that the number of OoD samples that the
network wrongly predicts as InD is lower.

This section is divided in Section 5.1, where we analyze the
different Pareto front for each considered dataset in order to
answer RQ1. Next, in Section 5.2, we will examine the different
pruning patterns of our models. Precisely, we will look for the
neurons that appears in most of them, and we will highlight the
essential zones of the input images, as this is the key part to an-
swer RQ2. Lastly, we will discuss in Section 5.3 the benefits of the
diversity of our models when ensemble modeling is performed,
to show if an improvement in terms of accuracy and AUROC is
achieved, which the principles lines of the RQ3.

5.1. Answering RQ1: Analyzing the Pareto fronts of MO-EvoPrune
DeepTL

The objective of this section is to answer RQ1 by performing
a complete analysis of the Pareto fronts of MO-EvoPruneDeepTL
and then, performing a comparison against competitive pruning
methods of the literature. This analysis is to be performed focus-
ing on two important aspects: (i) how are the Pareto fronts for
each dataset? and (ii) how are the projections in each objective
for each dataset? MO-EvoPruneDeepTL is run for 10 times, each
yielding an estimation of the Pareto front between the three
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Fig. 3. Pareto fronts of MO-EvoPruneDeepTL. Left: CATARACT dataset. Middle: RPS dataset. Right: PAINTING dataset.
Fig. 4. Pareto fronts of MO-EvoPruneDeepTL. Left: LEAVES dataset. Middle: PLANTS dataset. Right: SRSMAS dataset.
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bjectives. Such Pareto front estimations contain solutions that
ominate – in the Pareto sense – the rest of evaluated solutions
uring the evolutionary search. The elitist nature of the algo-
ithm ensures that non-dominated solutions are retained in the
opulation. Moreover, after the 10 executions of the algorithm,
ll Pareto front estimations are merged together. Non-dominated
olutions in this merger compose a new Pareto front estimation
i.e., a super Pareto front) containing the best solutions found
cross the 10 runs of the algorithm. For simplicity, these solutions
ill be hereafter denoted as the Pareto front discovered by MO-
voPruneDeepTL. Moreover, for each Pareto front, it has been
ncluded the results for the non-pruned network for each dataset,
hich are composed of solutions with all the active neurons and
he accuracy and AUROC showed in Table 1.

With these graphics we analyze the quality of each Pareto and,
articularly, by assessing the full spectrum of solutions that can
e achieved in each of the Pareto. Moreover, we are going to
tudy whether there is a direct relationship between any of the
bjectives we have formulated in the previous sections. In order
o develop these plots, we have collected all the solutions of the
uper Pareto front (called Pareto front from now), selecting 10%
f the best solutions for each objective in order to make their
rojections.
These Pareto front are presented in Figs. 3 and 4. We can

bserve the diversity of pruning patterns produced by
O-EvoPruneDeepTL. Moreover, another insight from these Pareto

ront comes up when we inspect extreme values of each objec-
ive, as they systematically achieve good results in each dataset.
ost of the solutions obtain high values of accuracy and ro-
ustness meanwhile their remaining active neurons are kept
ow.

First, we focus on the central part of the 3D projections, in
hich we visualize the three objectives. Our goal is to detect if
here exist some kind of relationship between them. We clearly
ee that the projection in all the Pareto front takes values to the
10
upper corner in which the three objectives present low values
of percentage of active neurons, but high accuracy and AUROC.
Moreover, this distribution of the points in both group of figures
indicate that there is a tendency of the solutions to that plane in
which the number of active neurons is low.

Analyzing the two-dimensional planes, there is not a clear
relation between the performance and robustness. Nonetheless,
the common point of this projection, namely, the complexity of
the network, sheds light to the fact that it can be related with the
performance and robustness separately. In both cases, a minimum
number of active neurons is needed in order to start achieving
good results in each objective. For both objectives, there is a
certain range of optimal number of active neurons in which each
of them obtains their best values.

