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Abstract. This contribution presents a new memetic algorithm for con-
tinuous optimization problems, which is specially designed for applying
intense local search methods. These local search methods make use of
explicit strategy parameters to guide the search, and adapt these param-
eters with the purpose of producing more effective solutions. They may
achieve accurate results, at the cost of requiring high intensity, making
more difficult their application into a memetic algorithm. Our memetic
algorithm approach assigns to each individual a local search intensity
that depends on its features, by chaining different local search applica-
tions. With this technique of search chains, at each stage the local search
operator may continue the operation of a previous invocation, starting
from the final configuration reached by this one. The proposed memetic
algorithm integrates the CMA-ES algorithm as their local search opera-
tor. We compare our proposal with other memetic algorithms and evolu-
tionary algorithms for continuous optimization, showing that it presents
a clear superiority over the compared algorithms.

1 Introduction

It is now well established that hybridisation of evolutionary algorithms (EAs)
with other techniques can greatly improve the efficiency of search [1,2]. EAs
that have been hybridised with local search techniques are often called memetic
algorithms (MAs) [3,4,5]. One commonly used formulation of MAs improvement
the new member of the population using a local search (LS) method, with the
aim of exploiting the best search regions gathered during the global sampling
done by the EA. That allow to design MAs for continuous optimisation (MACOs)
that obtain very accuracy solutions in these type of problems [6].

For function optimization problems in continuous search spaces, an important
difficulty must be addressed: solutions of high precision must be obtained by
the solvers. MAs comprising efficient local improvement processes on continuous
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domains (continuous LS methods) have been presented to deal with this problem
[6]. In this paper, they will be named MACOs (MAs for continuous optimization
problems).

Most well-known continuous LS algorithms make use of explicit strategy pa-
rameters (e.g., step sizes) to guide the search. Generally, they adapt these param-
eters with the purpose of increasing the likelihood of producing more effective
solutions. Because of their explicit parameter adaptation, these algorithms may
require a substantial number of evaluations to achieve adequate styles of traver-
sal of solution space to follow certain paths leading to precise final solutions.
We call these local search intense local search methods. For this behaviour, the
usual hybridization model is not adequate enough to these intense continuous LS
algorithms, because the total function evaluations invested by the LS operator
may become too high, hindering to obtain profitable synergetic effects between
the EA and the LS algorithm.

In this contribution, we present a MACO model specially designed to incor-
porate intense continuous LS methods as LS operators. Our proposal applies the
local search with an adaptive intensity, exploiting with higher intensity the most
promising individuals. To adapt the LS intensity, our proposal can apply the
LS operator several times over the same individual, using a fixed LS intensity,
creating LS chains.

With this technique of LS chains, an individual resulting from a LS invocation
can later become the initial point of a subsequent LS application, using the final
strategy parameter values achieved by the former as its initial ones. In this way,
the continuous LS method may adaptively fit its strategy parameters to the
particular features of these zones. In our study, we use CMA-ES [7] as intense
continuous LS algorithm, which stands out as an excellent local searcher.

This contribution is set up as follows. In Section 2, we present different aspects
of intense local search and it is described the CMA-ES algorithm. In Section 3,
we present the concept of LS chain and how it can be applied to improve the
integration with intense continuous local searches. In Section 4, we present an
experimental study to compare our proposal with other algorithms proposed in
the literature. Finally, in Section 5, we provide the main conclusions of this work.

2 Intense Continuous Local Search Algorithms and
CMA-ES

In his pioneer work on MACOs, Hart [6] demonstrated that the choice of contin-
uous LS algorithm affects the performance of MACOs significantly on a variety
of benchmark problems with diverse properties.

Most well-known continuous LS algorithms make use of explicit strategy pa-
rameters (e.g., step sizes) to guide the search. Generally, they adapt their pa-
rameters, in such a way that the moves being made may be of varying sizes,
depending on the success of previous steps, with the purpose of increasing the
likelihood of producing more effective solutions. Due to their explicit parameter
adaptation, these continuous LS algorithms may require high LS intensity values
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to adapt their strategy parameters to the local topography of the search areas
being refined. They are called intense continuous LS algorithms.

