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a b s t r a c t 

Bio-inspired optimization (including Evolutionary Computation and Swarm Intelligence) is a growing research 
topic with many competitive bio-inspired algorithms being proposed every year. In such an active area, preparing 
a successful proposal of a new bio-inspired algorithm is not an easy task. Given the maturity of this research field, 
proposing a new optimization technique with innovative elements is no longer enough. Apart from the novelty, 
results reported by the authors should be proven to achieve a significant advance over previous outcomes from 

the state of the art. Unfortunately, not all new proposals deal with this requirement properly. Some of them fail 
to select appropriate benchmarks or reference algorithms to compare with. In other cases, the validation process 
carried out is not defined in a principled way (or is even not done at all). Consequently, the significance of the 
results presented in such studies cannot be guaranteed. In this work we review several recommendations in the 
literature and propose methodological guidelines to prepare a successful proposal, taking all these issues into 
account. We expect these guidelines to be useful not only for authors, but also for reviewers and editors along 
their assessment of new contributions to the field. 
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. Introduction 

Bio-inspired algorithms in the field of optimization is a mature re-
earch area. The number of contributions submitted to conferences and
ournals of this area increases sharply every year [1] . However, a major
raction of these proposals do not prove the goodness of new algorithms
ppropriately. It is often the case that a work presenting a new bio-
nspired algorithm raises doubts in regards to the true contribution of
he new proposal. As a result, these concerns put at risk its acceptance
y the research community or, alternatively, its capacity to assess the
rue contribution and significance of the proposed research. 

There are a number of reasons for this noted fact, ranging from low-
uality papers to works lacking originality [2] . In those cases, there
s little to do but to continue investigating toward reaching better re-
ults. On the other hand, there is a number of works whose contribu-
ion appear to be significant, but that can not be accepted for several
easons. These include, but are not limited to, experimental flaws, ques-
ionable/insufficient validation efforts, or a weak discussion of the re-
ults. Although these practices could be easily avoided, their repeated
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ccurrence makes them a crucial problem: rigorous experimental prac-
ices are needed so that the community could embrace the conclusions
rawn from a research work, eventually leading to meaningful advances
n this research field. 

Several papers can be found with suggestions about important is-
ues found in experimental benchmarks and comparison among meta-
euristics. Each of them focuses on a specific aspect, such as how to de-
ign the experiments [3] or how to select and interpret statistical tests
o assess the relative differences among algorithms [4] . However, to the
est of our knowledge, there is no prior work that deals, at the same
ime, with different relevant issues that could ultimately jeopardize the
airness assumed in the performance comparisons among techniques.

hen the goal is to discriminate which algorithm performs best among
 set of possible choices, fairness should be an unwavering principle.
his includes the design of the benchmark, the selection of performance
etrics, and the analysis and discussion of the results. Without this prin-

iple being guaranteed along the experimental workflow, conclusions
xtracted from these studies will remain in doubt. 
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The main objective of this manuscript aligns with the above remarks.
pecifically, we review the literature background and provide a set of
seful guidelines intended for researchers to avoid common mistakes
n experiments with bio-inspired meta-heuristics. Those bad practices
ould eventually generate doubts about the fairness of the comparisons
eported therein. Our methodological approach is pragmatic, mainly
imed at making it easier for new researchers entering this area to pre-
are an experimental section under high quality standards. We start our
tudy by exploring current approaches for algorithms’ analysis. We pay
pecial attention to bad practices, identified not only in this work but
lso in previous literature. All this information can be found in Section 2 .

Then, we propose 4 guidelines that authors introducing a new al-
orithmic proposal should take into account to boost their chances to
et their work embraced by the community. We provide a brief motiva-
ion for each of them in the following paragraphs, whereas Sections 3 –6
resent detailed methodological guidelines for the elaboration of suc-
essful proposals: 

• Guideline #1: Benchmarks. Sometimes the benchmark is a real-
world problem. In these cases, the benchmark gauges how the pro-
posed algorithm tackles the problem at hand. By contrast, in other
cases the proposal is compared against other reference algorithms by
using a benchmark specially designed to test their performance. In
any case, the selection of the appropriate benchmark is an important
issue, since the conclusions that can be extracted from the study de-
pend deeply on the test bed. Unfortunately, the chosen benchmarks
frequently present some features that might favor algorithms with
a particular bias. This is, of course, not desirable for the sake of
fairness in the subsequent comparisons. Thus, the results obtained
by the newly proposed solver must be analyzed by taking into ac-
count the different characteristics of the test problems covered by
the benchmark at hand. 

• Guideline #2: Validation of the results. The presentation of raw
results arranged in full-page tables is, today, not enough. A proper
validation of the results from a statistical point of view should always
be provided along with the aforementioned tables. In this sense, it
is important that not only statistical tests are used, but also that the
correct ones are applied. It is quite usual to find parametric tests
that are used without ensuring that the assumptions required for
those tests are met by the obtained results. In addition, we also rec-
ommend visualization techniques for comparative analysis. They can
summarize a significant amount of information in a condensed repre-
sentation that can be quickly grasped and interpreted by the reader.

• Guideline #3: Components analysis and parameter tuning of

the proposal. The hypotheses of the proposal must be clearly stated
at the beginning of the paper, and discussed once the results have
been validated. Moreover, the authors should conduct a thorough
analysis of the results considering, at least, the following aspects:
search phases identification (balance between exploration and ex-
ploitation), components and complexity analysis (individual analysis
of the contribution of each of the components of the overall method,
and their complexity), parameter tuning of the algorithm, and sta-
tistical comparison with state-of-the-art algorithms (as described in
Guideline # 2). 

• Guideline #4: Why is my algorithm useful? Finally, prospec-
tive contributors should clearly state why their proposed algorithm
should be considered relevant by the rest of the community. In this
guideline we discuss this issue in depth from different points of view.
We also suggest several reasons for which a new proposal poses an
advance in knowledge (i.e. it is found to be competitive against
state-of-the-art methods, it presents methodological contributions
that stimulate further research, or other reasons later elaborated). 

In order to illustrate each of the problems discussed in this contri-
ution, we will resort to different use-cases coming from our previous
xperience or especially tailored for the purposes of this study. Data
tilized for each of these exemplifying problems may vary, as not all
2 
ituations can be clearly explained with one single example. We also
rovide several case studies in Section 7 that describe the process of de-
igning and evaluating new algorithms according to the methodology
roposed herein. Each of them embraces all the methodological guide-
ines by, first, selecting a standard benchmark , a performance measure
ranking) and the reference algorithms. Then, we conduct a proper sta-
istical validation of the results compared with those of the reference
lgorithms. We also use visualization techniques to offer a more clear
iew of the results. To continue, the contribution of each component of
he new algorithm is analyzed to ensure that all of them contribute to
he results of the overall method. Each case study finishes with a discus-
ion on the usefulness of the new proposal. As can be seen, it properly
overs all the methodological guidelines proposed in this contribution. 

As a summary, the main key elements of this work are: 

1. A literature review, with an emphasis on the identification of bad
practices in the analysis of new algorithmic proposals. 

2. Four methodological guidelines to help authors achieve contribu-
tions adopted by the community. 

3. Several case studies, as described in the previous paragraph, that
simulate the process of proposing a new algorithm by following the
aforementioned four methodological guidelines. 

The remainder of this paper is organized as follows. Section 2 dis-
usses several previous useful guidelines and recommendations in the
iterature. Sections 3 through 6 present and discuss the guidelines pro-
osed in this work, whereas in Section 7 we provide several case stud-
es covering some of these guidelines. Finally, Section 8 concludes the
tudy. 

. Relevant issues for the proposal of methodological guidelines 

In any field of science, it is crucial to work under correct and unbi-
sed experimental conditions, and to conduct a rigorous and adequate
nalysis of the obtained results. However, sometimes there are small as-
ects that can lead to inadvertently biased comparisons, partially bene-
ting a certain type of algorithms over the others. 

In this section we review prior work in the literature, advising con-
tructively against issues that could generate objective doubts about the
trength of the experimental claims. Specifically, we revisit several par-
icular topics of relevance for the current study: an inadequate or incom-
lete description of an algorithm ( Section 2.1 ), the presence of bias in
he search process ( Section 2.2 ), relevant features that should be taken
nto account when selecting benchmarks ( Section 2.3 ), prior studies fo-
used on the validation of experimental results ( Section 2.4 ), and exist-
ng works on component analysis and parameters tuning ( Section 2.5 ).
opics tackled in this first background analysis have a straightforward
onnection with our methodological guidelines given in Sections 3 to 6 .

.1. Inappropriate description of the algorithm 

This is a common issue in many proposals, especially in those of more
dvanced methods. Reproducibility of scientific results should always
e required and this is not possible if some implementation details are
issing [5,6] . This includes not only a high-level description of the algo-

ithm, but also implementation details, dependencies, parameters val-
es, etc. Furthermore, if the proposal is based on a pre-existing method,
ifferences with regards to the base algorithm should be stressed. Fi-
ally, and although this is still not mandatory in most journals and con-
erences, we encourage authors to freely distribute the source code of
heir algorithms, to allow other users to better replicate their results. 

.2. Bias in the search process 

One of the most critical decisions when evaluating an algorithmic
roposal is the selection of the benchmark used to show its goodness.
nfortunately, for many papers the testbed was proposed by the same
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uthors, and is normally a combination of well-known synthetic theoret-
cal functions. Moreover, the only measure of performance is often the
enchmark proposed. The design of a good benchmark is not an easy
ask, and they can be used for benefiting newly proposed methods by
xploiting any bias in the search algorithm [7] . 

• Optima close to the center of the domain search: one of the most typ-
ical sources of bias is the tendency of some algorithms to explore
with more intensity in the surroundings of the center of the domain
search. This issue was first discussed and termed structural bias in
[8] . Many versions of Genetic Algorithms (GA), Particle Swarm Op-
timization (PSO), or Differential Evolution (DE) [9] , have exploited
this characteristic, as it has been traditionally where the optimum
of the problem under analysis was located. Those algorithms, on the
other hand, tend to exhibit a bad performance near to the bounds of
the domain search [10] . In [11] and [12] a detailed experimentation
about the structural bias in search algorithms is given. Avoiding this
kind of bias in the design of algorithms is not easy, but at least they
should not be evaluated on benchmarks favored by these biases dur-
ing exploration. One popular approach to avoid having the optimum
into the center of the domain search is shifting. 

• Sensitivity to the coordinate system: another possible source of bias
emerges when the exploration of the search domain is done mainly
by moving along the directions of the coordinate system. In this re-
gard, some algorithms have proven to be very sensitive to the co-
ordinate system [13] . Some benchmark functions are rotated to test
the invariance of the algorithms to such transformations. Ideally, the
algorithm should be invariant to these rotations, such as Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [14] ) and Black-Box
DE [13] . 

In order to compare algorithms designed to avoid these sources of
ias, several benchmarks taking into account these issues have been
roposed. This allows a fairer comparison between algorithmic propos-
ls, that can be compared on the same testbed. In particular, in real-
arameter optimization, several benchmarks have been proposed since
005 to date [15–19] . All these benchmarks try to avoid the first source
f bias by shifting the location of the global optimum. Furthermore, in
he more recent testbeds an increasing number of functions have been
otated, featuring more complex landscapes. A more detailed view of
he different benchmarks proposed and their evolution can be found in
20] . 

On a closing note in this matter, benchmarks should definitely evalu-
te the sensitiveness of the algorithms to different sources of bias as the
nes mentioned previously. However, when moving from the academic
ealm towards real-world scenarios, it is important to bear in mind that
he goal is not to find a good meta-heuristic approach, but rather to solve
 given problem efficiently. This being said, the availability of a priori
nformation on any bias of the problem to be solved should be exploited.
ndeed, if a solver exploiting a certain source of bias known to exist in
he problem, then this solver should be preferred. Actually, benchmarks
re useful to identify algorithms with a good performance on problems
ith similar sources of bias. These thoughts concur with recent work
round the exploitation of problem-specific knowledge when designing
n optimization algorithm aimed to solve it efficiently (grey-box opti-
ization, see e.g. [21] and references therein). In summary, if the ob-

ective of the study is to solve a given problem, taking advantage of
ossible sources of bias when designing the algorithm is convenient and
dvisable. 

.3. Relevant features of benchmarks 

Different properties related to the landscape of the functions com-
osing the benchmark should be addressed for a fair analysis of the
ehavior of the proposed solver(s). Among them: 

• Separability of the components: some functions can be easily
solved by optimizing each dimension individually, so it is crucial
3 
not to use only separable functions in the benchmark. This is the
case, for example, of the CEC’2008 LSGO benchmark proposed in
[22] , in which many functions are of this type. In more recent bench-
marks, especially in the field of large-scale optimization, the focus
is on evaluating the capability of the algorithms to identify exist-
ing subcomponents in the functions. If the new proposal deals with
this kind of problem, it should be tested on a benchmark that allows
evaluating this characteristic, such as e.g. the one proposed in [23] .

• Dimensionality of the problems: another important issue is the di-
mensions of the benchmark, because some algorithms are designed
to work properly only for very low-dimensional problems. As the size
of the search domain increases exponentially with the dimensional-
ity of the problem, the so-called curse of dimensionality [24] poses
a significant computational challenge. This is particularly the case
for well-known algorithms such as PSO [25] and DE [26] . Actually,
as the performance of most algorithms degrades when the dimen-
sion grows, the current trend is to develop specific algorithms for
problems with higher dimensionality. Nonetheless, it is increasingly
important to offer robust performance for a medium range of dimen-
sion values. Some benchmarks are designed to evaluate the perfor-
mance of algorithms in problems of small to moderate size [15–19] ,
whereas others aim at problems of a much larger size [22,23,27] .
These are problems of a very different nature and, normally, algo-
rithms with an outstanding performance over one type of problems
do not perform as such when applied to other types of problems.
For example, strategies such as computing the covariance matrix of
solutions as done by [14] do not scale up nicely for problems of
larger size. Furthermore, these latter problems require increased ex-
ploration abilities of the algorithm to cover a much broader search
space, which has a significant cost in terms of fitness evaluations. 

• Number of optima of the problems: There are functions that have
only one optimum, and other that have several optima called multi-
modal functions. Multi-modal functions can have several global op-
tima, with the same fitness value, and also multiple local optima,
with different (worse) fitness values. The presence of local optima
increases the difficulty of the optimization process because the al-
gorithm can be stuck in them. This is the case of algorithms with a
strong elitist behavior [28] . The difficulty increase is due to the fact
that the black-box optimization algorithms are not aware of the num-
ber of local optima, although several works have proposed methods
to estimate their number [29] . 

• High-conditioning problems: A high-conditioning or ill-
conditioning function is one in which a small change in the
variables of the solution implies a large change in its fitness value.
This means that the correct solution/answer to the problem becomes
hard to find for optimization algorithms [30,31] . 

