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Abstract—For years, there have been organized single ob-
jective real-parameter optimization competitions on the IEEE
Congress on Evolutionary Computation, in which the organizer
define a common experimental, the researchers carry out the
experiments with their proposals using it, and the obtained
results are compared. It is a excellent way to know which
algorithms (and ideas) can improve others, creating guidelines
to improve the field. However, in several competitions the
benchmark can change and the winners of previous benchmarks
are not always introduced into the comparisons. Due to that,
it could be not clear the improvement that new proposals offer
against proposals of previous years. In this paper, we compare
the winners in different years among them using the different
proposed benchmarks, and we analyse the results obtained by
all of them to observe whether there is an real improvement or
not by the winner proposals of these competitions through the
years.

Keywords—Continuous Optimization, Comparisons, state-of-
art.

I. INTRODUCTION

Real-parameter optimization is a research topic of great
interest nowadays in the community, due to the wide number
of real-world applications in fields that engineering that need
to be optimized. In many problems, it is usually not possible
to carry out an exhaustive search, so they are tackle with
evolutionary algorithms [5], because they are able to obtain
good results in a reasonable time, without requiring any
particular knowledge of the problems [6].

The rising interest on this type of algorithms is producing
along the years a huge number of proposals (and many more
proposals arise each year), from more classical proposals as
Genetic Algorithms (GAs), Evolutionary Strategy, Estimation
of Distribution Algorithms (EDAs) to other evolutionary
algorithms like Differential Evolution (DE), many nature-
inspired algorithms like Artificial Ant Colony (ACO), Par-
ticle Swarm Optimization (PSO), ... and hybrid algorithms
like co-evolutionary algorithms [25], or memetic algorithms
(MA) [24].

In order to compare the optimization capacities of the
different proposals, in international congresses like the IEEE
Congress on Evolutionary Computation it is became usual
to organize each year a special session on real-parameter
optimization. In many of them, organizers have presented
a competition with a specific benchmark, ranking the al-

gorithms by its results, and pointing out the algorithms
considered winners.

These competitions are very useful, because the con-
clusions obtained help researchers to know with algorithms
(and optimization ideas) seem to improve others, creating
guidelines to improve the field. We use the term ’seem’
because it is recognized that the results are related with the
benchmark and experimental conditions, and these results
could not be generalizable [19]. In the comparisons of these
competitions only participate, in the case of IEEE CEC, the
algorithms proposed (and the reference algorithms).

Unfortunately, comparing in each competition the submit-
ted proposals only give information about the current partic-
ipants in the competition. It is good when these competitions
are used to continuously improving an algorithm, but some-
times an winner algorithm (or an improved version) does not
compete anymore. In that case, that winner algorithm is not
compared against new proposals, and there is not proved that
the algorithm obtain worse results than new winner proposals
(neither in the previous benchmark or the new one).

That arise a important question: Through the years, the
winner algorithms of these competitions obtain best results
than previous ones? It is a crucial question if we want to use
these competitions as a measure of the evolution of the field.
It is commonly accepted that new published proposals should
be better than older ones, although sometimes it is not always
the case [11]. Observing the results of these IEEE CEC
competitions, researcher could guess that a winner proposal
is a competitive algorithm that improves previous winners,
at least under the same benchmark. However, there is not
always a clear improvement from one competition to another
one and, if this assumption were not true the researcher will
be wrong, and one previous winner algorithms could even
be better than new ones in these benchmarks.

In this paper, our goal is to discuss the open question,
and to observe if winner algorithms in more recent compe-
titions (based many times in previous ones) improve older
winner algorithms from previous competitions. For doing
that, we present a complete comparison among the winner
algorithms of the competition CEC’2013, CEC’2014 and
CEC’2015, and some other older algorithms as reference.
These algorithms are going to be compared using the dif-
ferent benchmarks proposed in these years. In this way, we
can compare them and observe if there has been actually
a positive evolution in the performance of the algorithms
through these years.978-1-5090-4601-0/17/$31.00 c©2017 IEEE 805



This paper is divide as follow: In Section II, we briefly
describe the algorithms chosen for the comparisons. In Sec-
tion III, we introduce describe the differences benchmarks
used in the comparisons, remarking the differences among
them. In Section IV, we describe the experimental framework
used for the comparisons. In Section V, we analyse the ob-
tained results by the different algorithms. Finally, in Section
VI, the conclusions and learned lessons are summarized.

