
Applying Memetic algorithm with Improved
L-SHADE and Local Search Pool for the 100-digit

challenge on Single Objective Numerical
Optimization

1st Daniel Molina
DASCI Andalusian Institute of Data Science

and Computational Intelligence, University of Granada
Granada, Spain

dmolina@decsai.ugr.es

2nd Francisco Herrera
DASCI Andalusian Institute of Data Science

and Computational Intelligence, University of Granada
Granada, Spain

herrera@decsai.ugr.es

Abstract—In this paper, we have proposed a new optimization
algorithm, Memetic improved L-SHADE with a local search
pool, MiLSHADE-LSP, a memetic algorithm that combines an
improved L-SHADE with a local search pool. Improved L-
SHADE modifies several important parameters during the run
to encourage exploration in initial stages and to focus later the
search around the most promising solutions. The local search
pool is responsible to continuously improve the best solutions.
MiLSHADE-LSP uses a pool of two different local search, LS,
methods, the Broyden-Fletcher-Goldfarb-Shanno method with
limited memory, L-BFGS-B, and the Solis-Wets algorithms,
with an adaptive mechanism to choose which one of them is
applied in each iteration selecting which had obtained a greater
improvement last time it was applied. In order to avoid waste LS
applications, the proposed algorithm stores a list of individuals
that were not previously improved by each LS method. It also
includes a restart mechanism to explore new areas when the
search is stuck, restarting the population but maintaining the
best found solution, and resetting the LS Pool parameters. In the
experimental section we have tested and analyzed MiLSHADE-
LSP using the proposed benchmark for the competition 100-digit
challenge on Single Objective Numerical Optimization, obtaining
that the LS Pool improves the algorithm, both achieving more
optima and with a better performance. Results obtained show
that MiLSHADE-LSP is a very competitive algorithm.

Index Terms—Continuous optimization, global optimization,
memetic algorithm, single objective numerical optimization, nu-
merical optimization, differential evolution.

I. INTRODUCTION

There are many optimization problems in which there is not
any suitable and exact technique to solve it in a reasonable
time. In these problems, Evolutionary Algorithms, EA [1],
have arisen as a very good alternative, because they are able
to obtain acceptable results with limited resources.

In order to obtain an adequate search, it is important to
achieve a good trade-off between a exploration of all domain
search and a exploitation of the most promising solutions. For
doing that, hybrid meta-heuristics, like Memetic Algorithms,
MA [2], [3], which combine different algorithms as compo-
nents, are widely used. Initially, MAs were the combination of

a population-based algorithm with a local search improvement,
but nowadays there are more complex combination of different
algorithms. Also, the convenience of using a pool of different
local search methods has been proved [4].

Another important factor that can contribute to a good
balance is focused on exploring in the early stages, and later,
as the search progresses, on seeking more in depth around
the best solutions. One option is to use initially a greater
population to maintain a higher diversity at initial stages, and
during the run to decrease the population size, as L-SHADE
[5] does. Another strategy is to adapt several parameters during
the search to enforce exploitation as the search evolves, as the
improved L-SHADE [6].

In this work, we propose a new memetic algorithm, memetic
improved L-SHADE with a local search Pool, MiLSHADE-
LSP, which combines the continuous exploitation by using
a local search pool with an EA, improved L-SHADE, iL-
SHADE, that enforces the exploitation during the search. The
main features of our proposal are:

• A decreasing population size, to enforce diversity at the
beginning of the search, and focusing the search around
most promising solutions. If the population prematurely
converges, it is restarted.

• In each iteration, we are going to improve a promising
solution by one local search, LS, method.

• The behavior of LS method strongly depends on the
problem, so the proposal has a pool of LS methods, and
it chooses each time which LS method is going to be
applied.

• It stores when a solution was not previously improved
by a LS method, to avoid applying it again, wasting
resources.

We are going to test our proposal with the 100-digit
challenge on single objective numerical optimization [7]. One
interesting feature of this benchmark is that integrates difficult
problems, and they are evaluated both the number of right

978-1-7281-2153-6/19/$31.00 c�2019 IEEE 7

digits achieved and the number of evaluations required to
obtain them. Thus, although it could be considered a bench-
mark focused in the accuracy, the convergence speed of the
algorithm is also taken in account. Results obtained show that
proposed algorithm is very competitive.

