
JSS Journal of Statistical Software
December 2016, Volume 75, Issue 4. doi: 10.18637/jss.v075.i04

Memetic Algorithms with Local Search Chains
in R: The Rmalschains Package

Christoph Bergmeir
Monash University

Daniel Molina
University of Cádiz

José M. Benítez
University of Granada

Abstract

Global optimization is an important field of research both in mathematics and com-
puter sciences. It has applications in nearly all fields of modern science and engineering.
Memetic algorithms are powerful problem solvers in the domain of continuous optimiza-
tion, as they offer a trade-off between exploration of the search space using an evolution-
ary algorithm scheme, and focused exploitation of promising regions with a local search
algorithm. In particular, we describe the memetic algorithms with local search chains
(MA-LS-Chains) paradigm, and the R package Rmalschains, which implements them.
MA-LS-Chains has proven to be effective compared to other algorithms, especially in
high-dimensional problem solving. In an experimental study, we demonstrate the advan-
tages of using Rmalschains for high-dimension optimization problems in comparison to
other optimization methods already available in R.

Keywords: continuous optimization, memetic algorithms, MA-LS-Chains, R, Rmalschains.

1. Introduction

Global optimization, i.e., finding the inputs to a function that yield minimal/maximal out-
put, is an important mathematical problem with applications in nearly all fields of modern
Science and Engineering. Nowadays, as the functions to optimize are often complex and high-
dimensional, mathematical analysis may be difficult, costly, or even impossible. In contrast,
computational power is steadily growing, and optimization has evolved to an important line of
research in Computer Sciences. Here, meta-heuristics are developed for general optimization
to produce approximations to an exact solution with sufficiently good quality in a reasonable
amount of time and with reasonable computational effort (Michalewicz and Fogel 2004). The
algorithms treat the target function in a black-box manner, i.e., no preconditions or further
information is required, such as continuity, differentiability, or derivatives of the function.

http://dx.doi.org/10.18637/jss.v075.i04

2 Rmalschains: Memetic Algorithms with Local Search Chains in R

One such meta-heuristic, which led to a vast amount of successful algorithms and implemen-
tations in the past years, is the evolutionary algorithm (EA) framework (Bäck, Fogel, and
Michalewicz 1997). Here, a population of possible solutions is evolved by altering (mutation)
the solutions, and by letting them interact with each other (crossover). The candidate solu-
tions are evaluated for their fitness, and newly created solutions replace the solutions with
worst fitness, in order to converge around the region with best fitness. Note that in the
context of EAs, the term solution is often used in the meaning of a candidate solution, i.e.,
a parameter configuration to be evaluated (Bäck et al. 1997). A solution is not necessarily a
good or an optimal solution.
Using a population allows EAs to perform good exploration of the search space, but sometimes
they are not capable of exploiting a promising region to reach the local optimum of that region.
So, the solutions they obtain are sometimes not accurate.
Local search (LS) methods, on the other hand, can improve a solution very quickly, but
they are not able to explore a complex search domain, as they find only local optima, i.e.,
solutions which are optimal in a certain region of the search space. Only for convex problems,
LS methods are fully suitable, as in this case a local optimum is also a global optimum (see,
e.g., Mullen 2014).
Memetic algorithms (MA; Moscato 1999; Krasnogor and Smith 2005) are a hybridization
between EA and LS methods, with the objective to take advantage of both the exploration
power of EAs and the exploitative power of the LS, therewith improving the overall results
(Goldberg and Voessner 1999). MAs that integrate an LS method within the EA iteration can
potentially obtain better results than applying a final LS method after the EA run, because
the improvements obtained by the LS can guide better the search to best solutions, allowing
that better solutions could be selected by the EA. As not all solutions are equally good, MAs
can obtain best results if they apply the LS method with a higher intensity, i.e., using more
fitness function evaluations (more iterations), to the most promising solutions, which are the
ones with best fitness.
In this paper, we present the package Rmalschains (Bergmeir, Molina, and Benítez 2016)
for R (R Core Team 2016) that implements various variants of the memetic algorithm with
local search chains paradigm (MA-LS-Chains; Molina, Lozano, García-Martínez, and Herrera
2010). MA-LS-Chains is an MA whose main feature lies in its ability to apply the LS various
times on the same solution, using every time a fixed amount of iterations/function evaluations.
The final state of the LS parameters after each LS application becomes the initial point of
a subsequent LS application over the same solution, creating an LS chain. This way, with
varying length of the chain, i.e., varying amounts that the LS is called on an individual,
MA-LS-Chains adapts the intensity of the LS to a solution in function of its quality.
The MA-LS-Chains algorithm family has proven to be very effective in continuous opti-
mization problems in the past. MA-SW-Chains, which employs the Solis-Wets algorithm
(SW) for LS, was the competition winner of CEC’2010 for high-dimensional optimization
(Tang, Li, and Suganthan 2010). MA-CMA-Chains, which employs the covariance matrix
adaptation evolution strategy (CMA-ES) as LS (see Section 2), performed very well in the
BBOB’2009 competition (Hansen, Auger, Ros, Finck, and Pošík 2010), and also on the data
of the CEC’2005 competition (Deb and Suganthan 2005; García, Molina, Lozano, and Herrera
2009); though it did not take part in the official competition, it was evaluated using the same
conditions in Molina et al. (2010). In this package, both LS methods are available and the

Journal of Statistical Software 3

user can choose which one will be used (the default LS method is CMA-ES).
There is already a host of choices for continuous optimization methods that are readily avail-
able in R; Section 4 gives an overview. However, an important result in research on optimiza-
tion is the existence of several “No Free Lunch” theorems, which “mean that if an algorithm
does particularly well on average for one class of problems then it must do worse on average
over the remaining problems” (Wolpert and Macready 1997). So, a method which takes into
account problem specific knowledge has the potential to perform better than general methods.
And though most optimization algorithms do not take into account problem-specific knowl-
edge explicitly, they are usually implicitly better/worse suited for certain types of problems.
Taking this into account together with the good performance of MA-LS-Chains, especially for
high-dimensional problems, we find it justified to present another package for optimization to
the R community. The Rmalschains package also performed well in a recent study by Burns
(2012), and in Section 5, we perform a comparison of our package to other methods, with a
focus on high-dimensional problems.
The algorithm is implemented in C++, and encapsulated in a library called librealea (Molina
2012), so that it can also be used outside of R. Rmalschains uses Rcpp (Eddelbuettel and
François 2011) to make the functionality of librealea accessible from within R. The pack-
age Rmalschains is available from the Comprehensive R Archive Network (CRAN) at http:
//CRAN.R-project.org/package=Rmalschains, and has a dedicated website at http://
sci2s.ugr.es/dicits/software/Rmalschains. Also, the interested reader can find further
information on the state of the art of EAs on the thematic web site of our research group on
“Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems”
(http://sci2s.ugr.es/EAMHCO/).
The remainder of this paper is structured as follows. Section 2 presents the theory of the
MA-LS-Chains algorithm, and Section 3 shows a brief example of the usage of the package.
Section 4 gives an overview on the other packages available in R for continuous optimiza-
tion, and Section 5 shows experiments comparing the methods already present in R with
Rmalschains. Section 6 concludes the paper.

2. The theory of the algorithm
In the following, we describe briefly the general scheme of the MA-LS-Chains algorithm and
its main components, i.e., the EA and the LS methods employed. For more details, the reader
may refer to Molina et al. (2010).

2.1. General scheme

The algorithm was designed with the idea that the LS should be applied with higher intensity
on the most promising regions. As promising regions, we consider the areas/regions where
solutions with good fitness are located.
MA-LS-Chains is a steady-state MA that is combined with different methods for the LS. It
uses a steady-state genetic algorithm (SSGA) as EA (Whitley 1989; Smith 2002). Different
from a generational algorithm, where the genetic operators are applied to large parts of the
population simultaneously, in a steady-state EA only single individuals are used at a time to
generate offspring, which replaces other single individuals of the population.

http://CRAN.R-project.org/package=Rmalschains
http://CRAN.R-project.org/package=Rmalschains
http://sci2s.ugr.es/dicits/software/Rmalschains
http://sci2s.ugr.es/dicits/software/Rmalschains
http://sci2s.ugr.es/EAMHCO/

4 Rmalschains: Memetic Algorithms with Local Search Chains in R

Algorithm 1 Pseudocode of MA-LS-Chains.
1: Generate the initial population
2: while not termination-condition do
3: Perform the SSGA with nfrec evaluations.
4: Build the set SLS of individuals which can be refined by LS.
5: Pick the best individual cLS in SLS .
6: if cLS belongs to an existing LS chain then
7: Initialize the LS operator with the LS state stored with cLS .
8: else
9: Initialize the LS operator with the default LS parameters.