The integration of intense continuous LS algorithms into MACOs arises as a
research area particularly attractive, because, nowadays, there are advanced in-
tense continuous LS algorithms that stand out as formidable local searchers. The
covariance matrix adaptation evolution strategy (CMA-ES) [7,8] is one of them.
CMA-ES was originally introduced to improve the LS performance of evolution
strategies. Even though CMA-ES even reveals competitive global search perfor-
mances [9], it has exhibited effective abilities for the local tuning of solutions. At
the 2005 Congress of Evolutionary Computation, a multi-start LS metaheuristics
using these method, called L-CMA-ES [10], was one of the winners of the real-
parameter optimization competition [11,12]. Thus, investigating the behaviour
of CMA-ES as LS component for MACOs deserves much attention.

In CMA-ES, not only is the step size of the mutation operator adjusted at
each generation, but so too is the step direction in the multidimensional problem
space, by a covariance matrix whose elements are updated as the search proceeds.
In this work, we use the (μW , λ) CMA-ES model. For every generation, this al-
gorithm generates a population of λ offspring by sampling a multivariate normal
distribution:

xi ∼ N
(
m, σ2C

)
= m + σNi(0, C) for i = 1, · · · , λ,

Where the mean vector m represents the favourite solution at present, the so-
called step-size σ controls the step length, and the covariance matrix C determines
the shape of the distribution ellipsoid. Then, the μ best offspring are used to recal-
culate the mean vector, σ and m and the covariance matrix C, following equations
that may be found in [7] and [9]. The default strategy parameters are given in [9].
Only the initial m and σ parameters have to be set depending on the problem.

It can be interpreted any evolution strategy that uses intermediate recombi-
nation as a LS strategy [7]. Thus, since CMA-ES is extremely good at detecting
and exploiting local structure, it turns out to be a particularly reliable and
highly competitive EA for local optimization [10]. Also, it can be described as
an intense continuous LS algorithm, because, as noted by Auger, Schoenauer
and Vanhaecke [13]: “CMA-ES may require a substantial number of time steps
for the adaptation of the covariance matrix”.

3 MACOs Based on Local Search Chains

Due to the potential of the intense continuous LS algorithms, it becomes inter-
esting to build MACO models with them. These MACOs should be specifically
designed to accomplish two essential aims:

– The intense continuous LS algorithm should be provided with sufficient LS
intensity to make their correct operation possible.

– The MACO should ensure that a profitable synergy between the continuous
LS algorithm and the EA is possible.
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In this section, we propose a MACO approach conceived to attain these two
objectives. It is a steady-state MA model that employs the concept of LS chain
to adjust the LS intensity assigned to the intense continuous LS method. In
particular, our MACO handles LS chains, throughout the evolution, with the
objective of allowing the continuous LS algorithm to act more intensely in the
most promising areas represented in the EA population. In this way, the con-
tinuous LS method may adaptively fit its strategy parameters to the particular
features of these zones.

In Section 3.1, we introduce the foundations of steady-state MAs. In Section
3.2, we present the concept of LS chain. In Section 3.3, we propose a MACO
approach that handles LS chains with the objective of make good use of intense
continuous LS methods as LS operators. Finally, in Section 3.4, we present an
instance of our MACO model that uses CMA-ES as continuous LS operator.

3.1 Steady-State MAs

In steady-state GAs [14] usually only one or two offspring are produced in each
generation. Parents are selected to produce offspring and then a decision is made
as to which individuals in the population to select for deletion in order to make
room for the new offspring. Steady-state GAs are overlapping systems because
parents and offspring compete for survival.

Although steady-state GAs are less common than generational GAs, Land
recommended their use for the design of steady-state MAs (steady-state GAs
plus LS) because they may be more stable (as the best solutions do not get
replaced until the newly generated solutions become superior) and they allow
the results of LS to be maintained in the population. So, steady-state MAs
integrate global and local search more tightly than generational MAs [15]. This
interleaving of the global and local search phases allows the two to influence each
other.

3.2 Local Search Chains

In steady-state MAs, individuals resulting from the LS invocation may be for a
long time latter selected to be replaced. At this point, we propose to chain an
LS algorithm invocation and the next one as follows:

The final configuration reached by the former (strategy parameter val-
ues, internal variables, etc.) is used as initial configuration for the next
application.