This paper has the following structure. In Section II, we
are going to describe the proposal in detail. In Section III, the
experimental environment is introduced, showing the results
obtained by the proposal, and analyzing the results. Finally,
in Section IV, the main conclusions and several future works
are summarized.

II. PROPOSAL: MEMETIC WITH IMPROVED L-SHADE

In this paper, we propose a memetic algorithm with im-
proved L-SHADE and a LS pool, MiLSHADE-LSP. The main
features of this proposal are:

• The use of an advanced EA, the improved L-SHADE [6],
responsible of the global exploration. This EA enforces
global exploration at the beginning, focusing exploration
around the most promising solutions during the run.

• A restart mechanism when the population prematurely
converges.

• A LS Pool that contains different and complementary LS
methods. The criterion used is to chose each time the
algorithm whose last application had obtained a better
relative improvement.

• A memory keeping, after the LS application, the solu-
tions which were previous selected without a significant
improvement. This memory is used to avoid applying a
LS method many times without improvement.

In the following, we are going to describe the global scheme
of the proposal, and later its components, the evolutionary
algorithm responsible of the global exploration, the local
search mechanism, and the restart mechanism.

A. Memetic framework

Algorithm 1 shows the global scheme of the proposal. It
can be seen that in each iteration the population evolves as
expected by the iLSHADE (lines 1-8).

When a new population is generated, one LS method from
the LS Pool is selected, and the solution to apply it is chosen
from the p best solutions. If there is no solution available, no
LS is applied. The relative improvement is calculated, and it
will be used for future selections (lines 17-24).

After the LS application, it is decided if the algorithm must
be restarted, in that case the population is randomly reset,
maintaining the current best solution in the next population
(lines 25-27).

B. Improved L-SHADE

The exploratory algorithm is the improved L-SHADE [6]
without any change. This algorithm has the following main
features:

• A very advanced self-adaptation of the DE parameters,
CR and F, allowing a good adaptation to each problem.

Algorithm 1 MiLSHADE-LSP scheme
1: popsize ← popsizeInitial.
2: p ← pInitial.
3: population ← random(dim, popsize).
4: pop fitness ← fitness function(popsize).
5: current best = min(pop fitness).
6: current best ← LS(initial solution).
7: while totalevals < maxevals do
8: population ← iLSHADE iteration(population, p).
9: totalevals ← totalevals+ popsize.

10: pop fitness ← fitness(popsize).
11: current best = min(pop fitness).
12: Update parameter p.
13: Update population size.
14: if new popsize < previous popsize then
15: population ← best individuals from population.
16: end if
17: Chose LS method from LS pool to apply.
18: solutionLS ← One of p best solutions not local optima.
19: previous ← fitness(solutionLS).
20: solutionLS , evalsLS ← LS(solution, bounds).
21: totalevals ← totalevals+ evalsLS .
22: new fit ← fitness(solution).
23: improvement ← (previous− new fit)/previous
24: Update improvement history of applying LS.
25: if Must restart then
26: Restart maintaining current best individual.
27: end if
28: end while

The only required parameters are related to the population
size.

• The mutation operator uses previous solutions stored in
an archive, increasing the diversity of the new solutions.

• The mutation operator is biased towards not always
selecting the best solution. Instead, it randomly selects
among the best p solutions.

In order to enforce more exploration at initial stages,
and increasing selective pressure later, different parameters
change during the run, according to the ratio of evaluations
r = numevals/maxevals:

• The population size is linearly reduced during the
run: popsize = popsizeInitial − r · (popsizeFinal −
popsizeInitial).
When the population is reduced, only the individuals with
better fitness are maintained. This reduction produces
a greater diversity in the initial population, to enforce
exploration, leaving later in the population only the most
promising solutions to focus the search around them.

• The parameter p used to indicate the number of best
solutions considered for the mutation also is reduced:
p = pInitial + r · (pFinal − pInitial).
Thus, in initial stages, more promising solutions are used
to guide the search, and later only a few of them are used,

8

the best ones, to enforce selective pressure.
• The allowed values for CR and F depend on the number

of iterations, by the following constraints:

CR, F constraints

�
CR ≥ 0.5, F ≤ 0.7 if r ≤ 0.25

CR ≥ 0.25, F ≤ 0.8 if r ≤ 0.5

Thus, in initial stages, at least the half of variables
for solutions are mutated, and later, a smaller ratio of
variables can be mutated.