10: end if
11: Apply the LS algorithm to cLS with Istr , giving cr

LS .
12: Replace cLS by cr

LS .
13: Store the final LS state with cr

LS .
14: end while

MA-LS-Chains allows for improving the same solution several times, thus creating an LS
chain. Also, it uses a mechanism to store the final state of the LS parameters along with
the solution, after each LS application. In this way, the final state of an LS application on a
solution can be used for the initialization of a subsequent LS application on the same solution,
continuing the LS.
The general algorithm is shown in Algorithm 1. After generating the initial population, in
a loop the following is executed: The SSGA is run with a certain amount of evaluations
nfrec. Then, the set SLS is built with the individuals of the population that have never been
improved by the LS, or that have been improved by the LS but with an improvement (in
fitness) superior to δmin

LS , where δmin
LS is a parameter of the algorithm (by default δmin

LS = 10−8).
If |SLS | 6= 0, the LS is applied with an intensity of Istr to the best individual in SLS . If SLS is
empty, the whole population is reinitialized except for the best individual which is maintained
in the population.
With this mechanism, if the SSGA obtains a new best solution, it should be improved by the
LS in the following application of the LS method.

2.2. The evolutionary algorithm

In MA-LS-Chains, the SSGA applied is specifically designed to promote high population
diversity levels by means of the combination of the BLX − α crossover operator (Eshelman
and Schaffer 1993) with a high value for its associated parameter (we use a default of α = 0.5)
and the negative assortative mating (NAM) strategy (Fernandes and Rosa 2001). Diversity
is favored as well by means of the BGA mutation operator. The replacement strategy used
is replacement worst (RW) (Goldberg and Deb 1991). The combination NAM-RW produces
a high selective pressure.

Crossover. The BLX − α operator (Eshelman and Schaffer 1993) performs crossover in
the following way. Let a, b ∈ R be the respective numbers at the ith position of two indi-
viduals. Without loss of generality, we assume a < b. Using the distance d = b − a, the

Journal of Statistical Software 5

outcome z of the crossover operation is a random number chosen uniformly from the in-
terval [a− d · α, b+ d · α]. It can be shown (Nomura and Shimohara 2001) that values of
α >

√
3−1
2 ≈ 0.366 yield a spread of the individuals in the distribution, whereas smaller values

of α lead to a concentration of the individuals.

Negative assortative mating. Assortative mating means that the individuals which are
crossed are not chosen fully at random, but depending on their similarity. According to
whether crossing of similar or dissimilar individuals is favored, the strategy is called positive
or negative assortative mating. We use a mating strategy proposed by Fernandes and Rosa
(2001), which favors diversity in the population. The algorithm chooses 4 individuals, and
computes the similarity (in form of the Euclidean distance) between the first one and all
others. Then, the first individual and the individual with maximal distance from it are
chosen for mating.

Mutation: The BGA operator. This is the operator of the breeder genetic algorithm
(BGA; Mühlenbein and Schlierkamp-Voosen 1993). Its main purpose is to assure diversity in
the population. Let c ∈ [a, b] be the value at the ith position of the individual subject to
mutation, with a, b ∈ R being the corresponding upper and lower domain bounds. Let r be
the mutation range, normally defined as 0.1 · (b−a). Then, a new value c′ for the ith position
of the chromosome, lying in the interval [c− r, c+ r], is computed in the following way:

c′ = c± r ·
15∑

k=0
αk2−k,

where addition or subtraction are chosen with a probability of 0.5, and the αk are chosen
as either zero or one, with a probability for one of P(αk = 1) = 1

16 . So, the probability of
generating a c′ in the neighborhood of c is very high.

The replacement worst strategy. This is a standard replacement strategy, where the
worst individuals are replaced by better ones. It generates high selective pressure, so that
in combination with the negative assortative mating, many different solutions are generated
throughout the search, but only the best ones are kept in the population.

2.3. The local search method

Within the MA-LS-Chains paradigm, different methods for the LS can be used, depending on
the application. Usually, the CMA-ES strategy works best. But as the CMA-ES algorithm
does not scale well with the amount of parameters, for high-dimensional problems other LS
strategies, such as the Solis-Wets or the Subgrouping Solis-Wets solver are to be preferred
(Molina, Lozano, Sánchez, and Herrera 2011).

CMA-ES. The CMA-ES algorithm (Hansen, Müller, and Koumoutsakos 2003) can be con-
sidered the state of the art in continuous optimization. Thanks to the adaptability of its
parameters, its convergence is very fast and obtains very good results. Implementations are
available in R in packages cmaes (Trautmann, Mersmann, and Arnu 2011), adagio (Borchers

6 Rmalschains: Memetic Algorithms with Local Search Chains in R

Figure 1: Example of convergence of the CMA-ES algorithm. (1) Solutions are generated
from the distribution function. (2) The solutions are evaluated and a subset of best solutions
is created (blue dots). (3) The distribution function is adapted accordingly.

2016), and parma (Ghalanos and Pfaff 2016). Rmalschains includes a C implementation from
the original author’s web page (https://www.lri.fr/~hansen/). CMA-ES is an algorithm
that uses a distribution function (adapted Gaussian curve) to obtain new solutions, and
adapt the distribution around the best created solutions. The global scheme can be observed
in Figure 1.
Its only parameters are the initial average of the distribution ~m and the initial σ. MA-CMA-
Chains sets the individual to optimize cLS as ~m, and as the initial σ value the half of the
distance of cLS to its nearest neighbor in the EA’s population.

Solis-Wets algorithm. The algorithm presented by Solis and Wets (1981) is a randomized
hill climber with adaptive step size. Starting from the current position cLS in the search space,
two candidate solutions are generated in the following way. Using a multivariate normal
distribution that has the same dimension as cLS and a standard deviation of ρ, a sample
is drawn and used as distance d to compute the candidate solutions cLS + d and cLS − d.
If the better one of the candidate solutions is better than cLS , cLS is updated to this new
solution and a success is recorded. If cLS is better than both of the candidate solutions,
cLS is not updated and a failure is recorded. After several successes/failures in a row, ρ is
increased/decreased. Furthermore, there is a bias term added, to put the search momentum
to regions that are promising. This term is continuously updated using its previous value and
d. For details, see Molina et al. (2010).
Though this algorithm is rather unsophisticated, it usually yields good results, is fast and
easy to compute, scalable, and does not need derivatives to be computed. This makes it
suitable to be used in the MA-LS-Chains framework.

Subgrouping Solis-Wets. In this adaptation to high-dimensional data of the Solis-Wets
algorithm (Molina et al. 2011), a subgroup of the overall amount of parameters is chosen
randomly, and then optimized for a certain amount of evaluations (defined by the parameter
maxEvalSubset). Then, a new subset is chosen. In the current implementation, the subsets
contain 20% of the overall amount of variables.

Nelder-Mead downhill simplex. This method, presented by Nelder and Mead (1965)
(see also Nelder and Singer 2009, or, e.g., Press, Teukolsky, Vetterling, and Flannery 2007),
is a popular standard algorithm for optimization without using derivatives. In R, it is the

https://www.lri.fr/~hansen/

Journal of Statistical Software 7

x1

x2

f(x1,x2)

Figure 2: The 2-dimensional Rastrigin function, in the [−5.12, 5.12] interval of the two input
parameters.

standard method of the optim function (Venables and Ripley 2002). Also, it is implemented in
the packages neldermead (Bihorel and Baudin 2015), dfoptim (Varadhan and Borchers 2016),
gsl (Hankin 2006), adagio (Borchers 2016), and nloptr (Ypma, Borchers, and Eddelbuettel
2014). In this algorithm, a simplex is initialized in an n-dimensional parameter space using
n+1 candidate solutions. Then, the simplex is evolved according to the fitness of its vertices.
In MA-LS-Chains, the simplex is initialized with cLS and n further candidate solutions which
are generated as cLS +λiei, i = 1, . . . , n, with the ei being unit vectors and λi a scaling factor
for the respective parameter dimension, which is usually set to one. Then, within the chaining
mechanism, the simplex is stored and reloaded with each individual.

3. A simple example
We use minimization of the n-dimensional Rastrigin function as an example, which is a
common benchmark in global optimization (Mühlenbein, Schomisch, and Born 1991). The
function is defined as follows:

f(~x) = 10n+
n∑

i=1

(
x2

i − 10 cos(2πxi)
)
.