In this way, the LS algorithm may continue under the same conditions achieved
when the LS operation was previously halted, providing an uninterrupted connec-
tion between successive LS invocations, i.e., forming a LS chain. Figure 1 shows an
example of LS chain formed by a LS algorithm with only one associated strategy
parameter, p.

Two important aspects that were taken into account for the management of
LS chains are:
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Fig. 1. Example of LS chain. px is the value for the strategy value, pi+1 is the final
parameter value reached when it started with a value of pi, and p0 is its default value

– Every time the LS algorithm is applied to refine a particular chromosome, it
is applied a fixed LS intensity, that will be called LS intensity stretch (Istr).
In this way, a LS chain formed throughout napp LS applications and started
from solution s0 will return the same solution as the application of the con-
tinuous LS algorithm to s0 employing napp · Istr fitness function evaluations.

– After the LS operation, the parameters that define the current state of the
LS processing are stored along with the reached final individual (in the
steady-state GA population). When this individual is latter selected to be
improved, the initial values for the parameters of the LS algorithm will be
directly available.

In this work, we argue that a promising approach to adapt the LS intensity
assigned to intense continuous LS algorithms is using MACOs that allow LS chain
to grow throughout the evolution depending on the quality of the search regions
being visited, with the aim of acting more intensely in the most promising areas.
In this way, the real LS intensity assigned to the continuous LS algorithm may be
adaptively determined throughout the run and depends on two crucial choices:

– The way the solutions are selected to apply the LS operator to them.
– The replacement scheme used by the steady-state GA.

The designer of the steady-state GA is responsible for the second election,
whereas the first one should be undertaken during the design of the MACO
scheme.

3.3 A MACO Model That Handles Local Search Chains

In this section, we propose a MACO model (see Figure 2) with the following
main features:

1. It is a steady-state MA model.
2. It ensures that a fixed and predetermined local/global search ratio is always

kept. With this policy, we easily stabilise this ratio, which has a strong
influence on the final MACO behaviour, avoiding an excessive exploitation.
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3. It favours the enlargement of those LS chains that are showing promising
fitness improvements in the best current search areas represented in the
steady-state GA population. In addition, it encourages the activation of in-
novative LS chains with the aim of refining unexploited zones, whenever the
current best ones may not offer profitability. The criterion to choose the in-
dividuals that should undergo LS is specifically designed to manage the LS
chains in this way (Steps 3 and 4).

1. Generate the initial population.
2. Perform the steady-state GA throughout nfrec evaluations.
3. Build the set SLS with those individuals that potentially may be refined

by LS.
4. Pick the best individual in SLS (Let’s cLS to be this individual).
5. if cLS belongs to an existing LS chain then
6. Initialise the LS operator with the LS state stored together with cLS .
7. else
8. Initialise the LS operator with the default LS state.
9. Apply the LS algorithm to cLS with an LS intensity of Istr (Let’s cr

LS to be
the resulting individual).

10. Replace cLS by cr
LS in the steady-state GA population.

11. Store the final LS state along with cr
LS .

12. If (not termination-condition) go to step 2.

Fig. 2. Pseudocode algorithm for the proposed MACO model

The proposed MACO scheme defines the following relation between the steady-
state GA and the intense continuous LS method (Step 2): every nfrec number of
evaluations of the steady-state GA, apply the continuous LS algorithm to a selected
chromosome, cLS, in the steady-state GA population. Since we assume a fixed L

G

ratio, rL/G, nfrec may be calculated using the equation nfrec = Istr
1−rL/G

rL/G
, where

nstr is the LS intensity stretch (Section 3.2). We recall that rL/G is defined as the
percentaje of evaluations spent doing local search from the total assigned to the
algorithm’s run.

The following mechanism is performed to select cLS (Steps 3 and 4):

1. Build the set of individuals in the steady-state GA population, SLS that
fulfils:
(a) They have never been optimised by the intense continuous LS algorithm,

or
(b) They previously underwent LS, obtaining a fitness function improvement

greater than δmin
LS (a parameter of our algorithm).