For more details, you can consult [6].

C. Local Search Application

The proposal, for each iteration, after the steps of mutation,
crossover, selection, and population reduction (see previous
subsection), applies a LS method to one solution, to try to
improve even more its fitness (lines 17-23 in the Algorithm
1).

This process is done using a LS pool composed by different
LS methods and feedback information about previous appli-
cations. In this proposal, the LS methods used are the well-
known Solis-Wets method [8], that applies small changes using
a normal distribution with an adaptive variance, and the classic
L-BFGS-B [9] that uses an approximation of the gradient
to improve the search. However, the LS methods could be
changed without problem, the LS Pool is flexible enough to
change both the LS methods considered and its number.

In the following, we indicate the steps of the LS phase:
a) Selection of the LS method: Initially, every one of the

available LS methods are selected.
After each LS application, it is stored the last

ImprovementLS , obtained by Equation 1:

ImprovementLS =
previous fitness− new fitness

previous fitness
(1)

In each iteration, it is selected the LS method with a greater
last ImprovementLS . It is a simple and efficient mechanism,
capable of obtaining very good results [10].

b) Selection of the Solution to improve: It is selected
one of the p (parameter already used by iL-SHADE) best
solutions in the population. The idea is to select one solution
that was not previously applied by the same LS method
obtaining an insufficient improvement (using a threshold value,
ThresholdLS). For doing that, for each LS Method it is kept a
list of solutions which were previous selected without obtained
enough improvement in the LS application.

First, the solution with best fitness is selected, only if it was
improved enough. If not, it is selected randomly another one
of the p best solutions, while it was not improved enough. It
could happen that the LS method was previously applied to
all p best solutions without significant improvement, in that
case, the process finishes here.

c) Applying the LS method to the selected individual:
In that step, if a solution was chosen, the selected LS method
is applied to that individual during LSEval evaluations. For
Solis-Wets’ algorithm, an initial step size of Istep is applied.

d) Calculating the improvement and updating the de-
cision parameters: After each LS method, it is calculated
ImprovementLS obtained by that LS following Equation 1.
ImprovementLS is used to update the previous value for the
executed LS method.

If the relative improvement is lower than a ThresholdLS

value, solutions before and after the LS method are kept into
the LS pool to avoid selecting them again (for the same LS
method).

D. Restart technique

The final steps in each iteration decide if the population
should be restarted (lines 25-27 in Algorithm 1).

• It is considered that the population must be restarted
when the difference in fitness between the best and
the worst solution in the population is lower than a
ThresholdRestart value.

• The restart implies that, at exception of the current best
solution, all the other solutions in the populations are
randomly generated, and their fitness calculated again.
The restart takes in account the current population size
(see subsection II-B).

• Additionally, not only the population is restarted, the
LSPool parameters and memories are also updated (its
history of last improvements, and the memory of solu-
tions are also removed).

III. EXPERIMENTAL SECTION

A. 100-digit benchmark

The algorithm is tested using the benchmark, proposed by
the 100-digit competition1 [7].

This benchmark is composed by 10 different functions, and
the goal is to achieve the optimum value (1.0 in all functions)
with at least 10 decimal places. The 10 decimal places for the
10 problems are which give it the name 100-digit challenge.

The source code of the benchmark is available in C++
and Matlab 2, that we have used from Python with our
own package, freely available by us including source code
at https://github.com/dmolina/cec2019comp100digit.

The functions have several search domains (although the
majority have range [-100, 100]), and different dimension (9
for f1, 16 for f2, 18 for f3, and 10 for the others).

Experiments have been carried out with the following
process:

• For each function, the algorithm is run 50 consecutive tri-
als, each one with a different initial population randomly
generated.

• It is counted the total number of correct digits of the 25
trials that give the best results.

• The number of evaluations for each level of digit accuracy
is registered.