It has a global minimum at f(~0) = 0. The cosine causes a lot of local optima, so that this
function is considered a difficult optimization problem. In R, it can be implemented as follows:

R> rastrigin <- function(x) 10 * length(x) + sum(x^2 - 10 * cos(2 * pi * x))

Figure 2 shows the 2-dimensional case for the input parameters in the [−5.12, 5.12]-interval.
The malschains function can then be used to minimize the function (for maximization, the
objective function would have to be inverted). For the 30-dimensional Rastrigin function, the
optimization is performed, e.g., with the following command:

8 Rmalschains: Memetic Algorithms with Local Search Chains in R

R> res <- malschains(rastrigin, lower = rep(-5.12, 30),
+ upper = rep(5.12, 30), maxEvals = 200000, verbosity = 0,
+ control = malschains.control(popsize = 50, istep = 300, ls = "cmaes",
+ optimum = 0))

Here, the first parameter is the objective function, the parameters lower and upper define
the lower and upper bounds of the search space, and also define the amount of parameters
that the optimizer assumes the objective function to have. The parameter maxEvals defines
the maximal number of function evaluations that are to be used. The parameter verbosity
controls the verbosity level of the output, where 0 indicates no output, 1 indicates a summary,
and values of 2 and above currently indicate full output. Finally, the control parameter can
be used to define parameters of the optimization method itself. In the example, we use the
parameter popsize to set the population size of the EA, the parameter istep to set the
amount of function evaluations within each run of the LS, and the parameter ls, to set the
type of LS to use.
Furthermore, the parameter optimum gives the global optimum of the function that the algo-
rithm will try to achieve.
The solution is a list (an object of class ‘malschains’) containing the best individual sol,
and its fitness. Furthermore, it contains some information about the convergence process,
such as the total amount of evaluations spent for the EA and the LS, respectively, the ratio
of the spent evaluations (also called effort), the ratio of total improvement of the fitness, the
percentage of times that application of the EA/LS yielded improvement, and some timing
results in milliseconds:

R> res

NumTotalEvalEA: 36000
NumTotalEvalLS: 35112
RatioEffort EA/LS: [51/49]
RatioImprovement EA/LS: [31/69]
PercentageNumImprovement[EA]: 28%
PercentageNumImprovement[LS]: 90%
Time[EA]: 230.88
Time[LS]: 1143.27
Time[MA]: 1375.44
RatioTime[EA/MA]: 16.79
RatioTime[LS/MA]: 83.12
Fitness:
[1] 9.218184e-09
Solution:
[1] 1.201915e-07 3.748141e-07 -3.306534e-07 1.122996e-06 2.451434e-06
[6] 5.482329e-07 -2.016876e-06 2.047226e-06 -2.086381e-06 -1.026613e-06

[11] 1.670471e-06 6.020225e-07 -1.228457e-06 3.205899e-07 1.165649e-07
[16] -6.457484e-07 8.226205e-07 -5.470387e-07 -2.166945e-06 -1.685302e-06
[21] 1.264090e-06 -1.525650e-06 1.747982e-06 -2.998119e-07 9.149707e-07
[26] -3.178070e-07 -1.226612e-06 -2.350812e-07 9.139988e-07 9.228283e-07

Journal of Statistical Software 9

It can be seen that the solution is near to the global optimum of zero both for all values of
the solution and the fitness.

4. Other packages in R for continuous optimization
Throughout the last years, a rich variety of packages in R for optimization has been developed.
A constantly updated overview is provided at the “CRAN Task View: Optimization and
Mathematical Programming” (Theussl and Borchers 2016). In the following, we present
methods from the section “General Purpose Continuous Solvers” of that task view, in which
our package is also present. Some packages are omitted in the following overview because
they are not applicable in our context or because they are very similar to other packages.
Some of the available non-population-based methods are:

• The optim function (Venables and Ripley 2002) from the stats package is the standard
optimization function in R. It implements a number of LS methods, like the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method, a box-constrained version of it, called L-
BFGS-B, the Nelder-Mead method, a conjugate-gradient algorithm, and a simulated
annealing method. The methods, though still pretty popular, cannot be seen as state
of the art by today’s standards, and attempts exist to replace these methods with
newer ones (Nash 2014). Also, the first three of the methods are LS methods suitable
for convex optimization only, and as one of the reviewers brought to our attention,
the simulated annealing implementation has obvious shortcomings, and it also was not
competitive in a recent comparison (Mullen 2014).

• The package dfoptim (Varadhan and Borchers 2016) implements derivative-free opti-
mization algorithms. Concretely, the Nelder-Mead and the Hooke-Jeeves algorithms are
implemented. The Nelder-Mead algorithm can be used within our package as the LS.

• The package adagio (Borchers 2016) implements several derivative-free global optimiza-
tion algorithms, such as a scalable Nelder-Mead algorithm, CMA-ES, and Wolfe Line
Search.

• Rsolnp (Ghalanos and Theussl 2016) and alabama (Varadhan 2015) have algorithms
for objective functions with constraints. In particular, they use nonlinear augmented
Lagrange multiplier method solvers, based on sequential quadratic programming (SQP),
for optimization.

• The package GenSA (Xiang, Gubian, Suomela, and Hoeng 2013) implements generalized
simulated annealing (Tsallis and Stariolo 1996).

• The packages cmaes (Trautmann et al. 2011) and parma (Ghalanos and Pfaff 2016)
implement the CMA-ES algorithm, which we presented in Section 2.3 and use as an
LS algorithm. cmaes implements a basic version of CMA-ES (lacking sophisticated
convergence detection), while parma, oriented to optimization in financial portfolios,
implements the most advanced version of CMA-ES (a direct translation of version 3.60
of the original author’s code, Hansen 2012, implemented in MATLAB, The MathWorks
Inc. 2014).

10 Rmalschains: Memetic Algorithms with Local Search Chains in R

The available population-based methods include:

• The packages DEoptim, and RcppDE (Mullen, Ardia, Gil, Windover, and Cline 2011;
Ardia, Boudt, Carl, Mullen, and Peterson 2011) implement differential evolution (DE),
an EA that uses difference vectors of the individuals for crossover and mutation (Price,
Storn, and Lampinen 2005). RcppDE is a reimplementation of DEoptim in C++ and
yields the same results in terms of accuracy.

• The package rgenoud (Mebane Jr. and Sekhon 2011) implements a genetic algorithm
that is also able to use an LS algorithm for improvement of single individuals. So, it
can be considered a memetic algorithm. The LS employed is the BFGS algorithm. It is
applied after each iteration to the individual with the best fitness or used as a genetic
operator.

• The packages PSO (Bendtsen 2012) and NMOF (Schumann 2016) both implement
particle swarm optimization (PSO). PSO implements the Standard PSO 2007 (SPSO-
07, http://www.particleswarm.info/Programs.html).

• The package nloptr (Ypma et al. 2014) is an R interface to the popular library for
optimization NLopt (Johnson 2012). NLopt implements a host of optimization methods,
most of them also available by other R packages. We focus on the controlled random
search (CRS) algorithm (and in particular, the CRS2 variant) with the local mutation
modification. This algorithm starts with a random population of points, and randomly
evolves these points by heuristic rules.

5. Experimental study: Comparison with other algorithms
In this section, we compare Rmalschains with the packages discussed in Section 4. The
comparison is performed using a benchmark which contains 19 scalable objective functions
with different characteristics. Our analysis considers accuracy and execution time of the
methods with a fixed amount of function evaluations. Accuracy measures directly the quality
of the solution, and may be considered the primary criterion to assess performance of a
method. But execution time may be critical as well, in the sense that application of many
methods is not feasible if problem dimension and complexity grow. Experiments are performed
in different use cases, with medium-, and high-dimensional data, to analyze the behavior of the
methods in detail, especially regarding the high-dimensional use case. Results are presented
as boxplots, tabulars, and diagrams, showing accuracy, execution time, and ranking of average
accuracy.

5.1. Test suite and experimental conditions

We use the well-known benchmark of Lozano, Molina, and Herrera (2011), which is especially
good to test the scalability of the algorithms. This test set is composed of 19 scalable function
optimization problems (also see http://sci2s.ugr.es/eamhco/testfunctions-SOCO.pdf):

• 6 Functions: F1–F6 of the CEC’2008 test suite. A detailed description may be found in
Tang (2008).

http://www.particleswarm.info/Programs.html
http://sci2s.ugr.es/eamhco/testfunctions-SOCO.pdf

Journal of Statistical Software 11

Function Name Range Global minimum
F1 Shifted Sphere Function [−100, 100]D −450
F2 Shifted Schwefel’s Problem 2.21 [−100, 100]D −450
F3 Shifted Rosenbrock’s Function [−100, 100]D 390
F4 Shifted Rastrigin’s Function [−5, 5]D −330
F5 Shifted Griewank’s Function [−600, 600]D −180
F6 Shifted Ackley’s Function [−32, 32]D −140
F7 Shifted Schwefel’s Problem 2.22 [−10, 10]D 0
F8 Shifted Schwefel’s Problem 1.2 [−65.536, 65.536]D 0
F9 Shifted Extended f10 [−100, 100]D 0
F10 Shifted Bohachevsky [−15, 15]D 0
F11 Shifted Schaffer [−100, 100]D 0

Table 1: Range and global minima of the benchmark functions F1–F11.

Function Unimodal/ Shifted Separable Easily optimized
multimodal dimension by dimension

F1 U Y Y Y
F2 U Y N N
F3 M Y N Y
F4 M Y Y Y
F5 M Y N N
F6 M Y Y Y
F7 U Y Y Y
F8 U Y N N
F9 U Y N Y
F10 U Y N N
F11 U Y N Y

Table 2: Characteristics of the benchmark functions F1–F11.

• 5 Shifted Functions: Schwefel’s Problem 2.22 (F7), Schwefel’s Problem 1.2 (F8), Ex-
tended f10 (F9), Bohachevsky (F10), and Schaffer (F11).

• 8 Hybrid Composition Functions (F12–F19): These functions are built by combining two
functions belonging to the set of functions F1–F11.