• Noisy functions: finally, noise is another important factor that has
not been widely considered in the literature. However, this is chang-
ing recently in several recent benchmarks that also consider this is-
sue. These benchmarks, such as the BBOB [32] or the Nevergrad
[33] benchmarks, explicitly include functions with different degrees
of noise that resemble real-world scenarios in which noise can be a
very important issue. Despite this recent interest, very few studies
have hitherto dealt with noisy functions [34,35] . 

.4. Validation of the results 

Selecting competitive algorithms to be included in the comparison is
nother crucial aspect in benchmarking. In the current literature many
ifferent algorithms can be found and chosen to be reference algorithms
or a given benchmark. Unfortunately, there is no clear criterion to make
uch a selection. Although good practices usually suggest comparing
gainst the most recent state-of-the-art algorithms, it is often the case
hat authors only compare their proposal against basic or very similar
ersions of other algorithms, as was spotted in [36] . 
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1 https://github.com/ttusar/coco/ 
2 https://iohprofiler.github.io/ 
In this context, studies comparing different algorithms are scarce,
nd the results reported therein strongly depend on the problem(s).
n [37] a benchmark of classic functions was used to compare among
uckoo Search (CS), PSO, DE, and Artificial Bee Colony (ABC). The study
oncludes that the best results were obtained by CS and DE, and the
orst ones were those rendered by ABC. On the other hand, for a differ-

nt problem [38] , ABC was found to perform best, followed by DE and
SO. 

For the methodological part of the comparisons, there are far more
tudies. Statistical tests, for instance, lay at the core of prior contribu-
ions on this matter. However, such contributions are frequently writ-
en from a statistical point of view – like the one by Dem š ar [39] –
aking it difficult for researchers in this field to embrace their method-

logical recommendations. More recently, some tutorials have tried to
ring together the fields of meta-heuristics and inferential statistics [4] .
ome examples can be found in [40] , in which a statistical treatment is
uggested for distinguishing between measurements of performance in
daptive evolutionary algorithms. Another good example is [41] , which
hows that in a popular real-parameter benchmark (CEC’2005), con-
itions needed for running parametric hypothesis tests did not hold,
nd non-parametric tests were thus recommended. More recently, in
42] , some recommendations for the comparison of evolutionary algo-
ithms are provided, which can be even extrapolated to machine learn-
ng benchmarks. 

Another important issue from a methodological point of view is the
ssessment of the performance of bio-inspired algorithms from the per-
pective of the experimental design. Some studies [5] provide general
ecommendations to design experiments for the comparison of algo-
ithms in a similar way to what we do in this contribution. However,
hese recommendations are far more general as it targets a broader scope
the design of algorithms and not bio-inspired optimization methods,
pecifically). This difference in the target of the proposed guidelines
akes it miss some important issues inherent to bio-inspired optimiza-

ion methods that we cover in this contribution. Other works, although
ocused on optimization methods, are more specific in their recommen-
ations, targeting specific issues such as the selection of problems and
erformance measures [43–45] . Finally, other studies are more oriented
o the analysis and definition of experimental frameworks such as those
sed in CEC special sessions and the COCO framework [6] . While this is
lso a very relevant contribution to the field of experimental design in
he context of evolutionary algorithms, it deals with the problem from a
ifferent perspective and should be considered as a complement to the
uidelines here presented. 

.5. Components analysis and parameter tuning 

New proposals are frequently based on previously existing algo-
ithms to which certain components have been added/replaced. How-
ver, the addition/replacement of new components is not always ade-
uately justified. This is a fundamental design flaw that can contribute
o make more and more complex algorithms in which the new additions
nly report a marginal contribution to the overall performance of the
ethod. Authors should clearly discuss about the contribution of each
ew component in order for the new proposal to be considered signifi-
ant. 

Another important research topic in the design of meta-heuristic al-
orithms is the selection of the values of their parameters. Indeed, pa-
ameters can be a double-edged sword. On the one hand, they grant
exibility to control the search behavior of the algorithm. On the other
and, finding the parameter values that lead to the best search perfor-
ance is another optimization problem itself [46] . For this reason, there

s a long literature record of studies dealing with the best parameter val-
es for different meta-heuristic algorithms, such as GA [47] , PSO [48] ,
r DE [26,49] . 

The tuning of parameters can be carried out by means of different au-
omatic tuning tools. There are several consolidated tools of this nature,
4 
ith different features [50] . F-RACE [51] and I-RACE [52] are itera-
ive models, which, at every step, evaluate a set of candidate parameter
onfigurations, discarding several of them along the search. These meth-
ds remove candidates upon the result of statistical comparisons, e.g.
wo-way analysis of variance. I-RACE is an implementation of Iterative
-RACE that includes several extensions, such as a restart using nor-
al distributions. REVAC [53] , on the contrary, relies on an Estimation

f Distribution Algorithm (EDA). For each parameter, REVAC starts by
ampling an uniform distribution of values. Then, at each step it reduces
he value range of each parameter by using specially designed transfor-
ation operators, considering an entropy measure. ParamILS [54] is an

terative local search algorithm that, from a default parameter configu-
ation, applies a local search with random perturbations to improve the
onfigurations. 

. Guideline #1: Benchmarks 

The first decision that a researcher must face when preparing a new
ontribution in the field of optimization is the selection of the bench-
ark to test the newly proposed algorithm(s). Once this is done, the

uthors must identify relevant algorithms to compare the obtained re-
ults and guarantee the significance of conclusions drawn therefrom.
his first guideline deals with these two crucial aspects: the selection of
he benchmark ( Section 3.1 ), and the reference algorithm(s) to which
he proposal is compared ( Section 3.2 ). 

.1. Selection of the benchmark 

As mentioned before, this first decision is one of the most important
actors to prove the quality and performance of an algorithm. In real-
orld problems, this is not a decision at all, because the benchmark is

he problem to tackle. In contrast, when designing and improving meta-
euristic techniques, the selection of a benchmark is an important deci-
ion to take. This issue is common for all types of optimization. During
he last years, benchmarks have been proposed for several types of op-
imization (such as combinatorial and numerical optimization) with the
ain goal of becoming a standard for future comparisons. Without loss

f generality, during the following section we will focus on numerical
ptimization, yet all conclusions and recommendations given hereafter
re applicable regardless of the domain. 

In the field of numerical optimization, special sessions devoted to
enchmarking have taken place in reference events such as the IEEE
ongress on Evolutionary Computation or the Genetic and Evolutionary
omputation Conference. In these events, participants could compare
heir algorithms in a controlled environment with a homogeneous set of
unctions [20,55] . Nonetheless, the efforts towards providing standard
enchmarks and tools for the comparison of bio-inspired optimization
ethods is not limited to special sessions and competitions, as shown

elow: 

• Special Sessions and Workshops: 
• IEEE Real-Coding Special Session (since 2005) 
• Black-Box Optimization Benchmarking (BBOB) Workshops at

GECCO and PPSN (since 2009) 
• Black-Box Optimization Competition (BBComp) (since 2015) 
• IEEE Large-scale Global Optimization Special Session (since

2008) 
• Benchmarking Workshop at GECCO and PPSN (since 2020) 
• Other (more specific) special sessions: constrained, multimodal,

real-world, etc. 
• Tools: 

• Comparing Continuous Optimizers (COCO) framework 1 

• IOHProfiler 2 

https://www.github.com/ttusar/coco/
https://www.iohprofiler.github.io/
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4

• Nevergrad 3 

• TACO: Toolkit for Automatic Comparison of Optimizers 4 

• P. N. Suganthan’s CEC benchmarks 5 

• IEEE CEC LSGO Benchmark 6 

• Other initiatives: 
• Benchmarking Network 7 

• Cost Action CA15140 (ImAppNio) 8 

However, some works simply overlook these standard benchmarks
nd tools. Instead, they rather choose their own subset of functions to
valuate their proposal. This is problematic for several reasons. First, as
ollows from Section 2.2 , it is very hard to know whether there is any
ias in the selection of the functions from the point of view of the perfor-
ance of the algorithm under consideration. Secondly, many different

enchmark functions exist (or can be defined). Therefore, it becomes
ery difficult to appraise the different characteristics of all such bench-
ark functions. Finally, comparisons with other reference methods usu-

lly imply running them by the same authors of the new method, as it
s very unlikely that multiple studies would have focused on the same
elected functions or experimental conditions. As a result, assessing the
uality of a new contribution that does not use standard benchmarks
ets almost impossible to accomplish, and therefore should not be given
redit by the community. 

However, there are two special situations in which researchers have
o other option but to use ad-hoc generated problem instances: i) when
he problem to be solved has never been tackled in the previous liter-
ture, and hence no benchmark can be found; or ii) when a real-world
roblem is under consideration, with specific requirements and con-
traints. In these cases, the instance generation process must be deeply
etailed, and all the instances generated should be shared for other re-
earchers to replicate and improve upon the presented results. Further-
ore, for any of these two alternatives, practitioners should generate a

enchmark as realistic and general as possible. 
On the other hand, one should also be very careful when selecting

 benchmark for the experimentation to be carried out. Benchmarks in
he literature have been conceived with some objectives in mind, and
re appropriate to test certain characteristics of the algorithms under
valuation. A non-exhaustive list of these characteristics follows: 

• Bias avoidance of the search algorithm: In order to avoid the prob-
lems described in Section 2.2 , it is highly advisable that the optimum
is not located at the center of the domain search (e.g. by shifting).
Furthermore, rotation should be enforced to test the sensibility of
the algorithm to the coordinate system. 

• Sensitivity to the number of local optima: The number of local op-
tima of a function is another important characteristic of a test prob-
lem. Unless properly considered in the algorithmic design, search
spaces with multiple local optima may negatively affect the conver-
gence of metaheuristics towards the global optimum. In this kind of
problems, multiple local optima can act as basins of attraction, pre-
venting the algorithm from reaching the global optima if it does not
correctly balance its exploration/exploitation ratio. 

Additionally, benchmarks normally establish the experimental con-
itions under which algorithms should be evaluated. In particular, it is
ery frequent that a benchmark selects a common: 

• Measure of performance: In evolutionary algorithms it is usual
to use the mean error obtained for the different runs. However,
there are more adequate measures and indicators of performance
for dynamic optimization [56] , and multi-objective optimization
3 https://github.com/facebookresearch/nevergrad 
4 https://tacolab.org/ 
5 https://github.com/P-N-Suganthan 
6 http://www.tflsgo.org/special_sessions/cec2019.html#original-code 
7 https://sites.google.com/view/benchmarking-network/ 
8 https://imappnio.dcs.aber.ac.uk/ 
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[57] . Additionally, other performance indicators, such as running
time of memory footprint, could also provide interesting insights on
the behavior of the algorithms (especially in real-world scenarios).
Nonetheless, this should be carefully considered as those measures
might be biased depending on external factors such as the program-
ming language of choice and not the algorithm itself, which can hin-
der the comparison. 

• Stopping criterion: In order for a comparison of several algorithms
to be fair, all of them must conduct a similar effort in finding a so-
lution. This is normally achieved by establishing a common stop-
ping criterion. If this were not the case, one algorithm could be
stopping when a predefined precision is reached whereas other algo-
rithm could run until a maximum budget of fitness evaluations is ex-
hausted. The results of both algorithms are not comparable and this
is why most benchmarks define a common stopping criterion. It also
allows grasping the full picture over the performance of algorithms,
as different methods may yield different convergence rates, and the
results of the comparison might differ depending on the checkpoint
at which they are evaluated. This issue will arise and will be dis-
cussed in the use cases presented in Section 7 . 

Finally, there is another relevant characteristic from a design per-
pective that is not specifically linked to the functions themselves, but
o the algorithms that solve those functions. The algorithms use the fit-
ess function to guide the search process, but sometimes only the rank-
ng of the solutions computed from fitness values is actually used. In
his sense, some recent algorithms such as the Firefly algorithm [58] or
he Grasshopper optimization algorithm [59] use the quantitative in-
ormation provided by the fitness function to guide the search process,
hereas others propose mutation and/or selection methods [60] that
nly require to know whether one solution is better than the other. In
ome real-world scenarios, the last approach can be very beneficial as it
implifies the process of defining the fitness function. 

.2. Selection of the reference algorithms 

Another important issue, which is actually related to the previous
uideline, is the selection of the reference algorithms to include in the
omparison. On the one hand, if the proposed algorithm relies on some
ther basic algorithms, these should be included in the comparison to
heck the individual contribution of each of them, as we will discuss in
etail in Section 5 . On the second hand, once the benchmark has been
elected, the best-so-far methods for that particular benchmark should
e also considered in the comparison. Unfortunately, many papers fail
o compare their proposed algorithm against competitive counterparts
36] . 

A well-informed experimentation should, at least, include the best
lgorithms in the special session where the benchmark was originally
roposed (as it is usually the case). We refer to [20] for an updated
eview on special sessions and competitions on continuous optimization.

Finally, authors should also consider similar algorithms, not only
rom the same family (e.g., PSO, DE, GA...) but also the base algorithm,
f the proposal is an improvement over a previous algorithm, or other
imilar approaches (for example, different memetic algorithms with a
ommon local search). Our claim in this regard is to stop comparing new
ethods with classic algorithms that have been clearly outperformed by
ewer ones. Comparisons adopting this misleading strategy should be
voided for the questionable scientific contribution of their proposal. 

. Guideline #2: Validation of the results 

Just as important as a correct experimentation design (see Guideline
1) is a principled validation procedure for the benchmark. For this
urpose, we emphasize on two different tools: statistical analysis and
omparative visual analysis. Both approaches are covered in the follow-
ng two subsections: statistical analysis ( Section 4.1 ), and visualization
echniques for comparing meta-heuristics ( Section 4.2 ). 

https://www.github.com/facebookresearch/nevergrad
https://www.tacolab.org/
https://www.github.com/P-N-Suganthan
http://www.tflsgo.org/special_sessions/cec2019.html\043original-code
https://www.sites.google.com/view/benchmarking-network/
https://www.imappnio.dcs.aber.ac.uk/
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Table 1 

Recommended tests according to data characteristics. 

Conditions Equal variances Unequal variances 

Normally distributed Paired Student’s t -test Paired Welch’s t -test 
Not normally distributed Wilcoxon signed-rank test 
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.1. Statistical analysis: Non ‐parametric tests and beyond 

Statistical comparison of results should be deemed mandatory in cur-
ent benchmarks among bio-inspired algorithms. However, even if sta-
istical comparisons are made in studies reported nowadays, they are
ot always carried out properly. In inferential hypothesis testing, there
re some popular methods, such as the t -test or the ANOVA family of
ests. However, these tests are referred to as parametric tests because
hey assume a series of hypotheses on the data on which they are ap-
lied (i.e., on the parameters of the underlying distribution of the data).
f such assumptions do not hold (for example, the normality assumption
or the results), the reliability of the tests is not guaranteed, and alterna-
ive approaches should be considered. Thus, either these conditions are
hecked to be true (i.e., by using a normality test to prove the normal-
ty in the distribution), or another type of tests that do not make these
ssumptions should be used instead. This is the case of non-parametric

ests, which do not assume particular characteristics for the underlying
ata distribution. This non-parametric nature must be seen as an advan-
age over the aforementioned parametric tests (for their independence
ith respect to data) but also as a limitation (non-parametric tests are

ess powerful) imposed by the nature of the underlying data, that do not
atisfy the requirements to use the more powerful parametric methods.