1http://cec2019.org/programs/competitions.html\#cec-06
2http://www.ntu.edu.sg/home/epnsugan/index files/CEC2019/CEC2019.

htm

9

• The score for that function is the average number of
correct digits in the best 25 trials, and the total score
is obtained.

At different of the majority of benchmarks, none stopping
criterion is given, it is up to the researcher to decide when
the algorithm should stop. That flexibility may suggest that
MiLSHADE-LSP, that uses the ratio of evaluations inside
its strategy, could not be a good option when an arbitrary
maxevals is used. However, as we will see later, it is not
true, because we obtain very good results.

In the comparisons carried out, we analyze both the final
scores (total and by functions) and the required number of
evaluations to reach the number of decimal digits.

You can consult [7] to get more details about the benchmark
and the experimental conditions.

B. Tuning of Parameters
Although it is acceptable to tune 2 parameter(s) indepen-

dently for each problem, in MiLSHADE-LSP we are going
to analyze results with and without the tuning. This double
analysis is carried out because we want also to observe
the behavior of our proposal considering each problem as a
black-box one. The only information used is the dimension
value (to define the initial parameter values), which is a
parameter known for every real-world problem, and the ratio
of evaluations (used to adapt both the population size and the
p parameter used in the mutation method).

Component Parameter Value

Initial popsize 12 · dim
iL-SHADE Final popsize 4

p from 0.2 to 0.1

LS Methods Solis Wets, L-BFGS-B
LSPool LS eval 100

ThresholdLS 10−10

Restart ThresholdRestart 10−8

TABLE I: Fixed parameter values

Component Parameter Default value

LSPool IStep 10%

iL-SHADE maxevals 100000 · dim

TABLE II: Default values for parameters used for tune

The proposal has the fixed parameter values indicated in
Table I. The majority of parameters values used are the
recommended values by the authors of iLSHADE [6], the
only additional parameters are LS eval and I Step. In Table
II, there are the default parameter values for parameters used
in the tuned version. The maximum evaluation number could
be consider high, but the majority of optima are obtained in a
small percentage of the evaluations.

C. Results
In this section, we analyze the results obtained by

MiLSHADE-LSP. First, we are going to observe if the changes

made to iL-SHADE (mainly the introduction of the LS im-
provement) improve the results. Later, we are going to analyze
the influence of the maxevals parameter. Finally, we are
going to analyze the results obtained with and without tuned
parameters.

a) Improvement from non-memetic algorithm (iL-
SHADE): In order to study the convenience of the memetic
version of the iL-SHADE, first we are going to show the
results, both of original iL-SHADE and the memetic version
proposed in this work. The values of all shared parameters
are the same.

Tables VIII and IX show the obtained results, as it was asked
for the competition, for original iL-SHADE and MiLSHADE-
LSP, respectively. These tables show, from the best 25 of the
50 runs, the number of times that each number of correct digits
is achieved.

iL-SHADE MiLSHADE-LSP

42.04 53.36

TABLE III: Score in original iL-SHADE vs non-tuned
MiLSHADE-LSP (maxevals = 100000 · dim)

We summarize the score of iL-SHADE and MiLSHADE-
LSP in Table III. It can be observed that MiLSHADE-
LSP score is higher than 53 (more than 10 points more than
without LS). In details (results are in Table VIII for iL-SHADE
and in Table IX for MiLSHADE-LSP), we can observe that
both achieve the total of 10 correct digit in functions f1, f2, f3,
and f5. However, using the LS method, the algorithm achieves
more correct digits in more functions, f4, f6, f8, and f10,
obtaining a better score. Other improvement of MiLSHADE-
LSP is the reduction of evaluation number to achieve similar
results. Table IV shows the reduction in number of evaluations
to achieve the total digit reduction in functions optimized by
both: f1, f2, f3, and f5. While in function f2 the memetic
version takes more evaluations, for the others functions the
introduction of the LS greatly reduces the number of eval-
uations. In these problems, the optima are obtained with
nearly a 18% of original number of evaluations. This is a
very significant improvement in performance, specially in real-
world problems.