The last experiment of this section addresses the performance
comparison between MO-EvoPruneDeepTL and other competi-
tive pruning methods from the related literature. In this work,
we compare MO-EvoPruneDeepTL to the following two meth-
ods considered to be competitive counterparts for benchmarks
between pruning proposals [62] :

• weight [41]: The parameters with lower values are pruned
at once. This method operates over the whole parameter set
in the layer to be optimized.
• neuron [42]: The neurons with lower mean input connec-

tion values are pruned.

Both pruning methods require a parameter that controls their
xecution, which is the target percentage of remaining neurons.
his percentage represents the active weights remaining in the
etwork that each of these methods reaches at the end of its
xecution. For a fair comparison, we force these methods to target
he same percentage of remaining weights as in the solutions
f the Pareto front estimated by MO-EvoPruneDeepTL. We note
hat the Pareto front estimation contains the non-dominated
olutions found in the 10 runs of the algorithm. In this case,
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Table 4
Comparison of MO-EvoPruneDeepTL against competitive pruning methods of the
literature in terms of accuracy given a fixed value of target percentage of pruning
weights.
Dataset Percentage of weight neuron MO-EvoPruneDeepTL

remaining weights

CATARACT 3.3% 0.380 0.248 0.694
0.09% 0.182 0.165 0.504

LEAVES 10.80% 0.637 0.700 0.906
2.90% 0.462 0.450 0.515

PAINTING 15.5% 0.747 0.524 0.935
0.09% 0.333 0.107 0.429

PLANTS 11.1% 0.212 0.072 0.373
0.25% 0.043 0.034 0.106

RPS 5.0% 0.943 0.900 0.894
0.24% 0.943 0.333 0.484

SRSMAS 8.79% 0.454 0.408 0.782
0.10% 0.161 0.079 0.145

we have ordered the solutions in terms of complexity (second
objective), which yields a distribution of ordered solutions, from
least to most active weights. Based on this sorted list of solutions,
we have chosen those with the median and the lowest values
of the percentage of the remaining active weights (complexity
of the network) to assess how MO-EvoPruneDeepTL behaves in
these representative cases. Once we annotate these percentages,
the pruning methods prune the fully-connected network until
reaching such annotated values, giving rise to the accuracy values
shown in the columns of this table.

Table 4 shows the results of the comparison between MO-
voPruneDeepTL and the pruning methods. The second column
ndicates the target percentage of remaining weights correspond-
ng to each dataset. The third, fourth, and fifth columns re-
ort the accuracy of weight pruning, neuron pruning, and MO-
voPruneDeepTL, respectively. In addition, each dataset spans
wo rows in the table: the first row shows the median percentage
f active weights and the accuracy of each of the proposals for
hat case, whereas the second row represents the case with the
owest percentage of active weights and their respective levels of
ccuracy for each approach.
Results in the above table evince that MO-EvoPruneDeepTL

utperforms these pruning methods in most of the datasets.
here are four datasets in which, without any doubt,
O-EvoPruneDeepTL achieves a better performance than pruning
ethods. For the SRSMAS dataset, weight is slightly better than
O-EvoPruneDeepTL in the case of the lowest percentage of
ctive weights. This difference might be enough to state that
RSMAS performs better than MO-EvoPruneDeepTL. Nonetheless,
he median case shows that, when a minimal number of neu-
ons/weights are active, our proposal outperforms weight in this
ataset.
A special case is noted in the results for the RPS dataset,

hich is the easiest one in terms of modeling difficulty. Results
xpose this fact because, when the approach is to eliminate a
hole group of connections represented by the neurons, MO-
voPruneDeepTL achieves a better performance in both cases.
n fact, the greater the number of neurons/connections to be
ctive is, the better both models will perform. However, if the
trategy is to eliminate single connections as implemented by
he weight strategy, it does not imply removing the whole set of
onnections of the neuron. In this case, this method may perform
etter than MO-EvoPruneDeepTL. The fact that RPS is the simplest
ataset is reflected in the fact that the same accuracy value can be
chieved by several desired pruning configurations. Based on this
bservation, it can be concluded that removing connections is a
11
valid pruning method especially when complemented with other
techniques such as evolutionary algorithms. In this case, there is
potential for improvement in extreme, intermediate or general
cases, as shown in the Pareto front estimations reported in these
results.