As a result of this, parametric tests should be preferred whenever
hey can be safely used (i.e. whenever the hypotheses on the underlying
ata distribution are met). Unfortunately, this often fails to be the case
hen comparing the results of bio-inspired algorithms. Consequently,
on-parametric tests should be used instead [4] . A common error (less
requent in current research) is to apply parametric tests without check-
ng if the required hypotheses are satisfied. 

In the following paragraph we provide a workflow to decide which
ind of test to choose. It consists of the following steps: 

1. Check the conditions required for the application of the parametric
test of choice (normally, Student’s t -test). 
(a) Normality: Shapiro-Wilk test [61] or Kolmogorov-Smirnov.

Shapiro-Wilk should be used with smaller sample sizes [62] . 
(b) Homocedasticity (equal variances): Levene’s test [63] . 

2. If both conditions are satisfied, apply Student’s t -test [64] . 
3. If only normality can be guaranteed, then Welch’s t -test alternative

is considered [65] . 
4. If none of the assumptions on the underlying distribution holds, then

the non-parametric Wilcoxon signed-rank test is used [66] . 

nce the appropriate test has been selected, the comparison can be car-
ied out. First, the ranking of each algorithm over the whole benchmark
ust be computed, and the significance of the differences in the rank-

ng values must be tested. Friedman rank-sum test can serve for this
urpose [67] . If differences are declared to be statistically significant by
he Friedman test, then we proceed to the pairwise comparisons with
he test selected from Table 1 . In those pairwise comparisons a refer-
nce algorithm is compared against all the other methods selected for
alidation. Normally, the reference algorithm is selected to be the one
ith the best average ranking or, alternatively, the new proposal pre-

ented in the work. 
Another typical oversight noted in the literature is to neglect the ac-

umulated error. A statistical test for two samples, like the Wilcoxon’s
est, has an estimated error, but this error increases with each pair of
omparisons. Thus, when simultaneously comparing the results of our
roposal with those attained by several other algorithms, the application
6 
f Wilcoxon’s test (or others such as the t -test) is totally discouraged, be-
ause it cannot ensure that the proposal is statistically better than all the
ther reference algorithms. Thus, once the pairwise p-values have been
omputed, a correction method must be used to counteract the effect of
ultiple comparisons, by controlling either the family-wise error rate,

r the false discovery error rate [68] . Several procedures have been pro-
osed to this end, among which Bonferroni-Dunn [69] , Holm-Bonferroni
70] , Hochberg [71] and Hommel [72] are the most widely used [4] . 

Also linked to statistical validation, another recommendation is to
rovide the p-values of tests carried out in the experimentation. How-
ver, we note that p-value, as such, is not a totally objective measure,
s it is highly dependent on the sample size [73] . Section 7 presents
everal examples of comparisons that goes through the methodological
teps prescribed in this second guideline. 

Traditionally, the standard null hypothesis testing methods we just
escribed have been used for comparing the performance of different
etaheuristic algorithms. This has produced over the years a large num-

er of different post-hoc tests and graphical representations that ease the
rocess of evaluating which algorithm performs best on average, with
tatistical significance (e.g. critical distance plots). However, much criti-
ism has arisen lately in different aspects of these tests that suggest that a
tep further should be made towards alternative means to assess the sta-
istical relevance in performance comparison studies. To begin with, the
se of the so-called significance parameter (often denoted as 𝛼) clashes
ith its lack of interpretability, and does not link directly to the perfor-
ance differences observed among the counterparts in the benchmark.

urthermore, conclusions drawn from non-statistical hypothesis testing
re largely sensitive with respect to the number of samples used for
heir computation, as well as the number of algorithms and problems
ver which the study is made. The work by Benavoli et al in [74] lit a
ight on this matter, and proposed the use of Bayesian analysis for com-
arison analysis. The Bayesian paradigm makes statements about the
istribution of the difference between the two algorithms under com-
arison, which can be of help when the null hypothesis significance test
NHST) does not find significant differences between them. The rNPBST
ackage [75] and the jMetalPy framework [76] are useful tools to apply
hese tests. 

The use of different tests can help putting the results in context. As it
s mentioned in [77] , authors encourage the joint use of non-parametric
nd Bayesian tests in order to obtain a complete perspective of the com-
arison of the algorithms’ results: “While non-parametric tests can pro-

ide significant results when there is a difference between the compared algo-

ithms, in some circumstances these tests do not provide any valuable infor-

ation and Bayesian tests can help to elucidate the real difference between

hem ” [77] . Practitioners must consider this possibility to complement
ell-known non-parametric tests when they do not provide a full differ-

nce among algorithms. 

.2. Visualization techniques for comparative analysis 

Visualization techniques are other useful methods to report results
hen comparing several bio-inspired algorithms. The main advantage
f these approaches over reporting raw data in tables is that they can
e much easily interpreted by the reader. They have also the ability to
ummarize the information covered by one or even multiple tables. 

In Fig. 1 we provide an example of some visualizations that illustrate
he performance of several algorithms on the CEC’2013 LSGO bench-
ark. Fig. 1 (d) uses a radar chart to visualize the average ranking of

ach bio-inspired algorithm on different groups of functions. Each group
as been defined according to some common characteristics present in
any state-of-the-art benchmarks: degree of separability, modality, etc.

igs. 1 (c)- 1 (b) provide an alternative view on the same data: it does
ot depict their average behavior, but instead the number of times in
hich one algorithm obtained the best overall results for problems be-

onging to each of the previously defined categories. In Fig. 1 (c), the
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Fig. 1. Different visualizations for the comparison of the performance of several algorithms on the CEC’2013 LSGO benchmark: (a) Average ranking of algorithms 
on different types of functions; (b) Fraction of functions for which a specific algorithm obtained the best results; (c) Fraction of multimodal functions for which a 
specific algorithm obtained the best results; (d) Fraction of shifted functions for which a specific algorithm obtained the best results. 
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hole benchmark is considered, whereas Figs. 1 (a) and 1 (b) show the
esults for multimodal and shifted functions, respectively. 

Another typical visual representation is that of the convergence of
n algorithm. In this case, the variable being discussed is the conver-
ence speed of the methods involved in the comparison. An example
7 
f this kind of plot is provided in Fig. 2 . As can be seen in Fig. 2 (a),
hich depicts the convergence speed of multiple algorithms on F11 of

he CEC’2017 benchmark, although EBOwithCMAR is able to reach the
inimum error among the competing algorithms, it is not until the end
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Fig. 2. Convergence curves for several functions of the CEC’2017 
benchmark and dimension 10: (a) function 12; (b) function 28. 
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f the run that it overcomes other methods. For the majority of the time,
SO yields better results. 

With a similar visual idiom, we can represent very different data.
or instance, it could be interesting to measure the ratio of problems
olved as the number of fitness evaluations increases. These plots not
nly evince which algorithm is able to reach the optima in more prob-
ems, but also how much effort is required to accomplish it. An exam-
le of this visualization is provided in Fig. 6 , which can be found in
ection 7.1 . 

Finally, even common visual representations such as boxplots can
e very useful. In the context of bio-inspired optimization, it is a good
ay to show not only the mean error, but also the error for the different

uns. Fig. 3 provides two examples comparing the results of different
lgorithms for the case study in Section 7.1 . 

The visual idioms suitable to represent information in this kind of
omparisons are not limited to the two examples given in this section.
here are many other alternative representations that can help to gain

nsight in the results under discussion. 
What should be clear is that different idioms support different types

f analyses, and that visualization techniques should be carefully se-
 a

8 
ected in order to present the results in a summarized yet insightful
ashion. All in all, our recommendation at this point is not only to vi-
ualize the results of the comparison, but also to use these techniques
o complement and/or summarize the information provided by other
eans. 

. Guideline #3: Components analysis and parameter tuning of 

he proposal 

This third guideline could be seen as a check-list for the discussion
ection. It covers the full proposal analysis, from the statement of the hy-
otheses to be proved by the experimentation to the presentation of the
esults of the different comparisons needed to assess the contribution of
he work at hand. This section elaborates on this list by pausing at the
ollowing aspects: origin and work hypotheses that motivate the pro-
osal ( Section 5.1 ), the identification of the search phases, with claims
n them solidly informed by empirical evidences ( Section 5.2 ), the indi-
idual analysis of algorithmic components of the proposal ( Section 5.3 ),
nd parameter tuning and analysis ( Section 5.4 ). 
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Fig. 3. Box-plots for the CEC’2017 benchmark and dimension 30: (a) function 18; (b) function 26.. 
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.1. Origin, hypotheses and proposal 

Before starting to discuss about the benefits of the novel approach(es)
roposed in the work, it is necessary to have a clear perspective of the
xpected results, i.e., the work hypotheses of the present study. Further-
ore, authors should clearly describe how the proposal helps to attain

he targeted objectives. Most of the times we assume that the main con-
ribution of a work is a new algorithm or a new modification capable
f improving the state of the art in some particular benchmark (prop-
rly chosen as already discussed in Section 3.1 ). While this assumption
ften holds in practice, any other contribution to be taken into account
ust be clearly highlighted at this point for the work to be considered

elevant. We will discuss further on this issue in Section 6 . 

.2. Search phases identification 

A key issue when solving optimization problems with complex fit-
ess landscapes is to keep an appropriate balance between exploration
nd exploitation [78,79] . This is a recurrent statement in many contribu-
ions, especially when the obtained results seem to support that hypothe-
is (at least in terms of overall accuracy). However, most of these studies
ail to provide evidence on how the exploration/exploitation balance is
aintained. It is normally not enough to state that “algorithm A is better

han algorithm B because it properly maintains the exploration/exploitation

alance ”. This type of statements requires an empirical analysis to check
o which extent this claim is supported by evidence. 

The work reported in [80] analyzes this issue from a dual per-
pective. First, they inspect how different authors measure the explo-
ation/exploitation balance, to conclude that this is mainly carried out
y means of indirect measures (e.g., the diversity of the solutions). Sec-
nd, they propose a taxonomy of methods that aim to promote popula-
ion diversity. Authors eager to include an analysis of this type in their
esearch works should conduct a quantitative experimental study to jus-
ify the kind of statements that we have already mentioned. This can be
chieved either by using evolutionary operators that explicitly enhance
his balance [81–83] or by updating the algorithm or the operators to
ake into account some kind of indirect measure [84,85] . 

.3. Components analysis and simplicity/complexity 

It is common in recent literature, especially in those papers where
he proposal is evaluated on a well-known benchmark, that new pro-
osals are built upon previous existing algorithms. Those new methods
ormally i) improve previous algorithms by updating or adding new
haracteristics to their baseline search procedure; or ii) combine exist-
9 
ng methods to create a hybrid algorithm of some kind. However, few of
hese works analyze individually each of the improvements/components
f the new proposal. This is an important issue from an algorithmic de-
ign perspective. It is true that powerful algorithms are usually sought (in
erms of their ability to find solutions as close as possible to the global
ptimum). But it is not less true that simplicity should be considered
s another preferential aspect in the design of new optimization tech-
iques. Simplicity in algorithmic design has a number of advantages: 

• Simple algorithms normally have less parameters to adjust (or, at
least, less sensitive ones). 

• Their behavior is more predictable, as there are less components in-
volved. 

• They can be described and implemented more easily. 
• It is less likely that the algorithm overfits one particular benchmark.

All these reasons are important enough to pay attention to the com-
lexity of the new algorithm. For this reason, it is mandatory to provide
n in-depth analysis of the contribution of each of the components of the
ew method to its overall performance. Every change or addition on top
f the original algorithm must be supported by a significant contribu-
ion to the improved behavior of the novel method. Furthermore, if this
ontribution is shown to be small, this improvement should be consid-
red for removal in the interest of simplicity. In this sense, we encourage
he authors to use the same statistical validation methods described in
ection 4.1 to compare each of the individual components of the algo-
ithm. This is the same procedure that we recommend to compare the
roposal with other state-of-the-art algorithms (see Section 7 ). 

An illustrative example in this direction is [86] . This work analyzes
ne of the best performing algorithms of the IEEE CEC’2016 competi-
ion on real-parameter single objective optimization, namely, L-SHADE-
pSin [87] . One of the conclusions of this analysis is that only one of
he multiple additions to the base L-SHADE algorithm provides some
ignificant improvement in the results (the initialization of the F param-
ter to 0.5 during the first half of the search). The other modifications
materialized through the inclusion of several local search strategies)
ere found no significantly better. Moreover, they favored a bias in the

earch towards solutions around the origin of the search space, as also
uttressed by [86] . This means that, even for competitive algorithms,
he contribution of each component should be carefully evaluated. This
s so, since a simplified version of the algorithm will always be easier to
aintain, and can even lead to better results. 

A second example aligned with our recommendations at this point
merges from the results of the MOS-SOCO2011 algorithm presented in
79] . By virtue of the Multiple Offspring Sampling (MOS) framework,
his optimization technique combines two well-known algorithms: DE
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Table 2 

Results for MOS-SOCO2011, DE and MTS-LS1 over different 
1000-D functions [79] . 

Benchmark function MOS-SOCO2011 DE MTS-LS1 

Sphere 0.00e + 00 3.71e + 01 1.15e-11 
Schwefel 2.21 4.25e-01 1.63e + 02 2.25e-02 
Rosenbrock 6.15e + 01 1.59e + 05 2.10e + 02 
Rastrigin 0.00e + 00 3.47e + 01 1.15e-11 
Griewank 0.00e + 00 7.36e-01 3.55e-03 
Ackley 0.00e + 00 8.70e-01 1.24e-11 
Schwefel 2.22 0.00e + 00 0.00e + 00 0.00e + 00 
Schwefel 1.2 1.94e + 05 3.15e + 05 1.23e + 05 
Extended f10 0.00e + 00 6.26e-02 1.99e + 03 
Bohachevsky 0.00e + 00 1.67e-01 0.00e + 00 
Schaffer 0.00e + 00 4.42e-02 1.99e + 03 
f12 0.00e + 00 2.58e + 01 5.02e + 02 
f13 8.80e + 01 8.24e + 04 8.87e + 02 
f14 0.00e + 00 2.39e + 01 2.23e + 03 
f15 0.00e + 00 2.11e-01 0.00e + 00 
f16 0.00e + 00 1.83e + 01 1.00e + 03 
f17 2.25e + 01 1.76e + 05 1.56e + 03 
f18 0.00e + 00 7.55e + 00 1.21e + 03 
f19 0.00e + 00 2.51e-01 0.00e + 00 
Solved functions 14 1 4 
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nd the first local search method (MTS-LS1) of the Multiple Trajectory
earch (MTS) algorithm [88] . The MOS-SOCO2011 hybrid algorithm
as evaluated on the benchmark proposed for the Soft Computing Spe-

ial Issue on the scalability of evolutionary algorithms and other meta-
euristics for large-scale continuous optimization problems [89] . MOS-
OCO2011 obtained the best overall results among all the participants
n the special issue. In [79] , authors reported not only the results for the
roposed MOS-SOCO2011 algorithm, but also those of each of the in-
ependent components, DE and MTS-LS1, which are shown in Table 2 .
his threefold compilation of results allows for a direct comparison on
he number of functions solved to the maximum precision (14, 1 and
 for MOS-SOCO2011, DE and MTS-LS1, respectively), and sheds light
n the synergy of both algorithms: except for functions Schwefel 2.21
nd Schwefel 1.2, for which the MTS-LS1 algorithm obtained the best
esults, the hybrid method was able to reach the performance of the best
ne of its composing algorithms, normally outperforming them. 