All the functions are minimization problems. Table 1 shows range and global minima of
F1–F11, and Table 2 shows some further characteristics. F12–F19 all have a global minimum
at 0, and are non-separable.
In the comparison, we follow the guideline proposed by the authors of the benchmark. We
apply the test suite for dimensions 2, 10, 30, 50, 100, 200, 500, and 1000. We consider the cases
with dimensions 2, 10, 30, and 50 as low-dimensional problems, the cases with dimensions
100 and 200 as medium-dimensional problems, and the cases with dimensions 500 and 1000
as high-dimensional problems. Each algorithm is run 25 times for each test function, and
the average error, with respect to the known global optimum, is obtained. Each run stops

12 Rmalschains: Memetic Algorithms with Local Search Chains in R

when a maximum of calls to the fitness function is reached, named MaxFES, depending on
the dimension D in the following way: MaxFES = 5000 ·D.
To use MaxFES instead of a maximum iteration number allows us to make a fair comparison
between optimization methods that have a very different structure. Unfortunately, for sev-
eral of the considered packages (rgenoud, cmaes, DEoptim, RcppDE), only the maximum of
iterations can be defined, but not a MaxFES. In these cases, we count the number of fitness
evaluations, and we return the best solution after the first MaxFES evaluations. Then, we
use the callCC function from the base package to stop the algorithm.
The experiments are performed on a Sun Grid Engine (SGE) cluster. Parallelization of
the experimental executions is performed in the way that the different algorithms are run
sequentially on the benchmark functions, and execution of different algorithms is parallelized.
The nodes of the cluster have each an Intel Core i7 CPU with a frequency of 2.80 GHz, and
24 GB of RAM. We establish the following limits: One R session (one algorithm executed with
a particular dimension on all benchmarks 25 times) is limited to 6 GB of RAM, and a maximal
global execution time of 10 days. This is approximately 30 minutes for every execution of one
algorithm, and seems reasonable taking into account that computation of the fitness within
the benchmark functions is considerably less expensive than in usual real-world problems.

5.2. Parameters and used methods

The aim of this work is to make a comparison between different packages on CRAN that
can be used for optimization. In order to simulate the most general use of the packages, we
compare the results using the packages in the most simple and straightforward way, which is
with their default parameters.
The only parameter that we define for the benchmark is the population size, as usually this
parameter should be adapted in dependence of the dimensionality, and maintaining constant
this parameter for all dimensions could result in degeneration of the methods’ errors. Accord-
ing to the authors of the test suite (Lozano et al. 2011), this parameter is set to min(10·D, 100)
for algorithms involving a population like DE and PSO.
From package adagio, we use the Nelder-Mead algorithm, denoted as adagio_NM, and from
package dfoptim we use the box-constrained Hooke-Jeeves algorithm, which will be denoted as
dfoptim_HJKB. Furthermore, we use the CMA-ES implementation available in package parma,
denoted as parma_CMAES, and the CRS2 method available from package nloptr, denoted as
nloptr_CRS2. The PSO algorithm available from package NMOF will be denoted as NMOF_PSO
in the following.
Our function malschains is used with the local search methods CMA-ES (the default method),
and SW (the Solis-Wets solver), because it is a more adequate method for higher dimensional
problems, due to its lower computation time. These methods will be called in the following
malschains-CMA, and malschains-SW.
All other applied methods have the same name as their respective packages/functions, namely
DEoptim, RcppDE, and PSO.
From the packages in Section 4, the following are not finally used in the comparisons:

• As the methods in optim are either LS methods or are not competitive, we follow the
suggestions of one of the reviewers and do not consider these methods in our study.

Journal of Statistical Software 13

Figure 3: Average ranking for algorithms and dimension ≤ 100.

• The CMA-ES implementations available in packages cmaes and adagio are not used, as
the implementation in the parma package is more sophisticated, because it is a direct
translation of the code recommended by the original authors as “productive code.”

• The packages Rsolnp and alabama are not included, because our focus is not to solve
problems with (nonlinear) constraints. We used them in preliminary experiments, but
not surprisingly, their performance was not good on our benchmark problems.

• Finally, the packages rgenoud and GenSA are not included, because their memory
requirements prevented obtaining results for dimensions greater than 30.

Some packages require an initial solution, for these algorithms we generate a solution randomly
within the parameter domains (using runif), and pass this initial solution to these functions.

5.3. Results in average error

In this section, we study the average error for medium dimension (D ≤ 100). Results with
higher dimensions (up to 1000) are analyzed in Section 5.5. For each function we rank the
algorithms according to the average error (the tabulated results can be found in Appendix A).
The algorithms with best results have the lowest ranks, i.e., the lower the ranking, the better
the algorithm.
Figure 3 shows the average ranking for all the algorithms considered for dimension ≤ 100. An
interesting conclusion we can draw from the figure is that DEoptim (and with the same results
RcppDE) is initially the algorithm with best results, but with increasing dimensionality, the

14 Rmalschains: Memetic Algorithms with Local Search Chains in R

Algorithm Dimension
5 10 30 50

adagio_NM 68.06 254.56 13954.30 31057.45
DEoptim 402.30 770.45 2727.22 5138.34
RcppDE 287.83 322.06 1044.56 2515.88
nloptr_CRS2 322.90 413.01 2450.26 6668.90
parma_CMAES 844.36 2481.49 11397.93 22843.63
dfoptim_HJKB 9.51 22.26 59.07 100.07
malschains-CMA 44.85 137.69 888.95 7188.50
malschains-SW 29.14 108.08 440.32 1085.85
PSO 1200.48 1427.22 2002.28 2611.18
NMOF_PSO 489.87 1041.79 1858.67 2427.66

100 200 500 1000
adagio_NM 123799.00 679064.70 –T– –
DEoptim 12972.36 37580.78 177020.90 656181.60
RcppDE 4917.35 14383.89 85628.93 361631.10
nloptr_CRS2 29349.60 140109.90 –T– –
parma_CMAES 89434.72 –T– – –
dfoptim_HJKB 592.74 1809.29 4615.43 58617.32
malschains-CMA 47237.20 352899.50 –T– –
malschains-SW 5693.48 17961.84 121082.20 570921.00
PSO 3934.63 6655.85 15833.53 35383.74
NMOF_PSO 3686.72 6498.25 12251.77 26849.33

Table 3: Time (in ms) for each optimization package. T: time limit was reached.

algorithm performs worse. With respect to our package, we can observe that the Rmalschains
methods perform best for dimensions 50 and 100. PSO and parma_CMAES also perform well.
Results obtained by package PSO are better than the ones obtained by NMOF_PSO.

5.4. Analysis of computation time

Though computation time depends greatly on implementation details (e.g., if the whole algo-
rithm is implemented in pure R, or if C or C++ code is used), from a user perspective, when
a package has to be chosen for a concrete application, such an analysis can be very valuable.
For each package and function we run once the optimization function and we measure its
computation time (using the microbenchmark package; Mersmann 2015) removing every I/O
operation (by function capture.output from the utils package). Table 3 shows the average
computation time in milliseconds. This is graphically illustrated in Figure 4 (note that in the
analysis of computation time DEoptim and RcppDE are shown separately).
Figure 4 shows that dfoptim_HJKB is the fastest, and parma_CMAES and adagio_NM are the
slowest methods for higher dimensions. PSO has an average computation time, and it is the
algorithm whose running time increases the least with the dimension.
The malschains-CMA algorithm has the same increasing ratio as parma_CMAES but it main-
tains for dimension ≤ 100 a moderate computation time. The malschains-SW method has
better performance.

Journal of Statistical Software 15

Figure 4: Average computation time for each package (in ms, log scale).

5.5. Scalability

Many real problems require optimization of large numbers of variables. Thus, an important
aspect of an algorithm is its scalability. Unfortunately, many algorithms have serious limita-
tions in the number of dimensions they can handle. The main reason is usually the increasing
computation time (as seen in Section 5.4), but there are others, such as memory requirements,
program errors, or accumulated error with the dimension.
In this section, we study the scalability of the different packages. First, we identify the
packages that have scalability problems, considering Table 3:

• Method parma_CMAES with its default parameters is not very scalable, since the com-
putational complexity of the CMA-ES algorithm is O(n3). From dimension 10 on it is
the slowest algorithm, and reaches the time limit at dimension 200.

• Package Rmalschains with the CMA-ES method requires a lower computation time than
parma_CMAES, but with a similar increasing velocity.

• The most scalable algorithms are dfoptim_HJKB, PSO, NMOF_PSO, malschains-SW, DE-
optim, and RcppDE.

In terms of accuracy, Figure 5 shows the ranking for the algorithms that could be executed
up to dimension 1000 (the tabulated results can be found in Appendix A). We can observe
that malschains-SW obtains the best results for high-dimensional problems.
Results for the execution time are shown in Figure 6. We can observe that the differences in
time between the majority of algorithms, except PSO and dfoptim_HJKB, are very similar.
dfoptim_HJKB is the algorithm with lowest computation time, but taking into account its

16 Rmalschains: Memetic Algorithms with Local Search Chains in R

Figure 5: Average ranking for scalable algorithms and dimension ≤ 1000.

Figure 6: Average computation time for large dimension (in ms, log scale).

Journal of Statistical Software 17

fast increase in computation time for dimension 1000, it may perform similar as the other
methods for dimensions higher than 1000. PSO is the algorithm that maintains the lowest
increase in computation time with the dimension.