II. PREVIOUS WINNERS IN COMPETITIONS

In this sections, we are going to briefly describe the
algorithms considered in this work.

In order to compare the considered most promising al-
gorithms in last years, we have considered the three winners
of the IEEE CEC real-parameter optimization competitions
from CEC’2013, CEC’2014 and CEC’2015, and two refer-
ence algorithms from previous competitions. We have not
taken in account the CEC’2016 competition, because in
that competition no new benchmark was proposed but the
proposals were compared with a previous one, and for each
previous considered benchmark the winners, UMOEAII [8]
and LSHADE-EpSin [4], actually improved the previous
winner, SPS-L-SHADE-EIG [12].

From CEC’2013 the winner was ICMAES-ILS[20]. The
second one was NBIPOPaCMA[21]. The third with best
results, with worse results than previous ones, is DRMA [15].

From CEC’2014, the clear winner was L-SHADE[31].
The second one was GaAPPADE [22]. The third one was
MVMO-SH[9], indicated as MVMO14 in our study to avoid
confusing it with other MVMO-SH version in following
years.

From CEC’2015, the selected winners were SPS-L-
SHADE-EIG [12] and LSHADE-ND[28]. DEsPA [3] is not
considered because it was mainly good for dimension 50,
obtaining average results for the other dimension values.
Unfortunately, the new proposed MVMO algorithm [26] gave
us several performance problems with dimension 50 in some
problems, so we had to avoid it in the comparisons. However,
because it is the third winner of its competition and the two
better algorithms are considered, its incorporation, although
interesting, it is not important to analyse the veracity of the
open question.

Also, as reference algorithms, we compare with the
winner (only the first one) of CEC’2005, I-POP-CMAES [2],
and the winner of the CEC’2011 competition for real-world
numerical optimization, GA-MPC[7].

Thus, we are going to compare ten competitive algo-
rithms, eight from competitions of CEC’2013, CEC’2014
and CEC’2015, and two more as reference algorithms (older
winner algorithms). In the following, sorted chronologically,
we are going to describe briefly these algorithms:

• IPOP-CMA-ES [2] applies the CMA-ES algorithm
[14] in a restart algorithm, and increase the popula-
tion size generated in each step for each restart.

• GAMPC [7] is a GA that uses a multiple parent
crossover, sort them by fitness and generate three

offspring, combined with an archive of best solutions
to increase diversity.

• ICMAES-ILS[20] combines the IPOP-CMA-ES al-
gorithm with an iterative local search. It applies
both algorithms over the same solution a certain
number of evaluations, and whose which best results
is applied the rest of evaluations.

• NBIPOPaCMA[21], it updates the covariance matrix
taking in account also the the worst solutions. Also,
it uses two populations that differ in the criterion
followed after each restart. One of them uses the
original criterion from IPOP-CMA-ES, and the other
applied a reduced step-size.

• DRMA [15] is a memetic algorithm that combines
GA using CMA-ES as its local search, using local
search chaining [23], and dividing the domain search
in hypercubes of same size with a decreasing size
during the run of the algorithm (to avoid a strong
dependency with the region size).

• GaAPPADE [22] divides the population into three
subpopulation, each one improved by a different
algorithm (GA, DE, and CMA-ES) the half of
evaluations. The rest of evaluations is applied to
all subpopulations the same algorithm (which have
obtained best results until then).

• MVMO14 [9] is an hybrid version of MVMO with
an additional improvement method. It performs the
search through a population of particles that are
classified in good particles or bad particles: good
particles evolves toward the current best, and the
bad ones are crossed with a multi-parent crossover
to create better particles.