Additionally, a statistical comparison was also carried out, report-
ng significant p-values for both comparisons (MOS-SOCO2011 versus
E, and MOS-SOCO2011 versus MTS-LS1). These two comparisons al-

ogether provide enough confidence to support the superiority of the
ybrid method over each of its composing algorithms. This is not the
nly example of such a comparison. Authors of the L-SHADE algorithm
ollow a similar approach in [90] , comparing the new version of their
lgorithm to previous ones, and evaluating the addition of new compo-
ents to prove their benefits. 

.4. Parameter tuning and analysis 

One important problem in the design of an algorithm is the number
f free parameters that can be adjusted to modify its behavior. In gen-
ral, the more flexibility, the more control parameters to adjust. Very
ften, the values selected for these parameters are so determinant in the
earch that even a well designed algorithm can yield bad results with
he wrong parameter values. As a consequence, the selection of the val-
es for these internal parameters is a critical decision that should not be
nderestimated nor overseen. 

Unfortunately, the selection of the right parameters values or the
daptation mechanism is not an easy task, because most of the times
here is not a clear criterion to guide that selection, and it could be con-
idered an optimization problem itself. Parameter tuning can be tackled
n different ways: 
10 
• Offline vs. online tuning . Offline tuning approaches search the opti-
mal EA parameter settings for several representative problems. Then,
these values are applied to new problems [91] , which means that the
tuning is carried out before the algorithm is run on the problem to
be solved. The main drawback of this approach is that the values ob-
tained do not necessarily need to be optimal for new problems, but,
in practice, robust parameters configurations can be obtained. An al-
ternative approach would be to conduct the parameter tuning during
the run. This strategy, in theory, can obtain better adapted values to
each problem, but it is a more complex method to implement. 

• Static, adaptive and self-adaptive parameter control. In [92] , pa-
rameter control approaches (those carried out during the run of the
algorithm) are divided into one of the three following categories:
deterministic, adaptive and self-adaptive. Deterministic parameter
control means that the value of the strategy parameter is updated fol-
lowing some deterministic rules, without feedback from the search.
Adaptive parameter control takes place when some feedback from
the search process is used to determine the direction and/or the mag-
nitude of the adjustment of the parameters. Finally, self-adaptive
parameter control happens when the values of the parameters are
embedded within the solution to optimize. Thus the parameter set-
ting is implicit during the search. Several successful examples of self-
adaptation are discussed below. 

The most usual approach to deal with the tuning problem is to do it
ffline and experimentally, comparing the results obtained on multiple
ombinations of the parameters values. However, there are several pit-
alls in which a researcher may fall when conducting a manual tuning: 

• Test each parameter on a small number of predefined values, without

taking any feedback into consideration : some works only test extreme
values of the parameter(s) to be tuned (either minimum or maximum
over its range). Under these circumstances, the number of values
to test should be extended to check whether a better result can be
obtained with other values over the range of the parameter(s). 

• Tune only a small part of their parameters : in this case, the values of
the remaining parameters are guessed or initialized to fixed values,
without analyzing which parameters influence most on the perfor-
mance of the algorithm. This analysis would eventually justify which
parameters should be selected and carefully tuned, but it is rarely
done in the literature. 

• Try to tune each parameter independently, keeping the others fixed : this
widely adopted approach poses many problems. The results obtained
by varying just one parameter depend largely on the values given to
the others, since it is not uncommon that multiple parameters influ-
ence on each other. Therefore, all value combinations of parameters
should be optimized altogether. While it is true that exploring all the
possible combinations can lead to a combinatorial explosion, there
are several techniques in the field of experimental design [3] that
can alleviate this problem, such as the fractional design [93] or the
alternative Taguchi methods [94] . 

• Use parameter values tuned by other authors in previous experi-

ments : these parameters were usually tuned for a different prob-
lem, and thus their values might not be appropriate for the prob-
lem/benchmark under consideration. Of course, these values can still
be used, but they should never be considered to be the optimal ones,
as their competitiveness on a different benchmark can not be guar-
anteed [95,96] . 

• Lack of statistical tests in the comparisons to tune the parameters values

of the proposal : due to the stochastic nature of meta-heuristic algo-
rithms, selecting parameter values based on average fitness values is
not enough. The same statistic procedures used to compare multiple
techniques should be used when comparing different configurations
of an algorithm. A choice of the most promising values is at discre-
tion of prospective authors, but the use of statistical tests should be
always enforced, no matter which parameter tuning approach is be-
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claims. 
ing carried out. In fact, as shown in [97] , the use of statistical tests
for this kind of comparisons can be straightforward. 

An alternative approach to parameter tuning is the self-adaptation
f the parameters [46] . Under this approach, parameters are not given
 fixed value. Instead, a process is devised to automatically adjust their
alue according to the feedback obtained from the optimization pro-
ess. This type of adaptation mechanism has been successfully applied
o DE, which is very sensitive to its parameters [26,98] . The work in
99] showed the convenience of self-adaptive values versus fixed pa-
ameter settings. In [49] the first DE with self-adaptive parameters was
resented, drawing parameter values by sampling a distribution which
ean is updated by considering new solutions entering the population.

ince then, new algorithms improving the self-adaptation mechanism
100,101] have been proposed. In [90] , the previous self-adaptive pa-
ameters were complemented with an adaptive population size that lin-
arly decreases along the search process. In [102] a tuning of parameters
as applied, improving further the results of the overall algorithm. 

Although adaptive parameters are a clear improvement over fixed
arameters, both in terms of ease of usage and robustness, not all the
arameters can be self-adjusted in this way (in particular, some more
nternal parameters). Thus, even in self-adaptive algorithms, there are
xed parameters that must be tuned to improve the results even more
i.e., [102] ). 

Fortunately, the tuning of parameters can be automatically carried
ut. There are several useful and consolidated tools of this type with
ifferent features [50] . In the following paragraphs we briefly describe
ome of the state-of-the-art methods: 

• Sequential Parameter Optimization, SPO [103] , is a heuristic that
uses Latin Hypercube Sampling to determine the parameter values
keeping the computation cost low. 

• Iterated Racing for Automatic Algorithm Configuration, IRACE [52] ,
is an optimization algorithm that uses different runs (races) and sta-
tistical testing to identify combinations of parameters that are worse
than others, providing an automatic process to optimize a variety of
parameters. 

• Relevance Estimation and Value Calibration of Evolutionary Algo-
rithm Parameters, REVAC [53] , is an evolutionary algorithm that
uses multi-parent crossover and entropy measures to estimate the
relevance of parameters. 

• ParamILS [54] , is a versatile stochastic local search approach for
automated algorithm configuration. 

Although I-RACE has yielded better results for us in the past, all the
forementioned alternatives are robust and consolidated tools, so the
election of one tool over the others will depend on the problem features
nd personal preferences. 

To conclude with this issue, we would like to make an additional
emark. The tuning of the parameters of a new proposal can have an
mportant impact in the objectivity of the comparison. This situation
an occur when the new proposal is the only algorithm which param-
ters are tuned for the particular benchmark used in the experimenta-
ion, whereas reference algorithms use parameters values proposed by
heir respective authors under different experimental conditions. This
ill probably mean that those algorithms are not expected to report
ery good results for the new experimental scenario. In this case, hav-
ng the parameters of the new proposal tuned for the benchmark consid-
red in the work could give our proposal an unfair advantage over the
ther ones, generating a bias in favor of the proposed algorithm in the
omparison. Ideally, the solution should be to compare tuned versions
f all the algorithms [96] , but the cost of doing that could become too
xpensive and computationally unaffordable. However, when the algo-
ithms are compared against standard benchmarks (not defined ad-hoc

or each paper), this risk is minimized, because all the algorithms were
ested under the same experimental conditions. 
11 
. Guideline #4: Why is my algorithm useful? 

The final step of a successful proposal is a thorough discussion of
he results. This discussion must answer a crucial question: why is my
lgorithm useful? 

The most obvious answer to this question is “because it outperforms

urrent state-of-the-art methods ”. If the algorithm falls within this first
ategory of proposals, and if this outperforming behavior is validated by
rincipled means (as those shown in this manuscript), the contribution
as a clear scientific value and can be contributed to the community in
he form of a publication. However, this is not always the case, but it
oes not mean that the contribution is not significant. 

There are a number of reasons to accept a new proposal even if it
s unable to outperform the best-so-far algorithms. Nonetheless, under
hese circumstances it is even more important the discussion of the re-
ults. The benefits of adopting the method proposed in such a contri-
ution should be clearly stated and highlighted accordingly. We next
iscuss on some of the reasons that can be considered enough for a new
roposal to be accepted: 

• The first of these reasons is the quality of the results. If, as men-
tioned before, the results clearly outperform current state-of-the-art
methods, the authors have a solid argument for their paper to be
accepted. Sometimes, it could be enough that the results are partic-
ularly good for a subset of the problems, given that this behavior can
be identified and characterized. This does not imply that the rest of
the guidelines provided in our paper can be neglected. The discus-
sion of the results should be rigorous and the conclusions should be
clearly presented, without any ambiguity nor vagueness. 

• The second of these reasons is novelty: if a newly proposed algo-
rithm has the potential to evolve and become competitive with cur-
rent state-of-the-art methods, it should be presented to the commu-
nity. Nonetheless, special attention should be paid at this point to
avoid the problems described by [1,104] : it is absolutely manda-
tory that, besides the bio-inspired metaphor, the new algorithmic
proposal is competitive enough for a set of problems. Furthermore,
we firmly advocate for the development of a unified description
language for meta-heuristic algorithms, capable of unambiguously
describing each of the algorithmic steps of new proposals, leaving
aside any metaphorical language. We utterly believe that efforts in
this direction should be intensified, building upon the initial postula-
tions established in some recent works [105,106] . Specifically, meta-
heuristics components (including search operators and algorithmic
behavioral patterns) and interfaces between them should be stan-
dardized towards objectively assessing similarities and differences
between metaphor-based solvers [107] . A novel metaphor is by no
means a sufficient guarantee for a significant scientific contribution.

• The third of these reasons is methodological, i.e., the relevance of
some of the building blocks of the overall algorithm. A particular
algorithm can include a given component (for example, a local op-
timizer) that can be of relevance even if the algorithm as a whole
is not completely competitive with respect to the prevailing liter-
ature. A good example supporting this claim can be observed in
co-evolutionary frameworks, which usually include a procedure to
identify the subcomponents that will be individually co-evolved. In
those cases, even if the subcomponent optimizer is not very sophis-
ticated, the co-evolutionary framework can be relevant by itself. In
this sense, it is important to select the appropriate framework to
highlight the desired characteristic of the proposed algorithm, as dis-
cussed in Section 3.1 . Following the same example of subcomponents
identification, a researcher focused on large-scale global optimiza-
tion should consider the CEC’2013 benchmark that explicitly studies
this issue [23] . Nevertheless, this is a quite subjective consideration,
so authors should clearly highlight these benefits to avoid debatable
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9 https://github.com/thieu1995/mealpy 
10 https://pypi.org/project/Indago/ 
11 https://sites.google.com/view/optimization-project/files 
. Case studies 

In order to exemplify the application of the previous guidelines,
his section elaborates on several case studies that follow our proposed
ethodology. In particular, we consider the following two scenarios: 

• The study of different existing algorithms, wherein the goal is to
analyze the advantages and drawbacks of each one of them. In this
first scenario, the priority is to compare all the methods following
different criteria, towards determining under which circumstances
each of them can be recommended. 

• The proposal of a new algorithm, in which the priority is to provide
informed evidence of the competitiveness of the new proposal, as
well as its advantages over previous algorithms. 

The structure of this section conforms to the above scenarios.
irst, in Subsection 7.1 we present several recent bio-inspired algo-
ithms for real-parameter optimization, and subsequently we resort
o our proposed guidelines so as to compare them fairly. Then, in
ubsection 7.2 we discuss on the second case of study, where a new algo-
ithm is proposed for a specific type of optimization problem: large-scale
lobal optimization. 

.1. Several modern bio-inspired algorithms for real ‐parameter 

ptimization 

In this first case study we simulate the scenario in which a compar-
son of several bio-inspired algorithms is designed for real-parameter
ptimization. There are two possible reasons for which this compari-
on can be tackled. On the one hand, we might be willing to propose a
ew solver, for which we must assess the performance of existing algo-
ithms to use them as a reference for our proposal. On the other hand, we
ight be interested in solving a particular problem similar to the ones

onsidered in the comparison, for which we analyze several algorithmic
ptions in order to ascertain which one to use. 

The algorithms considered in this first case study are recent methods
resented in top-tier journals: 

Squirrel Search algorithm (SSA): This is a bio-inspired algorithm that
mitates the foraging behavior of squirrels. It divides the solutions into
hree groups based on their fitness (the best one, the three next best
nes, and the remaining ones), and adopts different criteria to combine
hem considering this grouping arrangement, combining each solution
ith a solution in a superior category by a random lineal combination

108] . 
Gaining-sharing knowledge based algorithm (GSKA): This is an al-

orithm inspired by the human behavior when sharing knowledge. It
as been observed that there is more acceptation in the early phases,
nd that people get more questioning in later stages. For an algorithmic
oint of view, it uses two different criterion to optimize each dimen-
ion: in the first one, referred to as junior gaining-sharing , the variable
t hand is updated considering the variables of its immediate better
nd worse individuals in the population. In the second criterion, senior

aining-sharing , the variable is updated considering the best and worst
ndividuals in the population. Initially all variables are updated by the
unior gaining-sharing mechanism, and during the search, an increasing
umber of variables are updated by the senior gaining-sharing criterion
109] . 

Artificial Ecosystem-Based Optimization (AEO): This is a nature-
nspired meta-heuristic that finds its motivation in the flow of energy
hrough an ecosystem. In this proposal, the population is updated by
eans of an iterative process composed by different phases. The first
hase is production , in which one solution undergoes a small and de-
reasing random update. The second one is consumption , in which ev-
ry individual is randomly classified as herbivore, omnivore , or carnivore .
epending on its category, the individual is updated as per a different

ule. Newly produced solutions are inserted into the population if they
12 
mprove the previous ones (replacing them). In the final phase ( decom-

osition ), each individual is mutated by a dispersion equation [110] . 
Enhanced LSHADE-SPACMA Algorithm (ELSHADE-SPACMA): This

s a new hybrid algorithm that alternates, at each iteration, i) the ap-
lication of a DE strategy that considers, in its mutation operator, not
nly the best individuals but also the worst ones [111] , ii) with an im-
roved LSHADE-SPACMA [112] that adapts its p parameter to enforce
xploitation in its final stages [113] . LSHADE-SPACMA is a hybrid al-
orithm that applies, with a certain probability, one of the well-known
lgorithms L-SHADE [90] and CMA-ES [14] . The probability of applying
ach algorithm is adapted by considering the improvements obtained by
ach of them over the search. In its paper, ELSHADE-SPACMA is stated
o outperform previous winners of real-parameter optimization compe-
itions. 