5.6. Study of accuracy per function and dimension

So far we performed graphical analyses of the average results in ranking. In this section, we
complement the analysis showing the results in fitness for several functions, using boxplots.
As this analysis is pretty verbose, we show only selected results here, namely for the two
functions F4, Rastrigin’s function, and F18, as an example of combined functions. The full
results can be found at http://sci2s.ugr.es/dicits/software/Rmalschains.
In Figures 7 and 8 we can see the results for function F4 in medium and high dimensions.
We can observe that there is a big difference between algorithms. Initially, malschains-SW
and malschains-CMA obtain bad results in lower dimensions, but when the dimensional-
ity increases, their results are more competitive: In dimension 100, only parma_CMAES and
dfoptim_HJKB perform better on average, and for higher dimensions, only dfoptim_HJKB
obtains better results.
In Figures 9 and 10 we can see the results for function F18 in medium and high dimensions. In
that function, malschains-SW obtains better results than dfoptim_HJKB, and both of them
maintain the best results. We can observe that the algorithms that maintain the best results
also have low variance in the reached fitness, so that they robustly find better solutions than
the other algorithms.

6. Conclusions
We have presented the R package Rmalschains. It implements the MA-LS-Chains algorithm,
which is an algorithm framework of memetic algorithms with local search chains. The frame-
work uses a steady-state genetic algorithm in combination with an LS method. Different LS
methods are implemented. The algorithm chooses the individual on which to run the LS
according to its fitness and its possibility to be enhanced with the LS. The LS is run for
a fixed number of iterations, with the possibility to be continued on in a later stage of the
algorithm. The algorithm has good performance, especially for high-dimensional problems.
This was demonstrated in various optimization competitions, and in our experiments.
With presenting an implementation in R, we make the algorithm available to the R com-
munity and facilitate its use in general. We performed a rigorous experimental study com-
paring it to other general purpose optimizers already available in R, both with respect to
quality of the results, as with respect to execution time. The study showed that, while in
lower dimensions there exist competitive methods in R, often outperforming Rmalschains, for
higher-dimensional problems the algorithm is very effective.

Acknowledgments
This work was supported in part by the Spanish Ministry of Science and Innovation (MICINN)
under Project TIN-2009-14575. The work was performed while C. Bergmeir held a scholar-
ship from the Spanish Ministry of Education (MEC) of the “Programa de Formación del
Profesorado Universitario (FPU)”.

http://sci2s.ugr.es/dicits/software/Rmalschains

18 Rmalschains: Memetic Algorithms with Local Search Chains in R

(a) Dimension 50

(b) Dimension 100

Figure 7: Results obtained by the packages for function F4 for dimension 50, 100.

Journal of Statistical Software 19

(a) Dimension 500

(b) Dimension 1000

Figure 8: Results obtained by the packages for function F4 for dimension 500, 1000.

20 Rmalschains: Memetic Algorithms with Local Search Chains in R

(a) Dimension 50

(b) Dimension 100

Figure 9: Results obtained by the packages for function F18 for dimension 50, 100.

Journal of Statistical Software 21

(a) Dimension 500

(b) Dimension 1000

Figure 10: Results obtained by the packages for function F18 for dimension 500, 1000.

22 Rmalschains: Memetic Algorithms with Local Search Chains in R

References

Ardia D, Boudt K, Carl P, Mullen K, Peterson B (2011). “Differential Evolution with DE-
optim.” The R Journal, 3(1), 27–34. URL https://journal.R-project.org/archive/
2011-1/RJournal_2011-1_Ardia~et~al.pdf.

Bäck T, Fogel D, Michalewicz Z (eds.) (1997). Handbook of Evolutionary Computation. IOP
Publishing, Bristol, UK. doi:10.1201/9781420050387.

Bendtsen C (2012). pso: Particle Swarm Optimization. R package version 1.0.3, URL https:
//CRAN.R-project.org/package=pso.

Bergmeir C, Molina D, Benítez J (2016). Rmalschains: Continuous Optimization Using
Memetic Algorithms with Local Search Chains (MA-LS-Chains) in R. R package version
0.2-3, URL https://CRAN.R-project.org/package=Rmalschains.

Bihorel S, Baudin M (2015). neldermead: R Port of the Scilab neldermead Module. R package
version 1.0-10, URL https://CRAN.R-project.org/package=neldermead.

Borchers H (2016). adagio: Discrete and Global Optimization Routines. R package version
0.6.5, URL https://CRAN.R-project.org/package=adagio.

Burns P (2012). “A Comparison of Some Heuristic Optimization Methods.” Tech-
nical report, Burns Statistics. URL http://www.portfolioprobe.com/2012/07/23/
a-comparison-of-some-heuristic-optimization-methods.

Deb K, Suganthan PN (2005). “Special Session on Real-Parameter Optimization. 2005 IEEE
CEC, Edinburgh, UK, Sept 2–5, 2005.” In Proceedings of the IEEE Conference on Evolu-
tionary Computation, CEC.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eshelman LJ, Schaffer JD (1993). “Real-Coded Genetic Algorithms in Genetic Algorithms
by Preventing Incest.” Foundation of Genetic Algorithms 2, pp. 187–202. doi:10.1016/
b978-0-08-094832-4.50018-0.

Fernandes C, Rosa A (2001). “A Study on Non-Random Mating and Varying Population
Size in Genetic Algorithms Using a Royal Road Function.” In Proceedings of the IEEE
Conference on Evolutionary Computation, ICEC, volume 1, pp. 60–66.

García S, Molina D, Lozano M, Herrera F (2009). “A Study on the Use of Non-Parametric
Tests for Analyzing the Evolutionary Algorithms’ Behaviour: A Case Study on the
CEC’2005 Special Session on Real Parameter Optimization.” Journal of Heuristics, 15(6),
617–644. doi:10.1007/s10732-008-9080-4.

Ghalanos A, Pfaff B (2016). parma: Portfolio Allocation and Risk Management Applications.
R package version 1.5-3, URL https://CRAN.R-project.org/package=parma.

Ghalanos A, Theussl S (2016). Rsolnp: General Non-Linear Optimization Using Augmented
Lagrange Multiplier Method. R package version 1.16, URL https://CRAN.R-project.org/
package=Rsolnp.

https://journal.R-project.org/archive/2011-1/RJournal_2011-1_Ardia~et~al.pdf
https://journal.R-project.org/archive/2011-1/RJournal_2011-1_Ardia~et~al.pdf
http://dx.doi.org/10.1201/9781420050387
https://CRAN.R-project.org/package=pso
https://CRAN.R-project.org/package=pso
https://CRAN.R-project.org/package=Rmalschains
https://CRAN.R-project.org/package=neldermead
https://CRAN.R-project.org/package=adagio
http://www.portfolioprobe.com/2012/07/23/a-comparison-of-some-heuristic-optimization-methods
http://www.portfolioprobe.com/2012/07/23/a-comparison-of-some-heuristic-optimization-methods
http://dx.doi.org/10.18637/jss.v040.i08
http://dx.doi.org/10.1016/b978-0-08-094832-4.50018-0
http://dx.doi.org/10.1016/b978-0-08-094832-4.50018-0
http://dx.doi.org/10.1007/s10732-008-9080-4
https://CRAN.R-project.org/package=parma
https://CRAN.R-project.org/package=Rsolnp
https://CRAN.R-project.org/package=Rsolnp

Journal of Statistical Software 23

Goldberg D, Deb K (1991). “A Comparative Analysis of Selection Schemes Used in Genetic
Algorithms.” In G Rawlins (ed.), Foundations of Genetic Algorithms, volume 1, pp. 69–93.
Morgan Kaufmann Publishers, San Mateo. doi:10.1016/b978-0-08-050684-5.50008-2.

Goldberg D, Voessner S (1999). “Optimizing Global-Local Search Hybrids.” In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO) 1999, pp. 220–228.

Hankin R (2006). “Special Functions in R: Introducing the gsl Package.” R News, 6(4), 24–26.
URL https://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf.

Hansen N (2012). cmaes.m: Evolution Strategy with Covariance Matrix Adaptation for Non-
linear Function Minimization. MATLAB code version 3.60, URL https://www.lri.fr/
~hansen/count-cmaes-m.php?Down=cmaes.m.

Hansen N, Auger A, Ros R, Finck S, Pošík P (2010). “Comparing Results of 31 Algorithms
from the Black-Box Optimization Benchmarking BBOB-2009.” In Proceedings of the 12th
Annual Genetic and Evolutionary Computation Conference, GECCO ’10 – Companion
Publication, pp. 1689–1696.

Hansen N, Müller S, Koumoutsakos P (2003). “Reducing the Time Complexity of the Deran-
domized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES).” Evolutionary
Computation, 1(11), 1–18. doi:10.1162/106365603321828970.

Johnson S (2012). The NLopt Nonlinear-Optimization Package. URL http://ab-initio.
mit.edu/nlopt.

Krasnogor N, Smith J (2005). “A Tutorial for Competent Memetic Algorithms: Model,
Taxonomy, and Design Issues.” IEEE Transactions on Evolutionary Computation, 9(5),
474–488. doi:10.1109/tevc.2005.850260.

Lozano M, Molina D, Herrera F (2011). “Editorial Scalability of Evolutionary Algorithms and
Other Metaheuristics for Large-Scale Continuous Optimization Problems.” Soft Computing,
15(11), 2085–2087. doi:10.1007/s00500-010-0639-2.

Mebane Jr WR, Sekhon JS (2011). “Genetic Optimization Using Derivatives: The rgenoud
Package for R.” Journal of Statistical Software, 42(11), 1–26. doi:10.18637/jss.v042.
i11.