• L-SHADE [31], an improving of the SHADE[30]
that combines the self-adaptive mechanism to adapt
the F and CR parameter, with a continuous reduction
of its population size during the search, to incremen-
tally reduce the diversity during the run.

• L-SHADE-ND [28] is an algorithm that iterative
chooses, in an adaptive way, to apply a L-SHADE
(with some minor changes) or a neuro-dynamic
optimization method [32].

• SPS-L-SHADE-EIG [12] modifies the L-
SHADE[31] replacing the original crossover
operator by a eigen-based crossover operator, and a
successful-parent-selecting framework [13] to select
differently the parents when there a stagnation is
detected.

III. CONSIDERED BENCHMARKS

The different IEEE CEC benchmarks for real-parameter
competitions have many common features:

• There are several functions, unimodals and multi-
modals, where more complex functions are com-
posed by other ones.

• All functions are shifted from the center of the
domain search, to avoid to favor algorithms bias to806



the center of the domain search, and the majority are
also rotated.

• The benchmark has been run with different dimen-
sion values: 10, 30 and 50. The last benchmarks also
use dimension 100, but we have considered 10, 30,
and 50 for a homogeneous comparison.

• The stopping criterion is the maximum evaluation
number, that depends in the dimension value, in-
creasing linearly with the dimensionality (for in-
stance maxEvals = 10000 ·Dim, where Dim is the
dimensionality).

The benchmarks and the experimental conditions are
described in detail in the following papers: CEC’2013 [18],
CEC’2014 [17], CEC’2015 [16]. However, in the following,
we are going to describe the main differences among them:

• The initial benchmark, CEC’2005 [29], proposed 25
functions well-known functions, all shifted against
the center of the domain search and several rotated
functions, grouping by different levels of modality: 5
unimodal functions, and 20 multimodal functions, 11
of them hybrid functions combinations of previous
ones. One of the problem with this benchmark is
that the function diversity is actually rather limited
due to the fact that more than 40% of functions
are combinations of few previous functions, so the
global results of an algorithm strongly depend on
these ones. CEC’2013 [18] was presented as an im-
prove version over CEC’2005, reducing the number
of hybrid functions to 8 functions, and increasing
the number of basic multimodal functions to 14.
In total, the diversity of functions is clearly in-
creased, with more interesting functions. Also, while
in CEC’2005 around half of functions are rotated, in
CEC’2013 they are all functions (several include also
a non-rotated version). In other issues CEC’2013 is
more simple than CEC’2005, because all functions
have the same domain search, and the same shift
optimum. To summarise, CEC’2013 increase the
difficulty by more rotation, and more diversity in
the functions to optimize.

• CEC’2014 benchmark [17] mainly differ from
CEC’2013 benchmark in the distribution of func-
tions. The original group of unimodal functions and
basic functions are rather similar (with a reduction
of 2 in each category). The main difference is the
following 14 functions: Inspired by the real-world
problems with linkables among variables, CEC’2014
propose two groups of functions: 6 hybrid func-
tions, in which the variables are randomly divided
into subcomponents (with different percentage of
membership), each subcomponent is evaluate with a
different function and the result is combined; and 8
composition functions, that combine (with weights)
results of several hybrid functions over the complete
solution. By the use of hybrid functions to create the
composition functions, they have different properties
for different variables subcomponents. At difference
that CEC’2013 benchmark, each function has its
own shift data. To summarise, CEC’2014 change

the benchmarks introducing dependencies among
group of variables in the functions, to have a more
realistic behavior. Also, this competition exclude any
surrogate technique, because in that year they have
its own competition.

• Finally, CEC’2015 learning-based optimization
benchmark [27]. This benchmark is rather similar
to previous one, with a clear reduction of functions,
from 30 functions to only 15 functions. The main
difference against previous competitions is that until
now it was mandatory to use the same parameters for
each function. In this competition, on the contrary,
participant are allowed to optimize the parameters
of their proposed (hybrid) optimization algorithm
for each problem. Thus, winners in that competition
could get very good results, but are too specific to
each problems.