Function iLSHADE MiLSHADE-LSP Ratio

f1 2894 307 10%
f2 173041 287444 166%
f3 1757291 72308 4%
f5 68928 9819 14%

Total 2002154 369878 18%

TABLE IV: Ratio of evaluations iL-SHADE vs MiLSHADE-
LSP in optimized functions

b) Influence of the maxevals parameter: MiLSHADE-
LSP has a series of parameters whose values strongly depend
on the current ratio of evaluations done. Thus, in our proposal,
changing maxevals (the maximum evaluation number) not

10

Function/maxevals 10 · 104 · dim 25 · 104 · dim 50 · 105 · dim
1 10.00 10.00 10.00
2 10.00 10.00 10.00
3 10.00 10.00 10.00
4 0.44 0.96 0.04
5 10.00 10.00 10.00
6 2.04 2.40 0.84
7 0.00 0.00 0.00
8 0.12 0.24 0.60
9 2.00 1.80 0.92

10 8.76 9.96 5.60

Total 53.36 55.36 48.00

TABLE V: Score of MiLSHADE-LSP with different maxevals
values

only involves a greater number of evaluations, allowing to
increase the accuracy of solutions, but also it could affect the
search balance. A higher maxevals value gives more resources
to achieve more accuracy in the search, but, at the same
time, encourages a greater global exploration, that could be
excessive to obtain good results.

Table V shows the scores by function and total for different
values of maxevals (10 · 104 · dim, 25 · 104 · dim, and 50 ·
104 · dim). It can be observed that increasing the number of
evaluations produces a better score, but the improvement is
lower than expected, only two more points with more than
double of evaluations. However, when maxevals increases
even more, results are worse, maybe due to a worse trade-
off between exploration and exploitation. Thus, the fact that
MiLSHADE-LSP has adaptive variables related to the ratio
of evaluations, becomes our algorithm very sensitive to the
maxevals parameter, as expected.

Function Maxevals1 Maxevals2 (In %)
/evaluations 10 · 104 · dim 25 · 104 · dim Evals Maxevals1

Evals Maxevals2

f1 307 307 100%
f2 287444 276423 103%
f3 72308 65767 109%
f4 988132 2285193 43%
f5 9812 8313 118%
f6 125047 183564 64%
f10 926102 2139961 43%

Total 2140640 6804199 35%

TABLE VI: Ratio of evaluations in optimized runs functions
for different maxevals

In order to study the speed of convergence, Table VI shows
the number of evaluations when the optima are calculated
with different maxevals. The third column is the relative
difference in evaluations to achieve the optima between lower
maximum evaluation number (10 · 104 · dim) and with the
greater evaluation number (25 · 104 · dim). A value lower
than 100% means that the optima can be obtained with less
evaluations when maxevals is lower. On the contrary, a value
higher than 100% means that it is more efficient a greater
maxevals. While in functions f1, f2, f3 and f5, the number
of evaluations are lightly reduced when maxevals increases,

Function maxevals IStep

1 10 · 104 · dim 10%
2 50 · 104 · dim 10%
3 10 · 104 · dim 10%
4 50 · 104 · dim 5%
5 50 · 104 · dim 5%
6 10 · 104 · dim 20%
7 25 · 104 · dim 5%
8 50 · 104 · dim 10%
9 10 · 104 · dim 10%

10 10 · 104 · dim 5%

TABLE VII: Tuned Parameter Values

in functions f4, f6, and f10, the number of evaluations
greatly increases with a higher maxevals. Although a higher
maxevals increases lightly the score, makes the convergence
slower. Thus, maxevals = 10 · 104 · dim could be considered
the most adequate value if speed is important.

c) Tuned vs non-tuned MiLSHADE-LSP: The competi-
tion 100-digit allows researcher to tune 2 parameter(s) inde-
pendently for each problem. Table VII shows the used tuned
parameters in our case, maxevals and IStep. With this tuning
we obtain the results shown in Table X. It can be seen that
tuned version achieves a total score of 60.72, more than 7
points more than the non-tuned version. In particular, it is
obtained the optima in all cases in one more function, f10.
Also, it is obtained a significant improvement in functions f4,
f6 (it obtains the optimum 13 times instead of 5 times), and
f8 (it obtains two right digits 7 times instead of only once).

To summarize, the LS pool improves both the results and
the performance. Moreover, an adequate maxevals value is
needed to obtained a good trade-off between exploration and
exploitation. Finally, tuning maxevals and IStep parameters
by function improves significantly the accuracy. In general,
the proposed algorithm, MiLSHADE-LSP, obtains very good
results in the 100-digit challenge.