Results attained by MO-EvoPruneDeepTL at the median per-
centage of pruning neurons are remarkable, since it corresponds
to the center of the distribution of complexity values in the Pareto
front estimated by the technique. In detail, all cases report a
minimum of approximately 70% of pruned weights in the worst
case. In the best case, almost the entire network is pruned, which
corresponds to the lowest complexity value in the estimated
front. The higher the percentage of pruned neurons is, the more
difficult is to achieve a model with good accuracy levels, since a
minimal amount of neurons/weights is needed to achieve them.
This is exposed in most considered cases, in which the median
value achieves a better performance. Taking a closer look at
the case with lowest percentage of remaining weights, which
can be deemed a more complex case, the performance of the
models degrades, which is one of the lessons learned from the
inspection of the Pareto fronts made in this section. However,
MO-EvoPruneDeepTL is able to outperform the rest of pruning
methods with models that do not surpass 3% of active neurons,
except in the case of SRSMAS, whose performance is practically
the same.

The Pareto fronts shown in this section have allowed us to
obtain valuable information on the different executions of MO-
EvoPruneDeepTL. The configuration of MO-EvoPruneDeepTL has
allowed us to obtain a fairly diverse set of solutions, with com-
petitive solutions at the extreme values of the different objectives
of the study. A second conclusion drawn from this analysis is the
existence of relationship or direct Pareto both the complexity of
the network and its performance and the complexity and robust-
ness, but it does not appear to exist between the performance
and the robustness. Finally, a third conclusion has been drawn
from the comparison against other pruning methods: in general,
MO-EvoPruneDeepTL is able to outperform such methods for both
intermediate and extreme pruning values, whereas a minimum
percentage of neurons is required to produce high-quality pruned
models.

5.2. Answering RQ2: Remarkable pruning patterns in the Pareto
fronts of MO-EvoPruneDeepTL

This RQ aims to analyze if there are certain pruning pat-
terns, along the different trained networks, that allows detecting
important regions in the input images to the pruned networks.

In order to answer this RQ, we must discriminate relevant
neurons that appear in most of the pruning patterns in the Pareto
fronts produced by MO-EvoPruneDeepTL. In doing so, we resort
to a XAI technique called GradCAM [60], which permits to localize
the regions within the image that are responsible for a class
prediction. Thanks to GradCAM, we can go backwards from the
neurons of the solutions and highlight these key pixel regions.
For each dataset, we depict several query images, and remark the
10 most relevant neurons as per GradCAM and their distribution
among the three objectives. In the following figures, the central
sections are relevance heatmaps obtained by GradCAM, remark-
ing the most influential zones of the input images as warmer
colors. In addition to the heatmap, we also present two more
plots. The first one, in the left top, show as a bar diagram the
index of the 10 most relevant neurons which appear as active
in most of the solutions of the Pareto front, with their relative
frequency. The second one, at the right, shows the distribution
of the objective’s values for these representative neurons. In this
chart, a boxplot is shown for each objective and neuron: from
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Fig. 5. Bars, boxplots and heatmaps of CATARACT.
eft to right, accuracy, percentage of active neurons and AUROC,
espectively. The border of the heatmaps and the color of the
ars in the figures are related, so that the reader can match
ach heatmap to the corresponding neuron and frequency of
ppearance in the Pareto.
Fig. 5 shows the previous information for the CATARACT

ataset. In the first one, the barplot, we can see that the least
mportant neuron achieves a 60% of frequency in the Pareto front,
.e., it appears in the 60% of solutions meanwhile the best one
as a frequency rate of more than the 80%. The second figure,
he boxplot, shows the distribution of the objectives for solutions
hich have these relevant neurons. These results show that low
omplexity is presented in these neurons and high accuracy and
12
AUROC. Lastly, we see the heatmaps for this dataset. For the
shown images, we can see how these pruning patterns that MO-
EvoPruneDeepTL achieves during its evolutionary process. These
patterns let us recognize how the network dictate the class for
each image thanks to these ten most important neurons.