IV. EXPERIMENTAL FRAMEWORK

In this section we are going to describe the experimental
framework followed into the comparison.

First, we are going to describe how the algorithms
were implemented, and tested that the implementations were
right. Then, we are going to describe the benchmarks used.
Finally, we are going to detail the process followed for the
comparisons.

A. Implementation

In order to do the comparisons with the different bench-
marks, it is needed to have an implementation of the selected
algorithms.

The majority of algorithms have been implemented in
Java, in the public repository 1, using different mathemat-
ical libraries to simplify the process. Also, to validate the
implementation not only was used several automatic tests,
but it have been checked the results obtained by our imple-
mentation with the results obtained by their authors, using
statistical tests to detect if any statistical difference between
our implementation and original code was obtained. There
was no detected any statistical difference among results
obtained by our implementations and the results obtained
by the original code. For DRMA and SPS-L-SHADE-EIG,
the original source code were used to obtain the results.

The used parameters in each case where the parameter
values used for each algorithm in its corresponding compar-
ison. In the case of CEC’2015, algorithms could optimize
their parameters for each problem, and the winner of the
competition, SPS-L-SHADE-EIG, adapt its parameters for
each dimension using a previous optimization process. This
optimization process could imply that SPS-L-SHADE-EIG
could have a worse result than expected in other benchmarks.

B. Methodology of comparisons

In this study the comparisons are carried out benchmark
by benchmark.

1github repository: https://github.com/framg/EvolutionaryAlgorithms.git807



For each benchmark the experiments are carried out for
each algorithm following the experimental conditions defined
in the corresponding benchmark, and the average value for
function and algorithm is obtained.

The methodology used to rank the algorithms is the
followed by the organizers of the competitions: First, for
each function and dimension the algorithms are sorted by
its average error. Then, the average ranking for the different
functions are calculated by each algorithm. As a conclusion,
we show the average ranking for algorithms in a table. To
visualize better which algorithms obtain best results, it is
generated another table with the final sorted position of each
algorithm (from previous table).

In these two tables, the algorithms are listed in a chrono-
logical order, to make easier to reader to observe if new
algorithms improve previous ones. Algorithms proposed in
different competitions are separated by a horizontal line. The
algorithms proposed in the same competition are sorted by
its ranking position. In each table, the best algorithms and
their results are remarked in bold.

We also have applied statistical testing. The statistical
tests are been done using the KEEL software [1], in particular
there are been used non-parametric tests like Friedman and
Hochberg, because it is proven that parametric-tests are not
adequate for these benchmarks [10]. First, the friedman
test is applied, and then it is applied, as post-hoc method,
the Holm/Hochberg. This test compares for each case the
best algorithm (reference algorithm) against the rest ones,
maintaining controlled the accumulated error. The tables
generated by KEEL are included. The first column is the
original p-value, and the other column is the adjusted p-
value got by the Hochberg method to maintain controlled the
comparison error. We have put an horizontal line dividing the
algorithms identified as statistically worse than the best one
(with a p-value of 0.05 or lower).

V. ANALYSIS OF THE ALGORITHMS BY BENCHMARK

In this section we are going to show and analyse the
ranking obtained by the selected algorithms in each one
of the benchmarks. For each benchmark we compare then
using the average ranking, and apply statistical tests to detect
significant differences among them.

In the following, we are going to analyse the results
benchmark by benchmark, and then we present several
general conclusions.

A. Results in CEC’2013 benchmark

Table I shows the average ranking for the CEC’2013
benchmark, and Table II shows the final ranking of the
algorithms.

Tables I and Table II show that the best algorithms for dif-
ferent dimension values are L-SHADE (dimension 10), and
L-SHADE-ND (dimension 30 and 50). ICMAES-ILS, the
winner of that competition maintains an average position for
all dimension values, being overcome for newer algorithms.
A part of L-SHADE and L-SHADE-ND, results from SPS-L-
SHADE-EIG show it as a robust and competitive algorithm.