IV. CONCLUSIONS

In this paper, we have proposed a new optimization algo-
rithm, MiLSHADE-LSP, a memetic algorithm which combines
an adaptive differential evolution algorithm that modifies its
behavior during the run, with a LS Pool that continuously
improves the results. MiLSHADE-LSP uses a pool of two
very different LS methods, the L-BFGS-B and the Solis-Wets
algorithms. A memory is used to adapt which LS method is
selected in each iteration. The DE algorithm, iL-SHADE, is
continuously applied to the same population among iterations,
to introduce the performance obtained by the LS to guide
the search. Also, it has a restart mechanism to explore new
areas when the search is stuck, restarting the population, and
resetting the LS Pool parameters.

In the experimental section, we have tested and analyzed
MiLSHADE-LSP using the proposed benchmark for the com-
petition 100-digit challenge on Single Objective Numerical
Optimization. First, we have compared the contribution of
the memetic proposal over the original iL-SHADE, obtaining
that it contributes to improve not only the results, but also

11

its performance. Later, we have analyzed the behavior of the
proposal when the maximum evaluation number is increased.
We have obtained that, due to the adaptive parameters, a
greater maxevals could getting worse results. Also, even
when a greater maxevals increased lightly the results in
score, the speed to reach the optimum was reduced in several
functions. Finally, as it was allowed in the competition, we
have tuned two parameters independently by each problem,
maxevals and the initial step size, IStep. We have observed
that tuned-version got better results, obtaining a total score
of more than 60. Thus, MiLSHADE-LSP have achieved very
good results in the benchmark for the competition.

As a future work, we are going to try to adapt the IStep,
and improve other components, like the restart mechanism, to
improve even more the results.

ACKNOWLEDGMENTS

This work was supported by grants from the Spanish
Ministry of Science (TIN2014-57481-C2-2-R, TIN2016-8113-
R, TIN2017-83132-C2-2-R and TIN2017-89517-P).

REFERENCES

[1] T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of Evolu-
tionary Computation. Bristol, UK: IOP Publishing Ltd., 1997.

[2] P. Moscato, “On evolution, search, optimization, genetic algorithms
and martial arts: towards memetic algorithms,” California Institute of
Technology, Tech. Rep. 826, 1989.

[3] P. Moscato and M. Norman, “A competitive and cooperative approach
to complex combinatorial search,” Caltech Concurrent Computation
Program, Tech. Rep. 790, 1989.

[4] Y. S. Ong and A. J. Keane, “Meta-lamarckian learning in memetic
algorithms,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 2, pp. 99–110, April 2004.

[5] R. Tanabe and A. S. Fukunaga, “Improving the search performance
of SHADE using linear population size reduction,” in Proceedings of
the IEEE Congress on Evolutionary Computation, CEC 2014, Beijing,
China, July 6-11, 2014, 2014, pp. 1658–1665.

[6] J. Brest, M. S. Mauec, and B. Bokovi, “iL-SHADE: Improved L-SHADE
algorithm for single objective real-parameter optimization,” in 2016
IEEE Congress on Evolutionary Computation (CEC), July 2016, pp.
1188–1195.

[7] K. Price, N. Awad, M. Ali, and P. Suganthan, “Problem definitions
and evaluation criteria for the 100-digit challenge special session and
competition on single objective numerical optimization,” Nanyang Tech-
nological University, Singapore, Tech. Rep., November, 2018.

[8] F. J. Solis and R. J. Wets, “Minimization by Random Search Tech-
niques,” Mathematical Operations Research, vol. 6, pp. 19–30, 1981.

[9] J. L. Morales and J. Nocedal, “Remark on algorithm 778: L-bfgs-
b: Fortran subroutines for large-scale bound constrained optimization,”
ACM Trans. Math. Softw., vol. 38, no. 1, pp. 7:1–7:4, Dec. 2011.

[10] A. Molina, D. LaTorre and F. Herrera, “SHADE with iterative local
search for large-scale global optimization,” in IEEE Congress on Evo-
lutionary Computation, 2018, pp. 1252–1259.

12