With this mechanism, when the steady-state GA finds a new best so far indi-
vidual, it will be refined immediately. In addition, the best performing individual
in the steady-state GA population will always undergo LS whenever the fitness
improvement obtained by a previous LS application to this individual is greater
than the δmin

LS threshold.
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3.4 Memetic Algorithm with LS Chaining and CMA-ES

In this section, we build an instance of the proposed MACO model (Figure 2),
which applies CMA-ES (Section 2) as intense continuous LS algorithm. It will
be called MA-LSCh-CMA. Next, we list the main features of this algorithm:

Steady-state GA. It is a real-coded steady-state GA [16] specifically designed
to promote high population diversity levels by means of the combination of
the BLX-α crossover operator with a high value for its associated parameter
(α = 0.5) and the negative assortative mating strategy [17], in combination with
the replacement strategy. Diversity is favoured as well by means of the BGA
mutation operator [18]. This combination of selection parents and replacement
strategy let achieve an adequate trade-off between exploration and exploitation,
th In the MA literature, keeping population diversity while using LS together
with an EA is always an issue to be addressed, either implicitly or explicitly
[19,20].

CMA-ES as Continuous LS algorithm. MA-LSCh-CMA follows the MACO
approach, presented in Section 3.3, to handle LS chains, with the objective of
tuning the intensity of CMA-ES, which is employed as intense continuous LS
algorithm (Section 2). The application of CMA-ES for refining an individual,
Ci, is carried out following the next guidelines:

– Ci becomes the initial mean of distribution (m).
– The initial σ value is half the distance of Ci to its nearest individual in

the steady-state GA population (this value allows an effective exploration
around Ci).

CMA-ES will work as local searcher consuming Istr fitness function evalu-
ations. Then, the resulting solution will be introduced in the steady-state GA
population along with the current value of the covariance matrix, the mean of
the distribution, the step-size, and the variables used to guide the adaptation of
these parameters (B, BD, D, pc and pσ). Latter, when CMA-ES is applied to this
inserted solution, these values will be recovered to proceed with a new CMA-
ES application. When CMA-ES is performed on solutions that do not belong
to an existing chain, default values, given in [9], are assumed for the remaining
strategy parameters.

Parameter setting. For the experiments, MA-LSCh-CMA applies BLX-α with
α = 0.5. The population size is 60 individuals and the probability of updating
a chromosome by mutation is 0.125. The nass parameter associated with the
negative assortative mating is set to 3. The value of the L

G ratio, rL/G, was set
to 0.5, which represents an well-balanced choice. Finally, a value of 1e-8 was
assigned to the δmin

LS threshold.
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4 Experiments

We have carried out different experiments to assess the performance of MA-
LSCh-CMA. In order to do this, in this section, we detail the test functions and
the experimental setup and statistical methods that were used for this experi-
mental study.

This section is structure as following: In Section 4.1 it is presented the test
functions applied for the experiments. In Section 4.2 there are presented the of
the experiments. In Section 4.3 analyses the influence of the LS intensity stretch
in our proposal. In Section 4.4 it is studied the convenience of the LS chaining.
In Section 4.4, we compare our proposal with other modern metaheuristics with
the L-CMA-ES and in section 4.5 with the DEahcSPX algorithms. Finally, in
Section 4.6, they are shown the numerical results (average error) obtained by
each one of the algorithms considered in this Section.

4.1 Test Functions

The test suite that we have used for different experiments consists of 20
benchmark functions chosen from the set designed for the special session on
real parameter optimisation organised in the 2005 IEEE congress on evolution-
ary computation (CEC2005). We have considered only the multimodal functions
(F6-F25) from the CEC2005 test suite; because we are particularly interested in
analysing its behaviour with complicated test functions. It is possible to consult
in [11] the complete description of the functions. Also, we have considered the
dimension 30, because we want to focus our study on the most dificult problems.

4.2 Experimental Setup and Statistical Analysis

The experiments have been done following the instructions indicated in the doc-
ument associated to the competition. The main characteristics are:

– Each algorithm is run 25 times for each test function, and the error average
of the best individual of the population is computed.

– The study has been made with dimensions D = 30.
– The maximum number of fitness evaluations that we allowed for each algo-

rithm to minimise the error was 10, 000 ·N , where N is the dimension of the
problem.

– Each run stops either when the error obtained is less than 10−8, or when the
maximal number of evaluations is achieved.