TABLE I: Average Ranking for algorithms in CEC’2013
benchmark

Algorithm D10 D30 D50
IPOP-CMAES 5.52 6.18 6.23
GAMPC 8.11 8.04 7.79
ICMAES-ILS 4.71 5.04 4.95
NBIPOPaCMA 6.68 6.77 6.80
DRMA 5.12 5.30 5.64
L-SHADE 4.32 4.27 4.16
GAAPPADE 4.64 4.27 5.12
MVMO14 6.12 6.41 6.07
SPS-L-SHADE-EIG 4.52 4.70 4.34
L-SHADE-ND 5.25 4.04 3.89

TABLE II: Position of algorithms based on their average
ranking in CEC’2013 benchmark

Algorithm D10 D30 D50
IPOP-CMAES 7 7 8
GAMPC 10 10 10
ICMAES-ILS 4 5 4
NBIPOPaCMA 9 9 9
DRMA 5 6 6
L-SHADE 1 2.5 2
GAAPPADE 3 2.5 5
MVMO14 8 8 7
SPS-L-SHADE-EIG 2 4 3
L-SHADE-ND 6 1 1

GAAPPADE also obtains good results for dimension 10 and
30.

In Tables III, IV and V there are shown the statistical test
results for dimension 10, 30, and 50, respectively. For dimen-
sion 10 only are considered as statistically worse GAMPC
and NBIPOPaCMA. For dimension 30 and 50, there is a
group of algorithms: DRMA, ICMAES-ILS, GAAPPADE,
L-SHADE, and L-SHADE-ND among which there is not
detected any statistical difference.

TABLE III: Post Hoc comparison Hochberg vs L-SHADE
for D=10, CEC’2013

i Algorithm unadjusted p pHochberg

1 GAMPC 0.000003 0.000026
2 NBIPOPaCMA 0.003579 0.028636
3 MVMO14 0.02582 0.180741
4 IPOP-CMAES 0.139252 0.808197
5 L-SHADE-ND 0.251152 0.808197
6 DRMA 0.320673 0.808197
7 ICMAES-ILS 0.627319 0.808197
8 GAAPPADE 0.691197 0.808197
9 SPS-L-SHADE-EIG 0.808197 0.808197

B. Results in CEC’2014 benchmark

Table VI shows the average ranking for the CEC’2014
benchmark, and Table VII shows the final ranking of the
algorithms.808



TABLE IV: Post Hoc comparison Hochberg vs L-SHADE-
ND for D=30, CEC’2013

i Algorithm unadjusted p pHochberg

1 GAMPC 0.000001 0.000007
2 NBIPOPaCMA 0.000734 0.005874
3 MVMO14 0.003334 0.023341
4 IPOP-CMAES 0.008092 0.048552
5 DRMA 0.117149 0.585744
6 ICMAES-ILS 0.216522 0.774197
7 SPS-L-SHADE-EIG 0.414197 0.774197
8 GAAPPADE 0.774197 0.774197
9 L-SHADE 0.774197 0.774197

TABLE V: Post Hoc comparison Hochberg vs L-SHADE-
ND for D=50, CEC’2013

i Algorithm unadjusted p pHochberg

1 GAMPC 0.000002 0.000014
2 NBIPOPaCMA 0.000322 0.002574
3 IPOP-CMAES 0.003841 0.026885
4 MVMO14 0.007095 0.042571
5 DRMA 0.030564 0.152821
6 GAAPPADE 0.127829 0.511318
7 ICMAES-ILS 0.192905 0.578714
8 SPS-L-SHADE-EIG 0.581148 0.740625
9 L-SHADE 0.740625 0.740625