The next figure, Fig. 6 shows the results for the RPS dataset.
The bar graph shows that these neurons achieve an appearance
in more than the 80% of solutions of the Pareto and the boxplot
confirm that the solutions in which these neurons are presented
achieve, in most cases, less than 10% of active neurons, accuracies
near 90% and AUROC around an 80%. The examples images shown
in the heatmaps present the effect of these important neurons. As
we have previously noted, the keys to recognize the images are
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Fig. 6. Bars, boxplots and heatmaps of RPS.
osition of the fingers and even the separation among them, as
armer color are presented for them.
The next dataset is PAINTING. Fig. 7 shows the set of graphics

or this dataset. The relevant neurons for PAINTING achieve a
inimum percentage of appearance of 70% among all the solu-

ions in the Pareto front. There is a significant difference between
he first relevant neuron and the rest in terms of appearance.
hese solutions present almost a 20% of active neurons, but also
igh performance both in accuracy and AUROC, between 90 and
00%. This indicates the great level of uniformity in the robust-
ess for this dataset. These neurons help us to analyze the images
13
of this dataset. The third image presents a woman and, taking a
deep look into the heatmaps, we see that the network recognizes
the face, and then the outer parts, like the arms and the hair.
Another interesting image is the fifth one. Our network is able
to recognize the chest and also the arms and the rest of the body
extremities.

We continue our analysis of the obtained pruning patterns of
MO-EvoPruneDeepTL with the PLANTS dataset, shown in Fig. 8.
The most important neurons have an appearance rate between 60
and 80% in all the solutions of the Pareto front. Their distribution
of objective report us a very low complexity of the network, near
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Fig. 7. Bars, boxplots and heatmaps of PAINTING.
he 10% in average, with a good result for this dataset both in
ccuracy and AUROC. This dataset contains images of leaves and
lants of fruit and vegetables and, for that reason, our network
ocus in the recognition of the shape of these leaves, as it is shown
n the three bottom images of the figure.

We continue with this analysis with the LEAVES dataset. In
his case, Fig. 9 shows the three graphics for this dataset. The first
ne, which is related with the relevance of the neurons, exhibit
wo neurons which appear in all the solutions of the Pareto front
nd another two which present almost a 100% of appearance. For
hose neurons, the boxplot chart report us similar distributions
ecause, in all the cases, the remaining active neurons are kept
ow and the accuracy and AUROC are high. Lastly, the images from
14
this dataset show both diseased and healthy leaves. The achieved
pruning patterns of MO-EvoPruneDeepTL are able to distinguish
the healthy from the diseased leaves (last image versus the third
one starting from the top), and then the type of the disease.

The last dataset is SRSMAS, whose charts are presented in
Fig. 10. The most relevant neurons obtain a minimum of 60% of
appearance in all the solutions of the Pareto front, which has been
a constant factor in all the datasets. Moreover, the distribution
of the objectives for the solutions, in which these neurons are
active, shares a common line: high values both performance and
robustness and low complexity of the network. These neurons
draw pruning patterns that identify the class for the input im-
ages. As an example, in the fourth image it is only necessary to



J. Poyatos, D. Molina, A. Martínez-Seras et al. Applied Soft Computing 147 (2023) 110757

r
n
r

d
a
e
M
u
r

m
t

Fig. 8. Bars, boxplots and heatmaps of PLANTS.
ecognize the silhouette of the coral reef, but in the fifth one, the
etwork needs to understand how is the central part of the coral
eef and then its extremities.

In these figures, we have seen several datasets in which the
ifference rate between the most important neurons is close (RPS
nd PLANTS), but there are other datasets in which this differ-
nce is up to 20% between the most and least relevant neurons.
oreover, the distribution of the objectives for each dataset gives
s good insights about the uniformity of the performance and
obustness in most of the datasets.

The good work done by MO-EvoPruneDeepTL in training the
odels has made possible to achieve remarkable pruning pat-

erns. These have helped us to decipher not only those neurons
15
that have been key in the whole training and inference process,
but also to locate in the input images those groups of influential
pixels which have been important to decide the class of each of
these images.