We have carried out the experimental study of MA-LSCh-CMA and the other
algorithms following these guidelines in order to make possible its comparison
with the results of all the other algorithms involved in the competition (their
results are available in the proceedings of the congress).

To analyse the results we have chosen to use non-parametric tests because it
has been proven that in this benchmark the parametric tests cannot be applied
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with security [21]. In particular, we have considered two alternative methods
based on non parametric tests to analyse the experimental results, previously
applied in comparisons of EAs [21]:

– Application of the Iman and Davenport’s test and the Holm’s method as
post-hoc procedure. The first test is used to see whether there are significant
statistical differences among the algorithms in certain group. If differences
are detected, then Holm’s test is employed to compare the best algorithm
(control algorithm) against the remaining ones.

– Utilization of the Wilcoxon matched-pairs signed-ranks test. Using this test,
the results of two algorithms may be directed compared.

In [21] these statistical tests are explained in detail.

4.3 Influence of the LS Intensity Stretch

In our first empirical study, we investigate the influence of Istr on the per-
formance of MA-LSCh-CMA. In particular, we analyse the behaviour of this
algorithm when different values for this parameter are considered (Istr = 100,
500, and 1000).

First, it is applied the Iman-Davenport tests at the 5% level, Table 1 shows
the results.

Table 1. Results of the Iman-Davenport’s test with different Istr values

Iman-Davenport value Critical value Sig. differences
1,17 2,77 No

From Table 1, we may extract an important conclusion: MA-LSCh-CMA ex-
hibits a low sensitivity degree to the value selected for Istr . We have chosen a
particular value for Istr , in order to allow the incoming study of our proposal
and the comparison with other EA models to be easily understandable.

Figure 3 shows the average rankings obtained by the MA-LSCh-CMA in-
stances with different Istr values on the test functions for the different dimen-
sions. The height of each column is proportional to the ranking, the lower a
column is, the better its associated algorithm is. In order to study these results,
we may see that Istr = 500 is the best choice, so it is the selected value.

4.4 Studying the Behaviour of the Proposed MACO Model

In this section, we have performed two different experiments, in order to inves-
tigate the behaviour of the proposed MACO model.

Comparison with a Standard MACO. First, we want to check if the LS
chain offers an improvement over a standard MACO using a CMA-ES as its
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Fig. 3. Rankings obtained by MA-LSCh-CMA instances with different Istr values

LS method, which will be denoted as S-MACO. The basic difference between
S-MACO and MA-LSCh-CMA is that the former always selects the best per-
forming individual in the steady-state GA population as the one to be improved
by CMA-ES, which starts from default values for its strategy parameters and
consumes ILS evaluations. It has been tested S-MACO with three different val-
ues for ILS were investigated: 100, 500, and 1000, obtained that 1000 is the best
value for ILS . We should point out that S-MACO fits the L

G ratio to 0.5, such
as MA-LSCh-CMA does.

So, we have compared MA-LSCh-CMA (Istr = 500) with S-MACO with ILS =
1000, using Wilcoxon’s test. Table 2 summarizes the results of this procedure,
where the values of R+ and R− (associated to MA-LSCh-CMA) of the test are
specified (the lowest ones, which correspond to the best results, are highlighted
in bold face), together with the critical values.

We clearly notice that MA-LSCh-CMA obtains better results than S-MACO
(the R− value is lower than the R+ one). But in addition, the statistical test
indicates that these improvements are statistically significant (because the R−
value is lower than the critical value).

Comparison with a Restart Local Search Algorithm In this section, we
carry out the comparison of MA-LSCh-CMA with a restart CMA-ES, called

Table 2. S-MACO versus MA-LSCh-CMA using Wilcoxon’s test (p-value = 0.05)

R+ R− Critical value Sig. differences?
(S-MACO) (MA-LSCh-CMA)

168 42 52 Yes
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Table 3. L-CMA-ES versus MA-LSCh-CMA (Wilcoxon’s test with p-value = 0.05)

R+ R− Critical value Sig. differences?
(L-CMA-ES) (MA-LSCh-CMA)

165 45 52 Yes

L-CMA-ES [10] because both algorithms invoke CMA-ES instances that specif-
ically emphasise the local refinement abilities of this algorithm. Table 3 has the
results of the comparison of these two algorithms using the Wilcoxon’s test.