TABLE VI: Average Ranking for algorithms in CEC’2014
benchmark

Algorithm D10 D30 D50
IPOP-CMAES 5.62 5.48 5.18
GAMP 7.67 7.50 8.03
ICMAESILS 5.17 4.43 4.07
NBIPOPaCMA 6.88 6.35 6.02
DRMA 5.23 5.53 5.65
L-SHADE 4.18 3.93 4.27
GAAPPADE 6.18 5.82 5.53
MVMO14 5.45 7.08 7.05
SPS-L-SHADE-EIG 4.57 4.65 4.57
L-SHADE-ND 4.05 4.22 4.63

TABLE VII: Position of algorithms based on their average
ranking in CEC’2014 benchmark

Algorithm D10 D30 D50
IPOP-CMAES 7 5 5
GAMP 10 10 10
ICMAESILS 4 3 1
NBIPOPaCMA 9 8 8
DRMA 5 6 7
L-SHADE 2 1 2
GAAPPADE 8 7 6
MVMO14 6 9 9
SPS-L-SHADE-EIG 3 4 3
L-SHADE-ND 1 2 4

From Tables VI and VII it can be observed that the best
algorithms are L-SHADE, L-SHADE-ND and ICMAES-ILS.
L-SHADE, the winner of that competition is still the best
algorithm in average, but L-SHADE-ND obtains best results
for dimension 10. While L-SHADE and L-SHADE-ND are
better for dimensions 10 and 30, ICMAES-ILS get the best
results for the higher dimension, 50. SPS-L-SHADE-EIG
have also good results.

TABLE VIII: Post Hoc comparison Hochberg vs L-SHADE-
ND for D=10, CEC’2014

i Algorithm unadjusted p pHochberg

1 GAMPC 0.000004 0.000033
2 NBIPOPaCMA 0.00029 0.002317
3 GAAPPADE 0.006353 0.044473
4 IPOP-CMAES 0.045061 0.270365
5 MVMO14 0.073312 0.366558
6 DRMA 0.130096 0.459492
7 ICMAES-ILS 0.153164 0.459492
8 SPS-L-SHADE-EIG 0.508662 0.864569
9 L-SHADE 0.864569 0.864569

TABLE IX: Post Hoc comparison Hochberg vs L-SHADE
for D=30, CEC’2014

i Algorithm unadjusted p pHochberg

1 GAMPC 0.000004 0.000033
2 MVMO14 0.000056 0.000447
3 NBIPOPaCMA 0.001384 0.009687
4 SPS-L-SHADE-EIG 0.003737 0.022423
5 GAAPPADE 0.020132 0.100658
6 IPOP-CMAES 0.036675 0.115907
7 DRMA 0.038636 0.115907
8 ICMAES-ILS 0.405701 0.749119
9 L-SHADE-ND 0.749119 0.749119

TABLE X: Post Hoc comparison Hochberg vs ICMAES-ILS
for D=50, CEC’2014

i Algorithm unadjusted p pHochberg

1 GAMPC 0.000005 0.000045
2 MVMO14 0.000056 0.000447
3 NBIPOPaCMA 0.001992 0.013945
4 GAAPPADE 0.015989 0.095934
5 DRMA 0.040685 0.189574
6 IPOP-CMAES 0.047393 0.189574
7 SPS-L-SHADE-EIG 0.359267 0.717022
8 ICMAES-ILS 0.522431 0.717022
9 L-SHADE-ND 0.717022 0.717022

In Tables VIII, IX and X there are shown the statistical-
test results for dimension 10, 30, and 50, respectively.
For dimension 10, the best one is L-SHADE-ND and im-
prove significantly three algorithms: GAMP, NBIPOPaCMA,
and GAAPPADE. For dimension 30, the best one is L-
SHADE and statistically improves GAMPC, MVMO14,
NBIPOPaCMA, and SPS-L-SHADE-EIG. For dimension
50, the best one is ICMAES-ILS, that improves GAMPC,
MVMO14 and NBIPOPaCMA.809



C. Results in CEC’2015 benchmark

Table XI shows the average ranking for the CEC’2015
benchmark, and Table XII shows the final ranking of the
compared algorithms.