Mersmann O (2015). microbenchmark: Sub Microsecond Accurate Timing Functions. R
package version 1.4-2.1, URL https://CRAN.R-project.org/package=microbenchmark.

Michalewicz Z, Fogel DB (2004). How to Solve It: Modern Heuristics. Springer-Verlag.
doi:10.1007/978-3-662-07807-5.

Molina D (2012). librealea: An Implementation of Evolutionary Algorithms for Real Optimi-
sation. URL https://bitbucket.org/dmolina/librealea.

Molina D, Lozano M, García-Martínez C, Herrera F (2010). “Memetic Algorithms for Con-
tinuous Optimisation Based on Local Search Chains.” Evolutionary Computation, 18(1),
27–63. doi:10.1162/evco.2010.18.1.18102.

http://dx.doi.org/10.1016/b978-0-08-050684-5.50008-2
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf
https://www.lri.fr/~hansen/count-cmaes-m.php?Down=cmaes.m
https://www.lri.fr/~hansen/count-cmaes-m.php?Down=cmaes.m
http://dx.doi.org/10.1162/106365603321828970
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://dx.doi.org/10.1109/tevc.2005.850260
http://dx.doi.org/10.1007/s00500-010-0639-2
http://dx.doi.org/10.18637/jss.v042.i11
http://dx.doi.org/10.18637/jss.v042.i11
https://CRAN.R-project.org/package=microbenchmark
http://dx.doi.org/10.1007/978-3-662-07807-5
https://bitbucket.org/dmolina/librealea
http://dx.doi.org/10.1162/evco.2010.18.1.18102

24 Rmalschains: Memetic Algorithms with Local Search Chains in R

Molina D, Lozano M, Sánchez AM, Herrera F (2011). “Memetic Algorithms Based on Local
Search Chains for Large Scale Continuous Optimisation Problems: MA-SSW-Chains.” Soft
Computing, 15(11), 2201–2220. doi:10.1007/s00500-010-0647-2.

Moscato P (1999). “Memetic Algorithms: A Short Introduction.” In D Corne, M Dorigo,
F Glover, D Dasgupta, P Moscato, R Poli, K Price (eds.), New Ideas in Optimization, pp.
219–234. McGraw-Hill, Maidenhead.

Mühlenbein H, Schlierkamp-Voosen D (1993). “Predictive Models for the Breeder Genetic
Algorithm – I. Continuous Parameter Optimization.” Evolutionary Computation, 1(1),
25–49. doi:10.1162/evco.1993.1.1.25.

Mühlenbein H, Schomisch M, Born J (1991). “The Parallel Genetic Algorithm as Function Op-
timizer.” Parallel Computing, 17(6–7), 619–632. doi:10.1016/s0167-8191(05)80052-3.

Mullen K (2014). “Continuous Global Optimization in R.” Journal of Statistical Software,
60(6), 1–45. doi:10.18637/jss.v060.i06.

Mullen KM, Ardia D, Gil DL, Windover D, Cline J (2011). “DEoptim: An R Package for
Global Optimization by Differential Evolution.” Journal of Statistical Software, 40(6), 1–26.
doi:10.18637/jss.v040.i06.

Nash J (2014). “On Best Practice Optimization Methods in R.” Journal of Statistical Software,
60(2), 1–14. doi:10.18637/jss.v060.i02.

Nelder J, Singer S (2009). “Nelder-Mead Algorithm.” Scholarpedia, 4(2), 2928.

Nelder JA, Mead R (1965). “A Simplex Method for Function Minimization.” The Computer
Journal, 7(4), 308–313. doi:10.1093/comjnl/7.4.308.

Nomura T, Shimohara K (2001). “An Analysis of Two-Parent Recombinations for Real-Valued
Chromosomes in an Infinite Population.” Evolutionary Computation, 9(3), 283–308. doi:
10.1162/106365601750406000.

Press W, Teukolsky S, Vetterling W, Flannery B (2007). Numerical Recipes: The Art of
Scientific Computing. 3rd edition. Cambridge University Press, Cambridge.

Price KV, Storn RM, Lampinen JA (2005). Differential Evolution: A Practical Approach to
Global Optimization. Natural Computing Series. Springer-Verlag.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Schumann E (2016). NMOF: Numerical Methods and Optimization in Finance. R package
version 0.40-0, URL https://CRAN.R-project.org/package=NMOF.

Smith JE (2002). “Genetic Algorithms.” In PM Pardalos, HE Romeijn (eds.), Handbook
of Global Optimization, volume 62 of Nonconvex Optimization and Its Applications, pp.
275–362. Springer-Verlag. doi:10.1007/978-1-4757-5362-2_9.

Solis FJ, Wets RJB (1981). “Minimization by Random Search Techniques.” Mathematics of
Operations Research, 6(1), 19–30. doi:10.1287/moor.6.1.19.

http://dx.doi.org/10.1007/s00500-010-0647-2
http://dx.doi.org/10.1162/evco.1993.1.1.25
http://dx.doi.org/10.1016/s0167-8191(05)80052-3
http://dx.doi.org/10.18637/jss.v060.i06
http://dx.doi.org/10.18637/jss.v040.i06
http://dx.doi.org/10.18637/jss.v060.i02
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1162/106365601750406000
http://dx.doi.org/10.1162/106365601750406000
https://www.R-project.org/
https://CRAN.R-project.org/package=NMOF
http://dx.doi.org/10.1007/978-1-4757-5362-2_9
http://dx.doi.org/10.1287/moor.6.1.19

Journal of Statistical Software 25

Tang K (2008). “Summary of Results on CEC’08 Competition on Large Scale Global Opti-
mization.” Technical report, Nature Inspired Computation and Application Lab (NICAL).
URL http://nical.ustc.edu.cn/papers/CEC2008_SUMMARY.pdf.

Tang K, Li X, Suganthan PN (2010). “Session on Large Scale Global Optimization. 2010
IEEE World Congress on Computational Intelligence (CEC@WCCI-2010), July 18–23,
2010, Barcelona, Spain.” In Proceedings of the IEEE Conference on Evolutionary Com-
putation, CEC.

The MathWorks Inc (2014). MATLAB – The Language of Technical Computing, Version
R2014b. Natick. URL http://www.mathworks.com/products/matlab/.

Theussl S, Borchers HW (2016). “CRAN Task View: Optimization and Mathemat-
ical Programming.” Version 2016-06-06, URL https://CRAN.R-project.org/view=
Optimization.

Trautmann H, Mersmann O, Arnu D (2011). cmaes: Covariance Matrix Adapting Evolu-
tionary Strategy. R package version 1.0-11, URL http://CRAN.R-project.org/package=
cmaes.

Tsallis C, Stariolo D (1996). “Generalized Simulated Annealing.” Physica A: Statistical Me-
chanics and Its Applications, 233(1–2), 395–406. doi:10.1016/s0378-4371(96)00271-3.

Varadhan R (2015). alabama: Constrained Nonlinear Optimization. R package version 2015.3-
1, URL http://CRAN.R-project.org/package=alabama.

Varadhan R, Borchers H (2016). dfoptim: Derivative-Free Optimization. R package version
2016.7-1, URL http://CRAN.R-project.org/package=dfoptim.

Venables W, Ripley B (2002). Modern Applied Statistics with S. 4th edition. Springer-Verlag,
New York. doi:10.1007/978-0-387-21706-2.

Whitley D (1989). “The GENITOR Algorithm and Selection Pressure: Why Rank-Based Al-
location of Reproductive Trials Is Best.” Proceedings of the Third International Conference
on Genetic Algorithms, pp. 116–121.

Wolpert DH, Macready WG (1997). “No Free Lunch Theorems for Optimization.” IEEE
Transactions on Evolutionary Computation, 1(1), 67–82. doi:10.1109/4235.585893.

Xiang Y, Gubian S, Suomela B, Hoeng J (2013). “Generalized Simulated Annealing for Effi-
cient Global Optimization: The GenSA Package for R.” The R Journal, 5(1), 13–28. URL
https://journal.r-project.org/archive/2013-1/xiang-gubian-suomela-etal.pdf.

Ypma J, Borchers H, Eddelbuettel D (2014). nloptr: R Interface to NLopt. R package version
1.0.4, URL https://CRAN.R-project.org/package=nloptr.

http://nical.ustc.edu.cn/papers/CEC2008_SUMMARY.pdf
http://www.mathworks.com/products/matlab/
https://CRAN.R-project.org/view=Optimization
https://CRAN.R-project.org/view=Optimization
http://CRAN.R-project.org/package=cmaes
http://CRAN.R-project.org/package=cmaes
http://dx.doi.org/10.1016/s0378-4371(96)00271-3
http://CRAN.R-project.org/package=alabama
http://CRAN.R-project.org/package=dfoptim
http://dx.doi.org/10.1007/978-0-387-21706-2
http://dx.doi.org/10.1109/4235.585893
https://journal.r-project.org/archive/2013-1/xiang-gubian-suomela-etal.pdf
https://CRAN.R-project.org/package=nloptr

26 Rmalschains: Memetic Algorithms with Local Search Chains in R

A. Average accuracy result tables
In Tables 4, 5, 6, 7, 8, 9, 10, and 11, we present the average errors, i.e., the differences
between global minimum and achieved value, averaged over 25 test runs, for each package
and function for dimension 10, 30, 50, 100, 200, 500, and 1000, respectively. In the last tables,
for dimension 500 and 1000, we can observe that for functions F7 and F15 the results of several
packages are reported as infinity (Inf). Because this function is defined as

D∑
i=1
|xi|+

D∏
i=1
|xi|,

for high dimensions, numeric overflows may occur.