5.3. Answering RQ3: Quality of the models through ensemble mod-
eling

This subsection is devised to formally answer to RQ3, which is
to show if the ensemble modeling is able to improve the quality of
the trained models by MO-EvoPruneDeepTL. An elementary key
in this regard is model diversity, understood as the ability to gen-
erate and train models from a given dataset that are different to
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Fig. 9. Bars, boxplots and heatmaps of LEAVES.
ach other and that model differently the distribution underlying
he dataset at hand. If MO-EvoPruneDeepTL is found to be capable
f generating models in this way (as a byproduct of its multi-
bjective search), then an ensemble of such models can give rise
o an improved performance and reduced risk of overfitting. For
ll of these reasons, ensemble modeling can achieve an improve-
ent in terms of either accuracy and/or robustness with respect

o the individual pruned models comprised in the Pareto front
stimated by MO-EvoPruneDeepTL.
Having established the motivation for ensemble modeling, we

ill now describe its implementation. We depart from the two
bjectives to be maximized, namely, accuracy and robustness. The
16
proposed ensemble strategy consists of collecting the models in
the estimated Pareto front (containing the best solutions from the
different runs performed) that fall within a statistical range of
accuracy or AUROC (the robustness measure). Thus, the ensemble
will fuse together those pruned models that fall within two given
percentiles of the distribution of these metrics over the Pareto
front of the three objectives. From these assembled models, their
predictions for a given query are merged into one (by simple
majority voting), and compared to the prediction of the best
individual model in the ensemble.

The analysis of the ensemble behavior is done based on dif-
ferent percentile ranges of each of the accuracy and AUROC
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Fig. 10. Bars, boxplots and heatmaps of SRSMAS.
istributions, providing more precise information for each of
hese metrics. Next, we explain how such percentile ranges are
hosen. We start with a first range (percentiles (50%, 60%)), and
e increase the extremes of the interval by 5% in each iter-
tion, giving us 8 quartile intervals for both metrics. Models
n the Pareto front whose objective values fall within each of
hese percentile ranges are included in the ensemble. For ex-
mple, the interval (75%, 85%) will contain those models in the
stimated Pareto front whose accuracy objective is within this
ange given the distribution of the accuracy objective computed
ver the whole Pareto front estimation (a similar example can
e given for the AUROC score). These percentiles are defined
17
as (Qmin,Qmax), where Qmin = 50%, 55%, . . . , 85%, and Qmax =

60%, 65%, . . . , 95%. With this division, we have the following
intervals (50%, 60%), (55%, 65%), . . . , (85%, 95%).

In this study, we have selected the CATARACT, PAINTING and
RPS datasets for the experimental tests performed to examine the
behavior of ensemble modeling. Two different plots are depicted
for each dataset, one for each metric (accuracy and AUROC). In
each of these plots, three symbols appear in the form of a rect-
angle, a square and a star. The rectangle shows the distribution
of accuracy/AUROC values for the models in the percentile range
at hand. The square symbolizes the best result for that measure.
Lastly, the star indicates the accuracy/AUROC of the ensemble.
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Fig. 11. Ensemble modeling of the models trained by MO-EvoPruneDeepTL in terms of accuracy. Left: CATARACT dataset. Middle: RPS dataset. Right: PAINTING
dataset.
With this explanation, we can interpret the two graphs that result
from making the ensemble. The first one is related to the accuracy
of the network. Fig. 11 shows this graph. It presents three graphs
sorted alphabetically by dataset. The first one corresponds to
CATARACT, the second to RPS and the third to PAINTING. Each
of them shows, for each interval of quantile the distribution of
individual accuracies, the maximum of the distribution and the
accuracy of the ensemble.

The overall performance in the three cases is positive since
the diversity of the models allows us to find new models that
improve the accuracy for each quantile interval, except in the case
of RPS where we only have one model in the interval (60%, 70%).
In the RPS case, we have models near the 90% of accuracy and
the ensemble produces a new model with almost 96% of it, which
is a great result. Moreover, models with higher accuracy (96% or
more) achieve close to 100% of accuracy. For RPS (the chart of
the right), most of the ensemble models get a 95% of accuracy,
meanwhile their individual models are present a lower value
in accuracy. As a result, these charts show the benefits of the
ensemble modeling for the accuracy objective.