Following our suggestions, we have used existing implementations
f the algorithms, in particular, for AEO and GSKA we have used the
ealpy software 9 . For SSA we have used the implementation of the

ndago project 10 . Finally, for ELSHADE-SPACMA we have used the
ource code provided by the authors of the algorithm 

11 . 
In the comparison study discussed throughout this section, we follow

he guidelines proposed in this work so as to properly conduct the exper-
ments with these algorithms and other reference methods. During this
tudy, we also discuss the advantages of our methodological proposal.
e next start by the first guideline. 

.1.1. Selecting the benchmark as per Guideline #1 

First, we must choose an adequate benchmark for measuring the per-
ormance of the considered algorithms. Following the recommendations
f Guideline #1 described in Section 3 : 

• We must properly select the benchmark: without any unexpected
bias, with the right level of complexity, and for the type of problem
addressed by the algorithm. 

• We must enforce the usage of a standard benchmark that fulfills the
previous requirements, considering the characteristics of the prob-
lems for which the algorithms were originally designed. 

In this case, all these algorithms have been especially designed for
eal-parameter optimization. Fortunately, there are several benchmarks
ell-designed for this type of problems, known to avoid unexpected
ias, and endowed with different levels of complexity. In particular,
everal benchmarks have been proposed within the context of real-
arameter optimization, both in the IEEE CEC and GECCO competitions.
or our case study, we embrace two of these benchmarks: the CEC’2017
19] and the COCO benchmarks [55] , for the following reasons: 

• There are several benchmarks, and all of them are equally good
choices. However, some of the benchmarks are rather complemen-
tary as they follow different approaches. The real-parameter CEC
benchmarks are more focused on proposing difficult objective func-
tions and measuring the final error obtained by each algorithm. On
the other hand, the COCO benchmark is made up of simpler functions
to allow measuring the performance of an algorithm from different
perspectives: how many problems each algorithm is able to solve,
how many objective function evaluations every compared solver re-
quires for solving each problem, and other aspects alike. 

• When the objective is to compare several algorithms and to analyze
them fairly, it is suitable to have several sources of information that
allow us to confirm our insights and compare the algorithms from
different points of view. 

.1.2. Selecting the performance measure as per Guideline #1 

Another important decision to make is the choice of an adequate
erformance measure. As discussed in Guideline #1, although the final

https://www.github.com/thieu1995/mealpy
https://www.pypi.org/project/Indago/
https://www.sites.google.com/view/optimization-project/files
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Table 3 

Average ranking of the algorithms for each dimension. 

Algorithm D10 D30 D50 D100 Mean 

ELSHADE-SPACMA 2.667 2.133 1.783 1.383 1.9915 

EBOwithCMAR 1.933 1.917 2.167 2.367 2.0960 
jSO 2.317 2.050 2.117 2.583 2.2667 
GSKA 3.883 4.200 4.433 4.533 4.2623 
PSO 5.367 5.867 6.000 6.400 5.9085 
SSA 5.733 5.667 5.333 4.733 5.3665 
AEO 6.100 6.167 6.167 6.000 6.1085 
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alue of the fitness error is a popular choice, it is not the only alternative
o compare the performance of several algorithms. Another interesting
ption is, for example, the analysis of the evolution of the fitness value
s the algorithms in the benchmark iterate to solve each problem. 

In our case, the two selected benchmarks are focused on different
et complementary measures: 

• In the CEC’2017 benchmark, the error in reported for different mile-
stones, with different ratios of evaluations: 1%, 2%, 3%, 5%, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. In our study
we aim at showing the evolution of the algorithms as the number of
function evaluations increases. Consequently, we select several of
these milestones when reporting the results attained by each algo-
rithm in the comparison. 

• Additionally, we pay special attention to the 100% milestone to-
wards providing a final comparison score of the results, without
downplaying the importance of reaching competitive fitness values
with fewer evaluations. 

• In the COCO benchmark, the performance is measured in a different
fashion. In particular, the ratio of functions for which the optimum
has been reached is computed as the number of objective function
evaluations increases. 

We consider that with these three measures we will obtain a rel-
tively complete view of the performance of the different algorithms
ncluded in our study. 

Finally, the results are gathered for every function, independently.
owever, for a more general analysis, we are also going to use aggre-
ation, considering the average ranking , which is calculated by sorting
he algorithms for each function based on their error (assigning lower
ankings to better algorithms). Then, the average ranking is computed
o that an algorithm with a lower average ranking value is declared
o perform better, on average, than another one with a higher ranking
alue. 

.1.3. Selecting the reference algorithms as per Guideline #1 

In order to conduct a fair comparison, a clear criterion is needed to
elect other algorithms to be included in the benchmark, grounded on
he need for assessing the convenience of the considered solvers with
egards to its competitive performance when compared with prevailing
ethods. Following our guidelines, we should: 

• Compare against reference algorithms : The idea is to select a well-
known method to compare whether the algorithms perform com-
petitively against it. For this purpose we have considered a classic
algorithm: Particle Swarm Optimization (PSO). 

• Compare against similar algorithms : this decision is especially relevant
when an new algorithm is proposed based on particular methods or
with well-defined characteristics that resemble those of other exist-
ing algorithms. However, in this use case the algorithms to be eval-
uated have very different sources of inspiration and different algo-
rithmic behavioral patterns. Thus, we consider that there is no need
for selecting other similar algorithms in addition to PSO. 

• Compare against competitive algorithms : this is a hard decision to
make, since it is often difficult to scrutinize the entire state-of-the-
art related to the optimization problem/algorithm/benchmark un-
der consideration. However, since the considered benchmarks were
used in several competitions, we can easily find out competitive algo-
rithms for each of them. In particular, the COCO benchmark tools 12 

always compare against a previous winner of the competition. In the
case of the CEC’2017 benchmark, we compare against the two best
algorithms of the competition: jSO [114] and EBOwithCMAR [115] .

To summarize, in this case study we compare each algorithm: (1)
o each other; (2) to a well-know reference algorithm (PSO); and (3) to
12 Available at: https://github.com/numbbo/coco 

13 
hree competitive algorithms (jSO and EBOwithCMAR for the CEC’2017
enchmark, and the winner of 2009 for the COCO benchmark). 

.1.4. Experimenting and validating the results as per Guideline #2 

Once the design of the experimentation is set up, the actual exper-
ments are carried out, and results are validated. Following the recom-
endations on the use of statistical validation provided in Guideline #2

see Section 4.1 ), normality and homocedasticity should be checked be-
ore the appropriate statistical test can be selected. However, in [41] the
esults on a previous similar benchmark were analyzed for this two hy-
otheses. Such results clearly indicated than none of the assumptions
ere satisfied. For this reason, we have decided to use non-parametric

ests. Furthermore, as also suggested by Guideline #2, we have also ap-
lied Bayesian tests to compare the best performing approaches to each
ther. 

CEC’2017 benchmark 

The first step suggested in Guideline #2 is to calculate the average
anking of the algorithms, followed by non-parametric hypothesis test-
ng. In order to realize this comparison, we resort to Tacolab [116] 13 , a
eb tool that eases the comparison of algorithms with different criteria.

Table 3 shows the average ranking for the CEC’2017 benchmark.
everal observations can be made over the results in this table: 

• Only ELSHADE-SPACMA performs best than previous winners: jSO
and EBOwithCMAR. This is particularly the case for higher dimen-
sion problems (D50 and D100). None of the other recently proposed
algorithms are competitive against these older reference algorithms.
This is an interesting result, since the papers in which these new al-
gorithms were first proposed do not compare against state-of-the-art
methods. Instead, classic algorithms are just considered. This is even
the case of GSKA, which was tested over the CEC’2017 benchmark,
but did not include jSO nor EBOwithCMAR in the experiments. 

• Among the recent proposals, ELSHADE-SPACMA clearly performs
best, even better than previous winners: jSO and EBOwithCMAR. 

• Apart from the aforementioned ones (ELSHADE-SPACMA, EBOwith-
CMAR and jSO), the proposal with the best average performance in
this benchmark is GSKA, followed by SSA. We must highlight that
these algorithms do not result from the hybridization of previous
ones. 

• The reference algorithm PSO obtains worse results than most of the
algorithms, except for AEO. 

A full picture of these results can be displayed if we also measure how
he performance of the different algorithms evolves during the search.
ortunately, the experimental conditions of the benchmark require that
he error must be measured at different milestones: 1%, 2%, 3%, 5%,
0%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% of the
tness evaluations. 

Tables 4 , 5 , 6 and 7 show the average ranking of each method at these
ifferent milestones for dimensions 10, 30, 50, and 100, respectively.
rom these tables the following conclusions can be drawn: 

• For dimensions 30 and 50, GSKA is a much faster algorithm and
it is clearly better than all the other proposals up to 10% of the
13 Tacolab website: https://tacolab.org/ 

https://www.github.com/numbbo/coco
https://www.tacolab.org/
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Table 4 

Evolution of the average ranking with regards to fitness evaluations in the 
CEC’2017 benchmark (dimension 10). 

Algorithm 1 2 3 5 10 20 30 

AEO 1.70 1.97 2.60 3.80 4.97 5.47 5.80 
EBOwithCMAR 4.50 4.50 4.03 3.13 2.30 1.90 2.05 
ELSHADE-SPACMA 5.87 5.60 5.20 4.13 3.23 2.27 1.75 

GSKA 2.83 2.20 2.20 2.37 2.53 3.27 3.70 
PSO 6.20 6.40 6.47 6.47 6.27 6.17 5.93 
SSA 1.87 3.17 3.97 4.67 5.20 5.43 5.47 
jSO 5.03 4.17 3.53 3.43 3.50 3.50 3.30 

(a) 1–30% evaluations 
Algorithm 40 50 60 70 80 90 100 
AEO 5.93 6.03 6.03 6.07 6.13 6.10 6.10 
EBOwithCMAR 1.88 1.80 1.85 1.85 1.73 1.88 1.93 

ELSHADE-SPACMA 1.88 2.17 2.25 2.37 2.58 2.65 2.67 
GSKA 4.00 3.97 4.07 3.98 3.93 3.93 3.88 
PSO 5.77 5.70 5.57 5.47 5.47 5.43 5.37 
SSA 5.60 5.63 5.63 5.70 5.67 5.70 5.73 
jSO 2.93 2.70 2.60 2.57 2.48 2.30 2.32 

(b) 40–100% evaluations 

Table 5 

Evolution of the average ranking with regards to fitness evaluations in the 
CEC’2017 benchmark (dimension 30). 

Algorithm 1 2 3 5 10 20 

AEO 2.33 3.70 4.53 5.10 5.57 6.00 6.10 
EBOwithCMAR 5.27 4.67 4.03 3.47 2.77 1.90 2.07 
ELSHADE-SPACMA 6.53 5.63 5.27 4.17 2.83 1.93 1.70 

GSKA 1.63 1.40 1.40 1.43 2.10 3.20 3.97 
PSO 5.33 6.07 6.37 6.50 6.30 6.17 6.07 
SSA 2.30 2.87 3.20 3.57 4.57 5.07 5.20 
jSO 4.60 3.67 3.20 3.77 3.87 3.73 2.90 

(a) 1–30% evaluations 
Algorithm 40 40 60 70 80 90 100 
AEO 6.20 6.27 6.27 6.27 6.20 6.17 6.17 
EBOwithCMAR 2.18 2.37 2.43 2.32 1.92 1.92 1.92 

ELSHADE-SPACMA 1.52 1.40 1.38 1.45 1.72 1.83 2.13 
GSKA 4.10 4.20 4.17 4.17 4.17 4.17 4.20 
PSO 6.03 5.97 5.97 5.97 5.93 5.93 5.87 
SSA 5.27 5.40 5.43 5.47 5.60 5.63 5.67 
jSO 2.70 2.40 2.35 2.37 2.47 2.35 2.05 

(b) 40–100% Evaluations 
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Table 6 

Evolution of the average ranking with regards to fitness evaluations in the 
CEC’2017 benchmark (dimension 50). 

Algorithm 1 2 3 5 10 20 

AEO 2.97 4.20 4.90 5.47 5.77 5.97 6.03 
EBOwithCMAR 5.77 4.57 4.17 3.67 2.77 2.27 2.40 
ELSHADE-SPACMA 6.57 5.90 5.43 4.37 3.10 2.07 1.93 

GSKA 1.67 1.83 1.83 1.80 2.60 3.70 4.17 
PSO 4.70 5.90 6.17 6.40 6.40 6.23 6.23 
SSA 1.90 2.17 2.37 2.73 3.63 4.40 4.73 
jSO 4.43 3.43 3.13 3.57 3.73 3.37 2.50 

(a) 1–30% evaluations 
Algorithm 40 50 60 70 80 90 100 
AEO 6.07 6.10 6.10 6.17 6.23 6.20 6.17 
EBOwithCMAR 2.47 2.50 2.57 2.50 2.23 2.27 2.17 
ELSHADE-SPACMA 1.77 1.37 1.23 1.20 1.30 1.38 1.78 

GSKA 4.30 4.33 4.33 4.40 4.40 4.40 4.43 
PSO 6.13 6.10 6.07 6.03 6.03 6.00 6.00 
SSA 4.93 5.03 5.07 5.13 5.27 5.33 5.33 
jSO 2.33 2.57 2.63 2.57 2.53 2.42 2.12 

(b) 40–100% evaluations 

Table 7 

Evolution of the average ranking with regards to fitness evaluations in the 
CEC’2017 benchmark (dimension 100). 

Algorithm 1 2 3 5 10 20 30 
AEO 3.40 4.57 5.13 5.50 5.73 5.83 5.80 
EBOwithCMAR 5.83 4.40 4.10 3.90 3.10 2.53 2.70 
ELSHADE-SPACMA 6.40 6.10 5.33 4.47 3.70 2.93 2.43 
GSKA 1.83 1.93 1.97 2.17 2.77 4.07 4.13 
PSO 4.43 5.77 6.30 6.40 6.40 6.40 6.43 
SSA 1.63 1.97 2.07 2.50 2.97 3.77 4.17 
jSO 4.47 3.27 3.10 3.07 3.33 2.47 2.33 

(a) 1–30% evaluations 
Algorithm 40 50 60 70 80 90 100 
AEO 5.90 5.97 6.00 6.03 6.07 6.07 6.00 
EBOwithCMAR 2.67 2.50 2.53 2.43 2.13 2.23 2.37 
ELSHADE-SPACMA 2.00 1.43 1.33 1.40 1.47 1.43 1.38 

GSKA 4.33 4.43 4.43 4.47 4.50 4.50 4.53 
PSO 6.43 6.40 6.40 6.40 6.37 6.37 6.40 
SSA 4.33 4.53 4.63 4.63 4.67 4.73 4.73 
jSO 2.33 2.73 2.67 2.63 2.80 2.67 2.58 

(b) 40–100% evaluations 

Table 8 

Statistical validation for the CEC’2017 benchmark and dimen- 
sion 10 (EBOwithCMAR is the control algorithm). 