Affiliation:
Christoph Bergmeir
Faculty of Information Technology
Monash University
3800 VIC, Melbourne, Australia
E-mail: christoph.bergmeir@monash.edu

Daniel Molina
Computer Science and Engineering
University of Cádiz
Cádiz, Spain
Email: daniel.molina@uca.es

José M. Benítez
Department of Computer Science and Artificial Intelligence
E.T.S. de Ingenierías Informática y de Telecomunicación
CITIC-UGR, University of Granada
18071 Granada, Spain
E-mail: j.m.benitez@decsai.ugr.es
URL: http://dicits.ugr.es, http://sci2s.ugr.es

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

December 2016, Volume 75, Issue 4 Submitted: 2012-07-24
doi:10.18637/jss.v075.i04 Accepted: 2015-09-06

mailto:christoph.bergmeir@monash.edu
mailto:daniel.molina@uca.es
mailto:j.m.benitez@decsai.ugr.es
http://dicits.ugr.es
http://sci2s.ugr.es
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v075.i04

Journal of Statistical Software 27

Fu
nc

tio
n

nl
op

tr
pa

rm
a

ad
ag

io
D

Eo
pt

im
df

op
ti

m
ma

ls
ch

ma
ls

ch
PS

O
NM

OF
_C

RS
2

_C
MA

ES
_N

M
_H

JK
B

ai
ns

-C
MA

ai
ns

-S
W

_P
SO

F
1

1.
88

7e
+
01

4.
34

7e
+
01

0.
00

0e
+
00

0.
00

0e
+
00

2.
32

8e
–1

2
2.
10

0e
+
02

2.
47

3e
+
02

9.
07

5e
–0

1
4.
16

9e
–0

5
F

2
0.
00

0e
+
00

2.
85

1e
–1

2
1.
18

8e
–1

1
0.
00

0e
+
00

1.
20

6e
–0

6
1.
32

2e
+
01

1.
99

4e
+
01

0.
00

0e
+
00

2.
31

5e
–0

3
F

3
1.
51

6e
+
03

1.
70

4e
+
04

8.
79

5e
–0

8
0.
00

0e
+
00

3.
01

7e
+
03

0.
00

0e
+
00

2.
17

5e
+
00

1.
81

0e
+
00

3.
09

4e
+
00

F
4

1.
21

4e
+
00

4.
42

3e
+
00

1.
87

0e
+
00

2.
54

7e
–1

3
1.
19

4e
–0

1
7.
94

3e
+
00

1.
87

4e
+
01

3.
58

2e
–0

1
1.
03

3e
–0

4
F

5
3.
34

2e
–0

1
4.
55

8e
+
01

3.
14

8e
–0

1
2.
95

9e
–0

4
8.
85

8e
+
01

3.
13

7e
+
00

1.
18

9e
+
01

6.
26

8e
–0

4
7.
62

1e
–0

1
F

6
1.
70

4e
+
00

1.
51

4e
+
01

5.
18

4e
+
00

0.
00

0e
+
00

4.
12

8e
–0

1
1.
15

0e
+
01

1.
38

9e
+
01

0.
00

0e
+
00

2.
71

2e
–0

3
F

7
1.
08

4e
–0

3
5.
74

1e
–0

1
3.
73

3e
–1

2
0.
00

0e
+
00

1.
90

6e
–0

6
6.
65

3e
–0

9
5.
60

5e
–0

9
0.
00

0e
+
00

7.
02

1e
–0

4
F

8
2.
09

0e
–0

2
8.
47

6e
–1

7
1.
31

7e
–1

2
0.
00

0e
+
00

4.
06

2e
–1

2
6.
07

9e
–0

9
5.
16

8e
–0

9
0.
00

0e
+
00

2.
38

7e
–0

6
F

9
1.
06

6e
+
01

1.
24

4e
+
01

1.
19

3e
+
01

1.
05

9e
+
01

1.
24

7e
+
01

1.
06

2e
+
01

1.
06

9e
+
01

1.
05

9e
+
01

1.
07

6e
+
01

F
10

1.
30

5e
–0

1
3.
75

9e
–0

2
7.
06

2e
–0

2
0.
00

0e
+
00

1.
88

0e
–0

2
4.
78

7e
–0

9
5.
26

7e
–0

9
0.
00

0e
+
00

1.
16

8e
–0

5
F

11
7.
98

2e
–0

2
8.
08

6e
+
00

6.
80

5e
+
00

2.
14

6e
–0

4
9.
05

0e
+
00

0.
00

0e
+
00

2.
14

6e
–0

4
0.
00

0e
+
00

6.
27

1e
–0

2
F

12
3.
09

7e
+
01

4.
86

3e
+
01

0.
00

0e
+
00

0.
00

0e
+
00

2.
86

6e
–1

2
4.
21

7e
–0

9
4.
96

0e
–0

9
1.
21

0e
+
00

3.
45

1e
–0

5
F

13
1.
07

0e
+
03

1.
78

8e
+
05

1.
28

3e
–0

8
3.
00

4e
–0

6
8.
67

3e
+
01

6.
04

0e
–0

9
3.
33

3e
–0

2
6.
48

2e
–0

1
8.
26

1e
–0

1
F

14
1.
34

9e
+
00

4.
24

7e
+
00

4.
13

8e
+
00

0.
00

0e
+
00

1.
99

0e
–0

1
4.
63

4e
–0

9
3.
94

7e
–0

9
3.
04

7e
–0

1
1.
01

3e
–0

4
F

15
9.
14

2e
–0

4
3.
65

4e
–0

1
3.
64

4e
–1

2
0.
00

0e
+
00

1.
88

5e
–0

6
7.
00

7e
–0

9
6.
39

1e
–0

9
0.
00

0e
+
00

8.
24

2e
–0

4
F

16
3.
07

6e
+
00

6.
79

4e
+
00

5.
50

4e
+
00

5.
48

1e
–3

8
4.
17

4e
+
02

7.
02

0e
–0

9
7.
42

6e
–0

9
2.
42

0e
+
00

3.
80

7e
–0

2
F

17
7.
09

6e
–0

3
1.
78

9e
+
01

1.
24

3e
+
01

1.
21

8e
–2

4
1.
81

1e
+
01

8.
19

3e
–0

9
7.
38

3e
–0

5
4.
44

0e
–1

9
1.
19

3e
–0

1
F

18
3.
94

9e
–0

3
9.
65

0e
–0

1
2.
83

6e
+
00

1.
74

4e
–2

5
1.
85

1e
+
00

7.
92

7e
–0

9
8.
00

6e
–0

9
9.
51

6e
–2

0
4.
03

8e
–0

2
F

19
1.
00

0e
+
00

1.
03

7e
+
00

1.
17

0e
+
00

1.
00

0e
+
00

1.
11

3e
+
00

9.
60

0e
–0

1
1.
00

0e
+
00

1.
00

0e
+
00

1.
00

0e
+
00

Ta
bl
e
4:

R
es
ul
ts

fo
r
ea
ch

pa
ck
ag

e
fo
r
di
m
en

sio
n
2.