MA-LSCh-CMA exhibits overall better performance than L-CMA-ES, there-
fore, the work of the proposed hybridization method outperforms the one of the
pure restart local search strategy.

4.5 Comparison with State-of-the-Art MACOs

In a recent publication, it has been presented a MACO model, called DEahcSPX
[22], that combines differential evolution with a quick continuous LS method.
DEahcSPX was compared with other MACO instances proposed in the litera-
ture, and they found that their proposal was superior to the majority of them.
Thus, we assume that DEahcSPX is currency the most outstanding representa-
tive of the state-of-the-art MACOs.

In this section, we undertake the comparative analysis among DEahcSPX
and MA-LSCh-CMA using Wilcoxon’s test. Table 4 contains the results of this
statistical test.

The results of MA-LSCh-CMA show higher quality than the ones of DEahc-
SPX. In addition, the superiority is statistically significant. Thus our proposal
has turned out to be very competitive with state-of-the-art MACOs.

Then, we may highlight that MA-LSCh-CMA arises as one of the most promi-
nent algorithm for global optimization over continuous spaces, by two important
search processes simultaneously:

– The steady-state GA induces a scattered search promoting population di-
versity.

– The proliferation of long LS chains in the best regions becomes suitable to
obtain adequate accuracy levels, letting also to search in alternative regions.

4.6 Results of Experiments

We present in this section the results of our proposal and the differents algorithms
used into the comparisons. That allow to compare them with other algorithms

Table 4. DEahcSPX versus MA-LSCh-CMA (Wilcoxon’s test with p-value = 0.05)

R+ R− Critical value Sig. differences?
(DEahcSPX) (MA-LSCh-CMA)

169,5 40,5 52 Yes
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Table 5. Average Errors by each algorithms in the benchmark applied

Test MA-LSCh S-MACO DEahcSPX
Functions CMA

F6 1.191003e+1 2.732782e+1 1.000000e-9
F7 8.871392e-4 2.067364e-3 1.163264e-3
F8 2.027016e+1 2.086726e+1 2.094711e+1
F9 7.827714e-9 8.374473e-9 1.000000e-9
F10 1.838684e+1 7.243991e+1 9.449920e+1
F11 4.350834e+0 9.017085e+0 2.921885e+1
F12 7.690185e+2 1.462644e+3 2.956616e+4
F13 2.344814e+0 2.282783e+0 2.365826e+0
F14 1.268192e+1 1.253313e+1 1.279216e+1
F15 3.080000e+2 3.160001e+2 3.506300e+2
F16 1.363134e+2 1.719942e+2 1.294508e+2
F17 1.345630e+2 1.427101e+2 2.048724e+2
F18 8.156512e+2 8.265035e+2 9.060900e+2
F19 8.163714e+2 8.237708e+2 9.061617e+2
F20 8.157765e+2 8.284801e+2 9.065054e+2
F21 5.120000e+2 5.120000e+2 5.000000e+2
F22 5.258481e+2 5.043677e+2 9.120960e+2
F23 5.341643e+2 5.341645e+2 5.341641e+2
F24 2.000000e+2 2.000000e+2 2.000000e+2
F25 2.108472e+2 2.092819e+2 2.105413e+2

using the same benchmark functions. Table 5 shows for each algorithm used its
average error with the experimental setup indicated into Section 4.2. It has been
remarked in bold type the lower average error for each function.

5 Conclusions

This work presents a new hybridization model specially designed to integrate
intense continuous LS methods that need a high intensity. In the proposal
model, the continuous LS algorithm is applied with higher intensity in the
most promising solutions. It is proposed a MACO algorithm called MA-LSCh-
CMA that employs the CMA-ES algorithm using the previous hybridization
model.

The proposed MA-LSCh-CMA has been compared, following guidelines rec-
ommended for the CEC 2005 special session on real-parameter optimization,
with other state-of-the-art EAs for continuous optimizations. Our proposal
present significant improvements other them.

Other important conclusion is that the new hybridization model opens the de-
sign of new MACOs using efficiently a category of local search methods, intense
continuous LS methods, that until now could not be easily integrated for requir-
ing a high intensity. The design of new MACOs for other intense LS algorithms
using the concept of LS chains will be studied as future work.
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