EBOwithCMAR versus Wilcoxon p-value Wilcoxon p-value ∗ 

AEO 2.702e-06 1.621e-05 
√

SSA 3.703e-06 1.852e-05 
√

PSO 4.110e-06 1.852e-05 
√

GSKA 4.374e-05 1.312e-04 
√

ELSHADE-SPACMA 0.027 0.055 
jSO 0.225 0.225 

√
: statistical differences exist with significance level 𝛼 = 0 . 05 . 

∗ : p-value corrected with the Holm procedure. 
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fitness evaluations, including the previous winners of CEC compe-
titions (EBOwithCMAR and jSO) and the most competitive recent
algorithm (ELSHADE-SPACMA). 

• EBOwithCMAR is the algorithm with the best results for dimensions
10 and 30 (very close to ELSHADE-SPACMA in those dimensions),
whereas ELSHADE-SPACMA is the best performing algorithm for di-
mensions 50 and 100, closely followed by EBOwithCMAR and jSO. 

• For dimensions 30, 50 and 100, ELSHADE-SPACMA is the best one
since the 40% of the budget of evaluations. Although Table 3 indi-
cates that EBOwithCMAR obtains the best final results, ELSHADE-
SPACMA achieves better results during most of the search, being
only improved by the former at the end. 

• Deciding which algorithm should be applied to a specific problem
strongly depends on the effort that can be devoted to the search. In
this benchmark, GSKA is better when less evaluations are allowed,
whereas ELSHADE-SPACMA is preferred when a higher number of
evaluations can be afforded. 

Additionally, following Guideline #2 ( Section 4 ) we have conducted
 statistical validation of the results to reject the hypothesis that the dif-
erences observed in the performance of the algorithms is due to their
tochastic nature and not to actual differences in their performance.
irst, we use the Friedman rank-sum test to find out if significant differ-
nces can be found among all the algorithms. The p-values reported by
his test are 3.61e-08, 1.51e-07, 7.58e-7, and 9.62e-10 for dimensions
14 
0, 30, 50, and 100, respectively. Since all the p-values values are clearly
ower than the 𝛼 = 0 . 05 confidence level, we can state that differences
mong the algorithms exist and that are significant. 

Once that significant differences are detected, we proceed with a
ultiple comparison, as the use of the Holm procedure keeps the family-
ise error rate under control. Tables 8 , 9 , 10 , 11 summarize the results

or dimensions 10, 30, 50 and 100, respectively. Inspecting these results
e arrive at the following insights: 

• EBOwithCMAR is the best algorithm for dimensions 10 and 50,
whereas ELSHADE-SPACMA is the best algorithm for dimensions 50
and 100. 
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Table 9 

Statistical validation for the CEC’2017 benchmark and dimen- 
sion 30 (EBOwithCMAR is the control algorithm). 

EBOwithCMAR versus Wilcoxon p-value Wilcoxon p-value ∗ 

AEO 2.702e-06 1.621e-06 
√

PSO 2.702e-06 1.621e-06 
√

SSA 2.702e-06 1.621e-06 
√

GSKA 4.110e-06 1.621e-06 
√

ELSHADE-SPACMA 0.226 0.452 
jSO 0.431 0.452 

√
: statistical differences exist with significance level 𝛼 = 0 . 05 . 

∗ : p-value corrected with the Holm procedure. 

Table 10 

Statistical validation for the CEC’2017 benchmark and dimension 
50 (ELSHADE-SPACMA is the control algorithm). 

ELSHADE-SPACMA versus Wilcoxon p-value Wilcoxon p-value ∗ 

AEO 1.863e-09 1.118e-09 
√

GSKA 1.863e-09 1.118e-09 
√

PSO 1.863e-09 1.118e-09 
√

SSA 1.863e-09 1.118e-09 
√

jSO 0.054 0.107 
EBOwithCMAR 0.509 0.509 

√
: statistical differences exist with significance level 𝛼 = 0 . 05 . ∗ : p- 

value corrected with the Holm procedure. 

Table 11 

Statistical validation for the CEC’2017 benchmark and dimension 
100 (ELSHADE-SPACMA is the control algorithm). 

ELSHADE-SPACMA versus Wilcoxon p-value Wilcoxon p-value ∗ 

AEO 3.725e-09 2.235e-08 
√

GSKA 3.725e-09 2.235e-08 
√

PSO 3.725e-09 2.235e-08 
√

SSA 5.588e-09 2.235e-08 
√

jSO 2.254e-05 4.507e-05 
√

EBOwithCMAR 3.128e-04 3.128e-04 
√

√
: statistical differences exist with significance level 𝛼 = 0 . 05 . ∗ : p- 

value corrected with the Holm procedure. 
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Table 12 

Average ranking of the most competitive algorithms for each dimen- 
sion. 

Algorithm D10 D30 D50 D100 Mean 

EBOwithCMAR 1.683 1.817 2.100 2.300 1.9750 
ELSHADE-SPACMA 2.267 2.133 1.783 1.250 1.858 

jSO 2.050 2.050 2.117 2.450 2.1667 
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• Most of the new proposals (AEO, GSKA, and SSA) are statisti-
cally worse than competitive algorithms proposed back in 2017
(EBOwithCMAR) and the newest proposal ELSHADE-SPACMA. 

• For dimensions 10, 30, and 50, there are no significant differences
among EBOwithCMAR, ELSHADE-SPACMA and jSO. However, for
dimension 100 the recent algorithm ELSHADE-SPACMA is statisti-
cally better than them. 

As stated in Guideline #2, more statistical tests beyond those used
o far can be applied to reinforce our conclusions on the case study. We
ext discuss on the results of two new tests utilized for this end: the
ritical distance, and Bayesian tests. 

Fig. 4 shows the statistical relevance of the differences between the
verage rankings over the CEC’2017 benchmark. The Critical Distance
CD) value (given by a Nemenyi post-hoc test at a significance 𝛼 = 0 . 05 )
ndicates the minimal absolute distance between two average rankings
o be declared as statistically different to each other. It can be ob-
erved that among the new proposals under comparison, only ELSHADE-
PACMA is competitive with respect to the best performing approaches,
hough GSKA is also competitive for small problems. When the dimen-
ionality increases, the distance between GSKA and the best algorithms
ELSHADE-SPACMA, EBOwithCMAR and jSO) increases, and the rank-
ng difference with SSA is reduced. 

In dimension 10 the gaps between the ranks of the different algo-
ithms become narrower. In order to arrive at more insightful conclu-
ions, we apply several Bayesian tests over the results obtained for this
imensionality value, visualizing the adjusted Bayesian probability in
15 
arycentric coordinates. Bayesian analysis performed over the results of
elected pairs of algorithms yields the probability that one solver out-
erforms another, based on the objective function values obtained by
ach of them over all runs and problems of the benchmark. The com-
uted probability distribution displayed in barycentric coordinates after
onte Carlo sampling, depicting three regions: one where the first al-

orithm outperforms the second; a second one with the converse case
the second outperforms the first); and a region of practical equivalence
here the results attained by each algorithm can be considered to be

tatistically equivalent to each other. To decide on this equivalence, a
arameter called rope indicates the minimum difference between the
cores of both methods for them to be considered significantly different
o each other. 

At this point it is important to highlight the fact that rope denotes a
hreshold imposed on the absolute difference of fitness values between
he two compared algorithms. Consequently, rope is interpretable and
vercomes acknowledged issues identified around the use of p-values
nd significance levels in studies resorting to NHST for statistical as-
essment [74] . 

Turning back the focus on our case study, we consider several spe-
ific pairs of algorithms: (EBOwithCMAR, jSO), (jSO, GSKA) and (SSA,
KSA). We have considered only the first 20 runs for each function to
ake the processing time of the test computationally affordable. The

ope value is set to 20. Fig. 5 depicts the Bayesian plots for each of the
onsidered pairs, from which we confirm the following facts: 

• There are almost no relevant differences among the results attained
by ELSHADE-SPACMA, EBOwithCMAR and jSO. 

• For dimensions 30, 50, and 100 there are clearly two groups: one
made up by EBOwithCMAR, ELSHADE-SPACMA, and jSO; and an-
other one, made up by GSKA, SSA, PSO, and AEO. 

• The lack of sampled point in the plots comparing jSO and GSKA
reveals that the probability that GSKA achieves better results than
jSO is exactly zero. This is specially relevant because the threshold
value used is relatively high given the range of the objective func-
tions characterizing the benchmark. 

• Differences between SSA and GKSA can be claimed to be significant
for dimension 10, with GKSA emerging as the best performing ap-
proach. 

Results show that ELSHADE-SPACMA outperforms the previous win-
ing algorithms EBOwithCMAR and jSO. Thus it could be considered the
ew state-of-the-art method for that benchmark. In order to conduct
 deeper analysis, our study include direct comparisons of ELSHADE-
PACMA against EBOwithCMAR and jSO. The results of this compari-
on are shown in Table 12 , where it can be observed that among the
ore competitive algorithms, ELSHADE-SPACMA continues obtaining

he best overall results. 
Table 13 reports the results of pairwise comparisons among

LSHADE_SPACMA, EBOwithCMAR and jSO with the Wilcoxon test.
hese results reveal that there are statistical differences only in dimen-
ion 100. This finding is confirmed in Table 14 , in which we provide the
esults corrected with the Holm method to account for the family-wise
rror in dimension 100. 

COCO benchmark 

We continue our discussions on this first case study with the results
ver the COCO benchmark. To this end, we first use the source code and
ools available at https://github.com/numbbo/coco to run the experi-

https://www.github.com/numbbo/coco
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Fig. 4. Critical distance plots for the CEC’2017 benchmark. 

Fig. 5. Bayesian plots for the CEC’2017 bench- 
mark and dimension 10.. 
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ents and obtain results of the performance of every algorithm. Fur-
hermore, these tools allow including in the benchmark the competitive
lgorithm proposed in 2009 for this benchmark. 

Fig. 6 visualizes, for each algorithm, the ratio of solved problems
problems for which the error obtained is lower than a threshold) when
he number of evaluations increases. The benchmark is designed for dif-
erent dimension values, so Fig. 6 includes a subplot for each one of

hem. It can be observed that: 

16 
• For low dimensionality values (e.g. 2 and 5), the results obtained for
the other proposals are very similar and competitive, except for the
reference algorithm (PSO). However, this behavior changes when
the dimensionality increases. 

• For dimensionality equal to 5, ELSHADE-SPACMA (the acronym is
shortered in Fig. 6 ) and GSKA are notably better than SSA and AEO.
For dimension 10, this noted improvement increases further. 
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(a) Dimension 2 (b) Dimension 3 (c) Dimension 5

(d) Dimension 10 (e) Dimension 20 (f) Dimension 40
Fig. 6. Ratio of solved problems versus fitness evaluation for the COCO benchmark. 

Table 13 

Results of the wilcoxon’s test for the most competitive algorithms in the 
CEC’2017 benchmark for different dimension values. 

Algorithms D10 D30 D50 D100 

ELSHADE-SPACMA vs EBOwithCMAR 0.027 0.226 0.509 3.128e-04 
EBOwithCMAR vs jSO 0.225 0.431 0.054 0.477 
ELSHADE-SPACMA vs jSO 0.796 0.706 0.556 2.254e-05 

Table 14 

Statistical validation for more competitive algorithms for the 
CEC’2017 benchmark and dimension 100 (ELSHADE-SPACMA is 
the control algorithm). 

ELSHADE-SPACMA versus Wilcoxon p-value Wilcoxon p-value ∗ 

jSO 2.254e-05 4.507e-05 
√

EBOwithCMAR 3.128e-04 3.128e-04 
√

√
: statistical differences exist with significance level 𝛼 = 0 . 05 . ∗ : p- 

value corrected with the Holm procedure. 
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• For dimensionality values 20 and 40, GSKA still performs better than
AEO, SSA and GSKA, but the difference reduces dramatically. GSKA
exhibits a better behavior for lower dimensionality values. 

• For dimensionality values 20 and 40, ELSHADE-SPACMA is the al-
gorithm that scores best when compared to the other proposals by
a great gap. However, it does not approach the results of the best
algorithm reported in 2009. 

Following the same procedure as in the CEC’2017 benchmark, we
ave also considered whether to apply statistical tests. Unfortunately,
he reduced number of runs for each function (15) is too low to allow
or statistical tests with minimum significance guarantees. 

Conclusions considering both benchmarks 
17 
After analyzing together all experimental results discussed previ-
usly, our conclusions can be summarized as follows: 

• GSKA obtains better results than AEO and SSA. 
• For a lower budget in terms of number of objective function eval-

uations, GSKA is better than the other algorithms. On the contrary,
when the number of evaluations is increased, EBOwithCMAR and
jSO obtain better results. 

• The new proposals (AEO, GSKA and SSA) perform competitively
when compared to classic optimization algorithms (e.g. PSO), but
none of them can rival modern solvers like the standing winners of
renowned competitions. 

• GSKA, for small dimensionality values, is better than other com-
pared algorithms, but its advantage is reduced when the dimension
increases. 

• ELSHADE-SPACMA has shown a rather opposite behavior: it im-
proves as the dimension value increases. It is actually the only al-
gorithm that is able to outperform existing competitive algorithms,
specially in higher dimensionality values. For example, for dimen-
sion 100 it is even statistically better than the previous winning al-
gorithms. In the COCO benchmark, on the other hand, although it
is very competitive, it is not better than the previous winner of the
2009 competition. This could be due to the lower dimensionality
values used in this competition. 

All in all, the performance of these recent meta-heuristic algorithms
an be of interest when compared to that offered by classic approaches,
ut does not reach the levels of performance that are achieved by mod-
rn competitive optimization methods. 