TABLE XI: Ranking of algorithms by its average ranking
in CEC’2015 benchmark

Algorithms D10 D30 D50
IPOP-CMAES 7.68 7.00 6.07
GAMPC 7.73 7.47 8.60
ICMAES-ILS 5.93 5.40 5.27
NBIPOPaCMA 7.67 7.20 5.93
DRMA 5.10 5.30 4.67
L-SHADE 5.17 5.23 5.23
GAAPPADE 3.00 2.60 2.93
MVMO14 5.80 7.27 7.80
SPS-L-SHADE-EIG 3.30 2.37 3.27
L-SHADE-ND 4.23 5.17 5.23

TABLE XII: Position of algorithms based on their average
ranking in CEC’2015 benchmark

Algorithm D10 D30 D50
IPOP-CMAES 9 7 8
GAMPC 10 10 10
ICMAES-ILS 7 6 6
NBIPOPaCMA 8 8 7
DRMA 4 5 3
L-SHADE 5 4 4.5
GAAPPADE 1 2 1
MVMO14 6 9 9
SPS-L-SHADE-EIG 2 1 2
L-SHADE-ND 3 3 4.5

From Tables XI and XII it can be observed that the best
algorithm is GAAPPADE, and then the following algorithms
are SPS-L-SHADE-EIG and L-SHADE-ND. More in detail,
for dimension 10 and 50 the best one was GAAPPADE,
and only for dimension 30 it was SPS-L-SHADE-EIG, the
winner of the compettion. This is remarkable, not only
because GAAPPADE is older than SPS-L-SHADE-EIG but
also because the SPS-L-SHADE-EIG parameter values were
specially optimized for the CEC’2015 benchmark, contrary
to GAAPPADE.

In Tables XIII, XIV and XV there are shown the
statistical-test results for dimension 10, 30, and 50, respec-
tively. It can be observed the clear difference among SPS-
L-SHADE-EIG and GAAPPADE in dimension 30 against
the rest algorithms. For the other dimension values, the
algorithms clearly improved by the best one is similar to
obtained with the other benchmarks.

D. General Results

Once we have detected which algorithms obtain the best
results for benchmark, we can observe also several interesting
conclusions, in no particular order:

TABLE XIII: Post Hoc comparison Hochberg vs GAAP-
PADE for D=10, CEC’2015

i Algorithm unadjusted p pHochberg

1 GAMPC 0.000019 0.000167
2 NBIPOPaCMA 0.000024 0.000194
3 IPOP-CMAES 0.000235 0.001643
4 ICMAES-ILS 0.007971 0.047825
5 MVMO14 0.011319 0.056595
6 L-SHADE 0.050016 0.172488
7 DRMA 0.057496 0.172488
8 L-SHADE-ND 0.264597 0.529194
9 SPS-L-SHADE-EIG 0.786114 0.786114

TABLE XIV: Post Hoc comparison Hochberg vs SPS-L-
SHADE-EIG for D=30, CEC’2015

i Algorithm unadjusted p pHochberg

1 GAMPC 0.000004 0.000036
2 MVMO14 0.000009 0.000075
3 NBIPOPaCMA 0.000012 0.000086
4 IPOP-CMAES 0.000028 0.000167
5 ICMAES-ILS 0.006074 0.022638
6 DRMA 0.007971 0.022638
7 L-SHADE 0.009514 0.022638
8 L-SHADE-ND 0.011319 0.022638
9 GAAPPADE 0.832842 0.832842

TABLE XV: Post Hoc comparison Hochberg vs GAAP-
PADE, CEC’2015

i Algorithm unadjusted p pHochberg

1 GAMPC 0 0.000003
2 MVMO14 0.000011 0.000086
3 IPOP-CMAES 0.004594 0.032158
4 NBIPOPaCMA 0.006656 0.039934
5 ICMAES-ILS 0.034808 0.112459
6 L-SHADE 0.037486 0.112459
7 L-SHADE-ND 0.037486 0.112459
8 DRMA 0.116914 0.233828
9 SPS-L-SHADE-EIG 0.763025 0.763025

The algorithm GAMP obtained in the majority of cases
the worse results. One possible reason is that the CEC’2011
benchmark, that consider a group of real-word problems, is
very different to the rest ones. Thus, algorithm with a good
results in that benchmark does not imply to be competitive
in the others.