The second part of this section consists of replicating the
previous experiment, but for the case of OoD detection in order
to check if the AUROC improves when ensemble modeling occurs.
In such a case, we will be able to confirm that the new model
detects less OoD sample as InD, which makes an improvement in
the associated metric.

The interpretation of the set of charts is the same as in the
previous case. We have made the ensemble with the models for
each interval. The same characteristics are presented in Fig. 12.
It is shown the distribution of individual AUROC values, its max-
imum and then, marked with a star, the AUROC of the ensemble.
The CATARACT case shows an improvement in the AUROC in
all the cases but one. For the RPS case (middle chart), the case
of (85%, 95%) achieves almost a 95% of AUROC, meanwhile the
individual values get a maximum of 87%. The PAINTING dataset
also presents outstanding results. Its minimum AUROC for all the
intervals of the ensemble is more than 98.5% and the least value
is of individual models is less than 97%. The results obtained from
the graph are similar to those obtained for the case of accuracy,
since they improve on the individual results in the vast majority
of the intervals.
18
In this section, we have conducted two experiments which
involve the ensemble modeling of the trained models by MO-
EvoPruneDeepTL. The ensemble has been done taking into ac-
count the performance of the network and the robustness and
we have given the liberty to choose the interval of values for each
measure. The results drawn from these graphics show that both
of the objectives have been improved. Performing a MO search
not only provides the user with a wide range of models that
balance between the three stated objectives, but it also achieves
more diversity among the models in order to ensemble them and
achieve even higher performance and robustness.

6. Conclusions

This paper has introduced MO-EvoPruneDeepTL, a MONAS
model that evolves sparse layers of a DL model which has been
instantiated using the TL paradigm. MO-EvoPruneDeepTL uses
a MOEA, which evolves these sparse layers, in order to obtain
adapted, pruned layers to the problem at hand and making de-
cisions about the neurons that need to be active or inactive.

MO-EvoPruneDeepTL is a model that evolves the extracted
features from the pre-trained network in order to train the last
layers to tackle the considered problem. Our results draw two
conclusions from the Pareto fronts: there exists a great diversity
in the solutions and they also establish promising values for the
objectives in their extremes values. Moreover, the projections for
each objective shed light on the existence of a direct relationships
between the complexity of the network and each of the other
two objectives (performance and robustness), whereas there is no
direct relationship between the latter two. This work falls within
the umbrella of OWL because the evolved models are asked about
new data, which is the OoD datasets. Moreover, OWL is related
with GPAI and, particularly, in this manuscript, the experiments
have shown the capability of AI generating AI as the MOEA has
learnt from the trained DL models.

The trained models of MO-EvoPruneDeepTL lead to several
pruning patterns in which there exist neurons that appear in most
of the best solutions of the Pareto front. These patterns help us
to recognize the key group of regions of the input images that
our models consider the most important ones when assigning the
class to the input image at inference time.
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Fig. 12. Ensemble modeling of the models trained by MO-EvoPruneDeepTL in terms of OoD detection. Left: CATARACT dataset. Middle: RPS dataset. Right: PAINTING
ataset.
The diversity of the models of MO-EvoPruneDeepTL has shown
hat ensemble modeling is able to increase the overall perfor-
ance, both in performance of the network and robustness, in
ost of the quantiles for minimum and maximum considered
bjective values.
The evolved trained models have shown a great performance

ith a minimum number of active neurons, but it is also shown
he great contribution of the robustness for these models, as each
L model is tested with data that it has not previously seen.
oreover, the objectives of the MOEA have been the perfor-
ance, complexity and robustness, but other alternatives can be

ormulated as objectives such as the latency or energy used of
he GPU in the inference of the pruned model or the epistemic
ncertainty level.
An ablation study is also in our agenda for future research,

iming to discern which algorithmic steps are more relevant for
he search convergence of the solver when tackling the multi-
bjective problem at hand. We envision that the results of this
blation study can illuminate the design of new operators and
ore effective search strategies than the ones utilized in this
ork. Moreover, we will investigate the influence of different
obustness measures on the Pareto front estimations produced by
O-EvoPruneDeepTL.
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