.1.5. Components analysis and Tuning as per Guideline #3 

Comparing with just reference and/or state-of-the-art algorithms is
ot enough. Following Guideline #3 ( Section 5 ), it is important for new
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Table 15 

Average ranking for different attraction and swarm size values for SSA algorithm and dimension. 

swarm size 

10 25 50 75 100 

attraction 0.1 20.40 18.05 17.82 17.35 17.52 
0.3 19.87 15.58 17.02 14.05 13.58 
0.5 19.30 18.38 13.88 12.65 10.25 
0.7 17.80 17.25 13.08 12.55 8.22 

0.9 18.87 18.15 14.75 10.82 10.35 
1.0 18.83 18.78 14.82 13.48 11.55 

(b) Dimension 10 
swarm size 

10 25 50 75 100 
attraction 0.1 19.75 19.68 14.72 13.72 12.55 

0.3 18.75 17.32 15.92 11.95 12.82 
0.5 18.15 19.28 16.48 9.25 10.68 
0.7 19.88 15.88 14.32 12.65 9.35 

0.9 18.78 18.48 15.22 11.85 12.38 
1.0 20.35 18.68 16.45 15.28 14.42 

(b) Dimension 30 
swarm size 

10 25 50 75 100 
attraction 0.1 20.12 17.42 16.68 15.08 16.75 

0.3 18.58 15.82 12.02 10.75 13.12 
0.5 19.38 17.65 15.05 13.82 11.25 
0.7 17.55 16.48 12.62 13.25 10.28 

0.9 21.25 18.02 15.25 14.08 11.65 
1.0 18.05 19.92 16.68 12.88 13.55 

(c) Dimension 50 
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Table 16 

Average ranking of the tuned algorithms for each dimension. 

Algorithm D10 D30 D50 

ELSHADE-SPACMA 2.667 2.133 1.783 

EBOwithCMAR 1.933 1.917 2.167 
jSO 2.317 2.050 2.117 
GSKA 3.883 4.200 4.433 
PSO 5.400 5.933 6.067 
SSA (Tuned) 5.533 (–0.40) 5.433 (–0.23) 5.200 ( + 0.13) 
AEO 6.267 6.333 6.233 
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roposals to analyze the behavior of the algorithm to gauge the contri-
ution of each component. In this use case, since we have several new
lgorithms and the goal is to compare them fairly, analyzing the differ-
nt components of each one of them because could entail an extensive
tudy that goes beyond the scope of this work. For a example of compo-
ent analysis, we refer to Section 7.2.5 . 

Following Guideline #3, the use of an automatic tuning mechanism
s also recommended for the different algorithms in the comparison.
n particular, we focus on the new proposal algorithms (AEO, GSKA,
nd SSA), because winners of the competitions, EBOwithCMAR and jSO,
ave been previously optimized by their authors for the competition.
owever, in our case the original publication where the most promising
lgorithm (GSKA and ELSHADE-SPACMA were proposed already con-
idered the same benchmark (CEC’2017), so the parameter value used
n this seminal reference are assumed to be the most adequate ones for
his benchmark used in the case study. On the other hand, despite orig-
nally evaluated over a different benchmark, AEO has no parameters to
e optimized. Its only free parameter (the population size) was analyzed
n several works of its authors, concluding that varying the population size

oes not result in a significant change in precision [110] . Therefore, we cen-
er our discussion on the second-best performing algorithm in the results
SSA): 

Tuning SSA 

To illustrate this process, we tune the two parameters driving the
earch behavior of the SSA approach, namely, the so-called swarm size

nd attraction factor , the lower value of the gliding distance 𝑑 𝑔 . Since
here are only two parameters, instead of using a tool such as the ones
ommented in Subsection 5.4 , we have applied a grid search for dimen-
ions 10, 30, and 50 (dimension 100 was omitted for the sake of compu-
ational affordability). In this grid search, different values are explored
or each parameter: 

• For the swarm size, we have tested values 10, 25, 50 (recommended
by authors), 75 , and 100 . 

• For the attraction factor, we have considered values equal to 0.1,

0.3, 0.5 (recommended by authors), 0.7, 0.9 , and 1.0 . 

As a result of this grid search, the 5 × 6 = 30 parameter combinations
ave given rise to 30 configurations of SSA that we have compared to
18 
ach other in terms of average rank. Such results are given in Table 15 ,
here we can notice that: 

• The best results are obtained with an attraction factor of 0.7 and
swarm size equal to 100 for dimensionality values of 10 and 50.
Furthermore, this configuration is the second best for dimension 30.
Thus, these values can be declared to be the recommended setting
for the algorithm. 

• In general, results are better with a larger swarm size, and with a
medium-range value of the attraction factor. 

• The value recommended by the authors for the attraction value (0.5)
is close to the best obtained during the tuning process (0.7). More-
over, it is the best one for dimension 30. 

• The recommended value for its authors in swarm size, 50, it is not
adequate for this benchmark. 

We have concluded that the net SSA results improve via param-
ter tuning. However, we must assess whether this performance im-
rovement has any impact on the comparison previously discussed in
ection 7.1.4 . As a global recommendation, parameters of all compared
lgorithms should be tuned. However, in this case the most competitive
lgorithms (ELSHADE-SPACMA, EBOwithCMAR, jSO and GSKA) were
riginally tuned over this benchmark. As a result, the only competitive
pproach that requires tuning is SSA. The rest of algorithms were not
uned considering its non-competitive results and the limited computa-
ional resources. 

In Table 16 are shown the results of tuned algorithms, showing for
he tuned algorithm (SSA) the difference in the average ranking in com-
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arison with the non-tuned version. Dimension 100 was not included
ecause there was no tuning performed in this dimension. It can be ob-
erved that the tuned version of the algorithm achieves an improvement
ver its non-tuned counterpart for dimensions 10 and 30, and it is worse
or dimension 50. However, the improvement is not enough to change
he relative position of the algorithm in the ranking. 

.1.6. Justifying the usefulness of the algorithm as per Guideline #4 

Following Guideline #4 ( Section 6 ), there are several perspectives
rom which one may claim the usefulness of an algorithm: 

• Quality of the results : in this case, the majority of the evaluated al-
gorithms have been found to be not competitive enough in compar-
ison with the state-of-the-art methods. Only ELSHADE-SPACMA has
been able to improve them, thus becoming the current state-of-the-

art algorithm in the benchmark considering these results. Also, the
comparisons between the different algorithms expose significant dif-
ferences between them. Therefore, the results can be considered to
be interesting and informative for researchers aiming to elaborate
further on their design. Furthermore, while GSKA is not competitive
against jSO and EBOwithCMAR, it is able to perform best when the
number of function evaluations is low. In many real-world problems,
the evaluation of a solution can be very costly in terms of compu-
tational resources (e.g. when the fitness value is produced by long
computer simulations). Under these circumstances, it is essential to
rely on algorithms capable of obtaining good results within a small
number of evaluations. 

• Technical novelty : the compared proposals not only have very dif-
ferent biological inspiration, but they differ notably regarding their
algorithmic behavior. In particular, ELSHADE-SPACMA, SSA and
GSKA propose interesting ideas that could be considered for new
algorithms. ELSHADE-SPACMA combines different previous algo-
rithms (SHADE-ILS and CMA-ES) with a novel mechanism to im-
prove the diversity into the population, a mutation operator that
not only considers the best solutions but also the worst ones. An-
other contribution is the adaptation of one parameter used to in-
crease diversity in the early stages of the search. With these two
main changes that make it different than the previous LSHADE-
SPACMA algorithm, it is able to improve the results of the compet-
itive EBOwithCMAR and jSO. LSHADE-SPACMA failed to do so. On
the other hand, SSA exploits the idea of ranking the different solu-
tions to create several categories (the current best, the best ones, and
the normal, which is the largest group), and use a different mutation
method considering the category of each individual. In addition, so-
lutions which cannot get improved are periodically restarted. These
two strategies yield a very straightforward yet effective optimiza-
tion algorithm. GSKA also suggests other interesting concepts from
the technical point of view: it updates the variables of each indi-
vidual under two possible criteria, among which the selected one is
updated during the search to increase the exploitation during the run
of the algorithm. Furthermore, in the exploration GSKA uses for each
individual the most similar ones in fitness, the immediate better one
and the immediate worse one. 

• Methodological contribution : There is no methodological contribution.
• A special attention should be paid to the simplicity , in which SSA

outstand in the benchmark. However, modifications should be ap-
plied to improve its results and to avoid its apparently premature
convergence. 

.1.7. Summary of the use case 

To conclude, this first use case follows most of the guidelines of our
roposed methodology. The main procedures followed in the use case
re highlighted in Fig. 7 . In addition, we briefly describe now the main
ctions taken for each of the proposed guidelines: 

• Guideline #1: We have selected two different real-parameter bench-
marks, CEC’2017 and COCO. Both are widely accepted by the com-
19 
munity working in real-parameter optimization. We have also com-
pared our algorithms against competitive solvers that have won com-
petitions using the same benchmarks, as well as a reference baseline
for swarm intelligence (i.e. PSO). 

• Guideline #2: following this guideline, we have shown and validated
the results according to the good practices described in Section 4 , in-
cluding statistical non-parametric tests and Bayesian analysis. Fur-
thermore, we have provide evidence on how the identification of the
best algorithm can strongly be biased by the stopping criterion in use
(e.g. the maximum number of objective function evaluations). 

• Guideline #3: following the suggestions in this guideline, we have
applied a simple tuning process and unveiled that the right param-
eter values can influence the results and conclusions held from the
previous comparison. 

• Guideline #4: in this use case, the comparisons between the different
algorithms could be justified as per the relevant differences found
among them. Only one of the compared algorithms (ELSHADE-
SPACMA) has been able to outperform other existing competitive
algorithms. Moreover, one of them (GSKA) has shown a superior
behavior when the number of function evaluations is low. Neverthe-
less, the fact that the majority of these modern algorithms could not
improve previous competitive solvers is a relevant fact that should
stimulate fairer comparison studies in prospective works with new
and/or improved versions of bio-inspired optimization algorithms.
Finally, some of these algorithms pose innovative algorithmic ideas
that should be investigated further towards their use in the design
of new search methods. 

.2. SHADE ‐ILS for large ‐scale global optimization 

In this second case study we simulate the situation in which we
esign a new algorithm, SHADE-ILS, specially designed for large-scale
lobal optimization. In this section we follows the guidelines for prop-
rly conducting the experiments, comparisons with other reference al-
orithms, and the analysis to put in value the advantages of our method-
logical proposal. 

.2.1. Selecting the benchmark as per Guideline #1 

First, we have to choose the right benchmark for the experimental
ssessment of the performance of our newly proposed algorithm. Fol-
owing the recommendations of Guideline #1 (described in Section 3 ),
e have to: 

• Properly select the benchmark: without any unexpected bias, with
the right level of complexity, and for the type of problem addressed
by the algorithm. 

• Enforce the usage of a standard benchmark that fulfills the previous
requirements. 

The selection of the benchmark cannot be done without considering
he proposed algorithm, since it depends on the characteristics of the
roblem for which the algorithm was implemented (or the type of prob-
ems for which we want to test it). In our example, we have designed
HADE-ILS [117] , an algorithm specially devised for real-parameter op-
imization problems that comprise a high number of variables. This fam-
ly of optimization problems is collectively referred to as large-scale
lobal optimization, for which several benchmarks have been proposed
23,27,89] . If any of them allows for an unbiased comparison, we should
se it, avoiding in this way the design of our own benchmark. In partic-
lar, our first option is the CEC’2013 benchmark [23] , since it is both
he most recent and the most popular competition to date. Furthermore,
ts popularity yields many previous results that we can use for compari-
on purposes. Nevertheless, before proceeding further we have to verify
hether the selected benchmark allows for good comparisons. For this
urpose, information and data available about the benchmark should
omply with several requirements: 
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Guideline #3 
Components analysis
and Parameter Tuning

Guideline #4 
Why is my algorithm
useful?

Guideline #1 
Benchmarks

Guideline #2 
Validation of Results

CEC’2017 and COCO Benchmarks
Two state-of-the-art methods for comparison
A classic algorithm as a baseline

Non-parametrical statistical validation
Bayesian analysis

Finely grained parameter tuning
Implications of parameter tuning on comparisons

Quality of the results and convergence of algorithms
Elements of technical novelty identified

Standard adequate benchmark (CEC'2013 LSGO Benchmark)
Similar and state-of-the-art methods for comparison

Non-parametrical statistical validation
Visualization techniques

Clear statement of objectives
Operators proving significant contributions

Competitiveness of SHADE-ILS against reference algorithms
New research directions (hybridization with local search methods)

Case Study 1 Case Study 2

Fig. 7. Checklist of the guidelines’ recommendations followed by the use cases. 
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e Clear experimental conditions : the experimental setup is well defined,
and conditions are set the same for all algorithms. 

e The implementation of the benchmark is openly available : the CEC’2013
benchmark is specially appropriate in this regard, as implemen-
tations of the problems comprising the benchmark are not only
made publicly available, but also in several programming languages:
C/C++, Matlab, Java, and Python 1 

e The optima is not at the center of the domain search : all functions in
the chosen benchmark are shifted to guarantee this feature. 

x Functions are rotated: Although this feature is not present in the cho-
sen benchmark, the importance of this requirement is not as critical
as the aforementioned shifting. 

e Presence of local optima : In the benchmark there are several functions
with different local optima. Actually, it is not the only criterion to
provide functions with varying levels of difficulty. In particular, in
this benchmark there are different degrees of interrelation between
variables, which makes sense given the large dimensionality of the
problems. 

Summarizing, the above analysis concludes that the CEC’2013
enchmark for large-scale global optimization follows most of the re-
uirements imposed by our methodology. This is the reason why we
elect it as benchmark for the experimentation. 

.2.2. Selecting the performance measure as per Guideline #1 

Another important decision to make is the choice of an adequate
erformance measure. In this regard, we can measure not only the fi-
al fitness error (deviation with respect to the global optimum that is
nown a priori ), but also the error for different number of fitness eval-
ations (called the accuracy level ). This way, we can fairly measure the
fficiency of the algorithms. There are two possibilities in this matter:
) to report the performance for each accuracy level; and ii) to provide
he performance for the maximum number of fitness evaluations con-
idered in the experiments. To show the results concisely, we will only
iscuss on the latter of these alternatives (i.e. the results for the maxi-
um number of fitness evaluations). However, the study should be done

n a similar fashion for each level of accuracy. 
About the performance, there are also several possibilities: we can

eport the fitness error function by function, or we can compute an ag-
regate measure of performance (such as an average). Initially, we opt
or an aggregate measure, considering two options: 

• Average ranking , which is calculated by sorting the algorithms for
each function based on its error (lower position to best ones). Then
the average ranking is calculated so that an algorithm with a lower
1 Code for the CEC’2013 Large Scale Global Optimization benchmark: https: 
/www.tflsgo.org/special s essions/wcci2020.html}new-code (accessed on April 
6th, 2020). 
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20 
average ranking value is declared to perform better, on average, than
other with a higher ranking value. 

• A particular measure proposed in the considered benchmark , which as-
signs for each function a different score to each algorithm, based on
its ranking position. 

The performance measure recommended in competitions with the
EC’2013 benchmark is the second one of these options. However, we
ill first depict the average ranking, since it evaluates the performance
f algorithms in a more general and understandable way. 

.2.3. Selecting the reference algorithms as per Guideline #1 

In order to do a right comparison, a clear criterion is needed to select
he algorithms included in the comparison, aiming at fairly proving the
onvenience of the algorithm in regards to its competitive performance
ith other methods. Following the guidelines, we should: 

• Compare against reference algorithms : in this benchmark DECCG
[23] will take this role. 