L-SHADE and L-SHADE-ND are algorithms very robust,
obtaining the best results in more benchmarks.

Algorithms IPOP-CMA-ES and NBIPOPaCMA have
been clearly improved by newer proposals in all the bench-
marks, showing a clear improvement in the last ten years.
However, CMA-ES is used as component in competitive
algorithms like ICMAES-ILS, DRMA, or GAAPPADE.
ICMAES-ILS and DRMA still give competitive results, with
no statistically different among them and the best one in the
majority of cases. GAAPPADE is the algorithm with best810



results in the CEC’2015 benchmarks, being for a previous
competition.

SPS-L-SHADE-EIG obtains the best results in CEC’2015
but it is shown as a robust algorithm but not the best in the
other comparisons. Its optimization of parameters allowed it
to obtain the best results in that competitions, but not in the
other ones.

From a statistical point, there was not detected any
significant improvement among L-SHADE, SPS-L-SHADE-
EIG, L-SHADE-ND, ICMAES-ILS and DRMA in any of
the comparatives, so they could be considered rather robust
algorithms. The other algorithms were detected as statisti-
cally worse in at least one case. Thus, algorithms like IPOP-
CMAES or NBIPOPaCMA could be considered improved in
the last years.

ICMAES-ILS, winner of the CEC’2013 competition have
obtained the best results in the CEC’2014 benchmark for
dimension 10, and GAAPPADE in the CEC’2015, showing
that they are competitive algorithm that should still been
taken in account.

VI. LEARNED LESSONS AND CONCLUSIONS

Through the years, several competitions on real-
parameter optimization have been proposed. In these com-
petitions each proposal include the obtained results with a
proposed benchmark, and the organizer rank the participants
by their results. However, each year only the proposals
are considered, and the previous winners are not taking in
account, so that new winner algorithms are more competitive
(or better) is a general assumption but it is not tested.

We are compared the winner of the IEEE CEC compe-
titions on real-parameter optimization from 2013, 2014, and
2015 in these benchmarks.

We have learned that, while the results obtained by one
benchmark cannot be generalizable, comparing with different
benchmarks remark the existence of several rather robust
algorithms (like L-SHADE, L-SHADE-ND, SPS-L-SHADE-
EIG). Also, although there is a group of algorithms that
are worse significantly in the majority of cases, and there
is another one (composed by L-SHADE, L-SHADE-ND,
GAAPPADE, DRMA) among which there is not detected
significant differences with the best one. Several algorithms
like IPOP-CMAES o NBIPOPaCMA have been clearly im-
proved but there are anothers, like GAAPPADE, ICMAES-
ILS o DRMA that can be still considered rather competitive.

As learned lesssons we observe that not always the
algorithms with best results are the proposed by that bench-
mark. Thus, answering to the question: Through the years,
the winner algorithms of these competitions obtain best
results than previous ones? The results show that it is not
always true. Results from ICMAES-ILS and GAAPPADE
show that previous winner can improve new ones in new
competitions. These algorithms are unfairly ignored while
there are very competitive in modern benchmarks (no al-
gorithm significantly improve them for any benchmark or
dimension, and while ICMAES-ILS obtains the best results
in CEC’2014 benchmark in dimension 50, GAAPPADE is
the best algorithm for the CEC’2015 benchmark).

For future competitions, as a learned lesson, we encour-
age the organizers to include the winner (or winners) of
previous competitions and use them as reference algorithms
for the new competitions. In that way, it could be checked
if the new proposals improve previous ones in the new
benchmark. In several competitions it is already done, using
a previous winner as a algorithm reference, but this good
practice is not as widely adopted as it should be.
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