• Compare against similar algorithms : this aspect is specially relevant
when the proposed algorithm is a modified version of a previously
published approach. In our case, SHADE-ILS can be deemed a new al-
gorithm. However, other proposals featuring similar concepts were
previously proposed in the literature, such as IHDELS [118] . Fol-
lowing our guidelines, we have included these previous methods for
their comparison to our proposal. 

• Compare against competitive algorithms : this is often a hard decision
to make, since it is difficult to scrutinize the entire state-of-the-
art related to the optimization problem/algorithm/benchmark un-
der consideration. However, since the benchmark is widely used in
international competitions, we can use the winning approaches in
these competitions as competitive algorithms to which to compare
our proposed approach. As such, one of the solvers in this field is
MOS-CEC2013 [119] , which has been the best algorithm in these
competitions for years. Additionally, we are going also to include
MLSHADE-SPA [120] in our comparison, as it was reported to out-
perform MOS-CEC2013 results in the 2018 competition. Nowadays,
there are other competitive algorithms, but we focus on the algo-
rithms proposed until 2018, the year in which the algorithm was
presented [117] . 

On balance, we compare our method against a considered previous
ersion (IHDELS), competitive algorithms (MOS-CEC2013, MLSHADE-
PA), and a reference algorithm (DECCG). 

.2.4. Testing and validating the results as per Guideline #2 

After the design of the experimentation, experiments are carried out,
nd results are validated. Following the recommendations about statis-
ical validation in Guidelines 3.2 and 4.1 , normality or homocedasticity
ests should be performed. However, it has been proven that such tests
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Table 17 

Average ranking of the al- 
gorithms considered for the 
statistical comparison. 

Algorithm Ranking 

SHADE-ILS 1.967 
MLSHADE-SPA 2.433 
MOS-CEC2013 2.700 
IHDELS 3.633 
DECCG 4.267 

Table 18 

Statistical validation (SHADE-ILS is the control algorithm). 

SHADE-ILS versus Wilcoxon p-value Wilcoxon p-value ∗ 

MLSHADE-SPA 1.51e-01 1.51e-01 ≈
MOS-CEC2013 4.79e-02 9.58e-02 ≈
IHDELS 1.53e-03 2.50e-02 

√

DECCG 8.36e-03 6.10e-03 
√

√
: statistical differences exist with significance level 𝛼 = 

0 . 05 . ∗ : p-value corrected with the Holm procedure. 
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Fig. 8. Average ranking of the algorithms for different numbers of fitness eval- 
uations.. 
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o not usually pass for a benchmark as the chosen one [41] . Therefore,
e have opted for non-parametric tests, given that it is unlikely that
ormality and homocedasticity hold for the CEC’2013 benchmark. 

Thus, the first step to take is to calculate the average ranking, fol-
owed by the non-parametric hypothesis test. In order to compare the
lgorithms, we resort to Tacolab [116] 14 , a web tool that eases the ap-
lication of different comparison methods among algorithms. 

Table 17 shows the average ranking of the four algorithms under
omparison over the CEC’2013 LSGO benchmark. We recall that SHADE-
LS is the new algorithmic proposal, whereas MLSHADE-SPA is another
roposal presented in the same competition than IHDELS, and MOS-
EC2013 and DECCG are the two state-of-the-art methods considered as
eference algorithms. The table depicts the average ranking computed
rom the relative position of the four methods when ranked for each
f the functions in the benchmark. As can be observed in this table,
HADE-ILS exhibits a slightly better performance than MLSHADE-SPA
nd MOS-CEC2013, and a much better rank than IHDELS and DECCG. In
articular, although the preceding approach (IHDELS) performed worse
han MOS-CEC2013, SHADE-ILS renders a significantly better perfor-
ance. This aspect is quite important, because it is not common to di-

ectly design a competitive algorithm from scratch. 
As stated in Guideline #2 ( Section 4 ), performance measures like the

verage ranking are not conclusive, since performance gaps may occur
ue to the stochastic nature of the algorithms under comparison. This is
he reason why these results should be further analyzed for elucidating
hether the differences are significant. For this purpose, we use the
riedman rank-sum test. The p-value reported by this test is 4.87e-03,
hich is clearly significant at the 𝛼 = 0 . 05 confidence level. Now that the
forementioned differences have been assessed, we can proceed towards
he multiple comparison, including a familywise error rate correction
ackled with the Holm procedure. 

Table 18 presents the results of this analysis. As can be observed,
ifferences are significant between SHADE-ILS, DECCG and IHDELS. Re-
arding MLSHADE-SPA, there are not statistical differences with respect
o SHADE-ILS. Finally, in the case of MOS-CEC2013, there are also no
tatistical differences after applying the Holm correction procedure and
sing a confidence level of 5%, yet increasing the confidence level up to
0% would make it possible to conclude that differences are statistically
ignificant. This comparison should also consider different checkpoints,
.g., 1% , 10% and 100% , or every 10% of the maximum number of fit-
ess evaluations available. This complementary analysis would reflect
14 Tacolab website: https://tacolab.org/ 
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21 
ot only the final result of the algorithms, but also their convergence
peed. 

Besides that, we indicated in Section 4.2 that a graphical visualiza-
ion is useful for the analysis. In this case, we complement the study
ummarized in Table 17 with Fig. 8 . In this figure, it is more evident
hat the differences between algorithms increase with the number of
tness evaluations: whereas MOS is better than DECCG and IHDELS,
oth MLSHADE-SPA and SHADE-ILS improve their results since 600,000
valuations, showing that SHADE-ILS achieves the best average ranking
ith 600,000 and 3,000,000 evaluations. Ideally, a convergence plot

ould be more informative, but in the CEC’2013 benchmark the mile-
tones posed by the competition are very reduced, so a bar plot like the
epicted one results to be more helpful for the purpose of this analysis.

.2.5. Components analysis and tuning as per Guideline #3 

As mentioned before, a comparison of a proposed method with just
eference and/or state-of-the-art algorithms is usually not enough. Fol-
owing Guideline #3 ( Section 5 ), when analyzing the algorithm it is
lso important to clarify the objectives for the proposed design, and
hen show quantitative evidence of the claims about the behavior of the
lgorithm. This way, the study can shed light on the influence of the
ifferent components over the reported final results. In our use case, we
o not explain the objectives and main ideas of the algorithm. Instead,
e remark that the main changes featured by SHADE-ILS with respect

o IHDELS is i) a modification of the Differential Evolution component
from SaDE to SHADE); and ii) the restart mechanism. We refer inter-
sted readers to [20] for further details. 

Table 19 shows the results obtained by the different components of
he algorithm. This table clearly exposes that the outperforming behav-
or of the proposed method is due to all its novel contributions, rather
han a subset of them. Furthermore, these changes do not add complex-
ty to the overall search process. 

Following Guideline #3, the use of an automatic tuning mechanism
s also recommended for the different algorithms in the comparison.
owever, in our case we use the results reported by their authors in

he contributions where the algorithms were first presented, so it is ex-
ected that these results were obtained by using the best parameter val-
es. Regarding the parameter values of the SHADE-ILS proposal, they
hould be obtained by a tuning process, ideally conducted by an au-
omatic tool. In our case, a manual tuning has been conducted due to
omputational constraints (in particular, processing time). If more re-
ources for computation were available, a complete tuning process could
e conducted by resorting to available tools such as the ones commented
n Subsection 5.4 . 

.2.6. Justifying the usefulness of the algorithm as per Guideline #4 

Following Guideline #4 ( Section 6 ), there are several ways to show
he usefulness of an algorithm: 

https://www.tacolab.org/
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Table 19 

Comparisons between different components of the proposal. 

Func. Using SHADE + New Restart Using SaDE + New Restart Using SHADE + Old Restart IHDELS 

𝐹 1 2.69e-24 1.21e-24 1.76e-28 4.80e-29 

𝐹 2 1.00e + 03 1.26e + 03 1.40e + 03 1.27e + 03 
𝐹 3 2.01e + 01 2.01e + 01 2.01e + 01 2.00e + 01 

𝐹 4 1.48e + 08 1.58e + 08 2.99e + 08 3.09e + 08 
𝐹 5 1.39e + 06 3.07e + 06 1.76e + 06 9.68e + 06 
𝐹 6 1.02e + 06 1.03e + 06 1.03e + 06 1.03e + 06 
𝐹 7 7.41e + 01 8.35e + 01 2.44e + 02 3.18e + 04 
𝐹 8 3.17e + 11 3.59e + 11 8.55e + 11 1.36e + 12 
𝐹 9 1.64e + 08 2.48e + 08 2.09e + 08 7.12e + 08 
𝐹 10 9.18e + 07 9.19e + 07 9.25e + 07 9.19e + 07 
𝐹 11 5.11e + 05 4.76e + 05 5.20e + 05 9.87e + 06 
𝐹 12 6.18e + 01 1.10e + 02 3.42e + 02 5.16e + 02 
𝐹 13 1.00e + 05 1.34e + 05 9.61e + 05 4.02e + 06 
𝐹 14 5.76e + 06 6.14e + 06 7.40e + 06 1.48e + 07 
𝐹 15 6.25e + 05 8.69e + 05 1.01e + 06 3.13e + 06 
Better 12 1 0 2 
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• Quality of the results : in this case, given the good results in the com-
parisons against state-of-the-art and reference methods, the scientific
value of the contribution is clear. 

• Technical novelty : the combination of local search methods and the
hybridization of SHADE are novel. However, for the sake of concise-
ness we will not elaborate here on the originality of these ingredi-
ents, as it would require an exhaustive review of the recent history
of DE approaches for large-scale global optimization. We defer the
reader to the analysis made in [117] in this regard. 

• Methodological contribution : SHADE-ILS improves a previous hy-
bridization of DE with local search [118] by embracing, among other
algorithmic additions, Success-History based Adaptive Differential
Evolution (SHADE) at its core, which culminates a historical series
of adaptive DE solvers. This poses no doubt on the scientific contribu-
tion of this study, as can stimulate new research directions towards
considering new local search methods hybridized with SHADE. 

• A special attention should be given to the simplicity of SHADE-ILS.
In this algorithm the model is not very complex, and the number
of parameters is simpler than other proposals (due that its compo-
nents require few parameters). Besides, changes made with respect
to IHDELS do not increase its number of parameters. 

.2.7. Summary of the use case 

On a closing note, the use case depicted in this section follows most
f the guidelines of our proposed methodology. As in the previous use
ase, the main procedures followed are highlighted in Fig. 7 . In addition,
e briefly describe now the main actions taken for each of the proposed
uidelines: 

• Guideline #1: we have resorted to the standard CEC’2013 bench-
mark, which is widely accepted by the community working on large-
scale global optimization. Also, we have checked that the benchmark
follows several of the requirements imposed by the guidelines. Fi-
nally, we have compared our proposed method against similar state-
of-the-art techniques and a reference baseline from the field. 

• Guideline #2: as has been shown throughout the discussion, the val-
idation of the results has been done according to the good practices
prescribed in Section 4 , including non-parametric hypothesis tests.
Also, we have also shown how several results can be properly visual-
ized to make the outcome of the comparisons more understandable
to the audience. 

• Guideline #3: we have clearly highlighted the objectives of the al-
gorithms, and we have compared the influence of the different novel
elements of the proposed algorithm. Thus, we have shown that the
good results are not influenced by just one component, but to the
synergy between the different elements. We have also shown that
22 
the proposal is not unnecessarily complex. Finally, a tuning process
has been also applied. 

• Guideline #4: in this use case, the proposal of our method is easy
to justify. SHADE-ILS not only improves a previous hybridization of
DE with local search [118] , but also surpasses MOS-CEC2013 and
MLSHADE-SPA (although without statistical significance), which
have dominated the competition over the last few years. This poses
no doubt on the scientific contribution of this study, as can stimulate
new research directions towards considering new local search meth-
ods hybridized with SHADE. In addition, the previous state-of-the-
art algorithm, MOS, has been clearly surprised by SHADE-ILS and
MLSHADE-SPA, hence becoming the most competitive algorithms
(with a preference by SHADE-ILS, by its better performance and sim-
plicity). 

. Conclusions and outlook 

In this work we have stressed on the need for circumventing com-
on mistakes and flaws observed in the field of bio-inspired optimiza-

ion, particularly when new meta-heuristic algorithms are proposed and
xperimentally validated over benchmarks designed to this end. Specif-
cally, we have reviewed and critically analyzed contributions deal-
ng with experimental recommendations and practices related to meta-
euristics. Following our literature study, we have prescribed a set of
ethodological recommendations for preparing a successful proposal

f bio-inspired meta-heuristic algorithms, from the definition of the ex-
erimentation to the presentation of the results. A number of useful
echniques (graphically summarized in Fig. 9 ) have been suggested for
rospective studies to implement our proposed methodological frame-
ork, in an attempt at ensuring fairness, coherence and soundness in

uture studies on the topic. Two different case studies have been de-
igned to exemplify the application of our prescribed methodology, dis-
ussing on the results of the application of each guideline. Although both
ase studies deal with well-known benchmarks, we envision that our
ethodology can be a core part of the design process of meta-heuristic

lgorithms for real-world optimization problems, following the guide-
ines of our recently published tutorial in this matter [121] . In those
ases, the statistical validation of the results should not be considered
he final step of the analysis: the significance of the results should be an-
lyzed from different perspectives, and taking into consideration other
easures of practical relevance (e.g. memory consumption). 

In such a vibrant field, with new algorithmic proposals flourishing
igorously, common methodological grounds are urgently needed. Sci-
ntific advancements in years to come will only be achieved if the com-
unity reaches an agreement on how algorithms should be tested and

ompared to each other. This is indeed the aim of our work: to gather
nd group recommended practices around an unified set of systematic
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Guideline #1: Benchmarks
• Use standard benchmarks unless the problem is new
• Check the properties of the selected benchmark (e.g. bias, insufficiency, modality)
• Utilize performance measures linked to the problem under study
• Select appropriate reference algorithm(s) and include them in the comparison

Guideline #2: Validation of Results
• Perform an statistical analysis by using acknowledged techniques and tools
• Use Bayesian analysis as an alternative for significance testing
• Implement correction procedures for multiple comparisons
• Resort to visualization techniques for comparative analysis

Guideline #3: Components analysis and parameter tuning
• Clearly state the objectives and rationale for the proposal design
• Provide quantitative evidence of design claims (e.g. exploration/exploitation tradeoff)
• Propose simple algorithmic designs and operators
• Perform parameter tuning for all algorithms in the benchmark

Guideline #4: Why is my algorithm useful?
• Avoid metaphoric descriptions and describe components non-ambiguously
• Discriminate the novel aspects of the proposal, and provide arguments for their novelty
• Design experiments towards quantifying the gain and contribution of the proposal
• Support the statements and claims with a rigorous and fair discussion of the results

FA
IR

N
ES

S

Fig. 9. Guidelines composing the methodological framework for comparing meta-heuristics proposed in this work. 
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ethodological guidelines. We sincerely hope that the material and pre-
criptions given herein will guide newcomers in their arrival to this ex-
iting research avenue. 
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