28 Rmalschains: Memetic Algorithms with Local Search Chains in R

Function
nloptr

parma
adagio

D
Eoptim

dfoptim
malsch

malsch
PSO

NMOF
_CRS2

_CMAES
_NM

_HJKB
ains-CMA

ains-SW
_PSO

F
1

1.593e–09
3.881e+

02
2.679e–05

0.000e+
00

1.324e–11
4.042e+

02
3.958e+

02
0.000e+

00
8.802e–05

F
2

0.000e+
00

1.498e+
01

4.512e+
00

2.090e–03
2.409e+

00
8.175e+

01
7.720e+

01
1.232e–10

1.765e–02
F

3
7.973e–01

5.711e+
07

2.350e+
01

3.970e+
00

2.987e+
07

1.664e–11
2.547e+

00
3.171e+

01
3.031e+

02
F

4
1.099e+

01
3.053e+

01
7.029e+

01
1.368e+

00
1.313e+

00
1.608e+

02
1.389e+

02
7.044e+

00
7.809e+

00
F

5
4.410e–02

5.014e+
00

4.417e+
00

1.150e–02
3.624e+

00
1.413e+

02
1.459e+

02
6.589e–02

7.019e+
01

F
6

8.730e–06
1.630e+

01
1.687e+

01
4.243e–09

4.495e–06
2.027e+

01
2.008e+

01
5.237e–01

1.176e+
00

F
7

8.119e–06
5.288e+

00
1.805e–03

3.288e–10
9.011e–06

9.184e–09
9.655e–09

0.000e+
00

4.901e–03
F

8
2.576e–10

3.086e+
02

1.274e–06
2.754e–01

3.604e+
03

7.847e–09
9.863e–09

3.646e–12
4.781e–03

F
9

6.323e+
01

6.648e+
01

6.638e+
01

5.682e+
01

6.996e+
01

5.830e+
01

5.762e+
01

5.869e+
01

6.294e+
01

F
10

1.452e–09
6.371e–01

4.190e+
00

2.842e–18
1.205e+

00
7.934e–09

8.951e–09
3.038e–01

3.322e–04
F

11
9.570e–02

8.009e+
01

7.322e+
01

2.042e–02
8.644e+

01
4.922e–04

1.646e–08
9.205e–02

2.284e+
01

F
12

4.060e+
00

1.875e+
02

2.102e+
01

1.469e–03
8.898e+

02
8.693e–09

9.264e–09
3.707e+

00
8.036e+

00
F

13
4.893e+

00
1.390e+

06
3.379e+

01
2.750e+

00
2.734e+

08
4.991e+

00
2.117e+

00
2.473e+

01
1.515e+

01
F

14
9.004e+

00
2.885e+

01
6.280e+

01
1.268e+

00
5.839e+

00
8.280e–09

4.353e–02
7.481e+

00
6.648e+

00
F

15
1.000e–07

5.432e+
00

5.136e–01
9.753e–11

7.519e–02
9.019e–09

9.630e–09
1.880e–02

3.718e–03
F

16
1.534e+

01
8.994e+

01
4.642e+

01
6.853e–04

4.223e+
01

1.717e–03
9.550e–09

1.095e+
01

1.444e+
01

F
17

2.105e+
01

7.772e+
01

6.845e+
01

7.136e–01
1.982e+

04
8.185e+

00
3.805e+

00
6.199e+

00
2.597e+

01
F

18
1.929e+

00
1.513e+

01
2.651e+

01
1.672e–02

1.347e+
01

8.819e–09
1.376e–08

1.264e+
00

7.555e–01
F

19
1.175e–10

6.890e+
00

3.234e+
00

3.429e–14
9.902e–01

8.328e–09
9.017e–09

7.958e–02
1.292e–03

Table
5:

R
esults

for
each

package
for

dim
ension

10.

Journal of Statistical Software 29

Fu
nc

tio
n

nl
op

tr
pa

rm
a

ad
ag

io
D

Eo
pt

im
df

op
ti

m
ma

ls
ch

ma
ls

ch
PS

O
NM

OF
_C

RS
2

_C
MA

ES
_N

M
_H

JK
B

ai
ns

-C
MA

ai
ns

-S
W

_P
SO

F
1

4.
12

7e
–0

9
3.
65

8e
+
03

1.
80

8e
+
03

2.
98

4e
–0

2
3.
79

0e
–1

1
4.
33

0e
+
02

4.
38

9e
+
02

4.
48

3e
–1

0
2.
15

6e
–0

1
F

2
6.
64

8e
+
00

4.
12

2e
+
01

5.
28

4e
+
01

1.
50

5e
+
01

1.
51

2e
+
01

1.
28

1e
+
02

1.
24

6e
+
02

1.
28

8e
+
01

4.
54

7e
–0

1
F

3
3.
16

6e
+
01

2.
50

1e
+
08

8.
17

8e
+
08

1.
77

7e
+
02

1.
94

1e
+
09

9.
42

1e
+
00

4.
63

4e
+
01

2.
94

0e
+
02

5.
46

3e
+
02

F
4

7.
25

7e
+
01

1.
36

1e
+
02

4.
07

5e
+
02

2.
75

2e
+
01

1.
60

0e
+
01

3.
23

4e
+
02

3.
20

9e
+
02

5.
14

0e
+
01

1.
26

3e
+
02

F
5

5.
21

5e
–0

3
3.
68

7e
+
01

2.
56

2e
+
01

1.
01

5e
–0

1
1.
31

9e
–0

1
1.
76

1e
+
02

1.
74

0e
+
02

2.
23

6e
–0

2
5.
77

3e
+
02

F
6

1.
75

8e
–0

1
1.
75

3e
+
01

1.
98

8e
+
01

9.
98

8e
–0

2
4.
38

1e
–0

6
2.
11

8e
+
01

2.
11

1e
+
01

1.
01

9e
+
00

1.
90

5e
+
01

F
7

1.
65

4e
–0

5
1.
30

9e
+
01

8.
08

8e
+
00

4.
04

2e
–0

2
2.
91

2e
–0

5
9.
20

5e
–0

9
9.
95

7e
–0

9
8.
51

0e
–0

7
7.
24

7e
–0

1
F

8
2.
38

4e
–0

9
2.
36

9e
+
03

1.
24

6e
+
03

2.
93

3e
+
03

3.
42

3e
+
04

1.
25

0e
–0

8
1.
01

8e
–0

8
1.
93

8e
+
02

7.
06

8e
+
00

F
9

1.
91

2e
+
02

1.
96

1e
+
02

1.
96

9e
+
02

1.
77

3e
+
02

2.
02

4e
+
02

1.
76

9e
+
02

1.
74

2e
+
02

1.
82

6e
+
02

1.
92

4e
+
02

F
10

3.
07

9e
+
00

5.
29

5e
+
01

3.
47

3e
+
01

2.
98

1e
–0

2
3.
35

5e
+
00

8.
54

0e
–0

9
9.
84

1e
–0

9
3.
48

5e
+
00

3.
16

8e
+
00

F
11

3.
28

3e
+
01

2.
66

8e
+
02

2.
56

2e
+
02

1.
80

0e
+
01

2.
67

7e
+
02

7.
91

8e
–0

2
1.
01

0e
–0

2
1.
42

7e
+
01

1.
34

1e
+
02

F
12

5.
40

0e
+
01

1.
44

1e
+
03

7.
19

9e
+
01

3.
49

4e
+
00

6.
42

0e
+
01

6.
31

2e
–0

3
9.
72

3e
–0

9
3.
60

9e
+
01

3.
95

2e
+
01

F
13

4.
61

7e
+
01

6.
68

3e
+
07

4.
98

6e
+
02

9.
89

6e
+
01

1.
94

0e
+
09

6.
87

1e
+
01

3.
42

3e
+
01

1.
09

7e
+
02

9.
64

3e
+
01

F
14

5.
29

0e
+
01

1.
20

0e
+
02

3.
37

9e
+
02

2.
24

2e
+
01

4.
16

2e
+
01

2.
83

6e
–0

1
3.
19

9e
–0

1
4.
50

9e
+
01

9.
13

9e
+
01

F
15

1.
29

1e
–0

1
1.
05

9e
+
02

2.
48

2e
+
01

4.
45

5e
–0

2
7.
65

9e
–0

1
1.
54

9e
–0

7
9.
89

1e
–0

9
3.
67

7e
–0

1
8.
70

2e
–0

1
F

16
1.
12

9e
+
02

5.
76

7e
+
02

1.
46

6e
+
02

8.
87

2e
+
00

5.
66

9e
+
02

2.
40

4e
–0

2
9.
70

7e
–0

9
5.
75

2e
+
01

8.
46

1e
+
01

F
17

1.
02

0e
+
02

3.
44

8e
+
05

2.
11

4e
+
02

5.
84

7e
+
01

2.
72

6e
+
09

3.
78

5e
+
00

2.
42

3e
+
00

1.
28

6e
+
02

1.
42

6e
+
02

F
18

2.
20

3e
+
01

5.
73

9e
+
01

1.
15

3e
+
02

9.
06

1e
+
00

4.
49

9e
+
01

6.
41

7e
–0

3
9.
84

8e
–0

9
2.
92

5e
+
01

3.
66

7e
+
01

F
19

1.
42

7e
+
00

7.
50

1e
+
01

1.
04

1e
+
01

2.
52

4e
–0

2
3.
15

5e
+
00

8.
73

2e
–0

9
9.
54

7e
–0

9
2.
52

8e
+
00

2.
03

9e
+
00

Ta
bl
e
6:

R
es
ul
ts

fo
r
ea
ch

pa
ck
ag

e
fo
r
di
m
en

sio
n
30

.

30 Rmalschains: Memetic Algorithms with Local Search Chains in R

Function
nloptr

parma
adagio

D
Eoptim

dfoptim
malsch

malsch
PSO

NMOF
_CRS2

_CMAES
_NM

_HJKB
ains-CMA

ains-SW
_PSO

F
1

9.778e–09
3.956e+

03
1.029e+

04
2.824e+

01
5.968e–11

4.355e+
02

4.428e+
02

3.781e–04
1.651e+

00
F

2
2.920e+

01
5.096e+

01
7.994e+

01
4.779e+

01
2.471e+

01
1.433e+

02
1.420e+

02
3.818e+

01
3.248e+

01
F

3
7.596e+

01
7.045e+

08
5.236e+

09
1.653e+

04
5.650e+

09
4.895e+

01
4.599e+

01
2.570e+

02
5.579e+

02
F

4
1.836e+

02
2.363e+

02
7.172e+

02
9.742e+

01
4.083e+

01
3.269e+

02
3.274e+

02
1.168e+

02
3.378e+

02
F

5
9.797e–03

3.719e+
01

3.240e+
01

1.216e+
00

2.552e–01
1.752e+

02
1.748e+

02
1.639e–02

1.060e+
03

F
6

2.214e+
00

1.848e+
01

1.985e+
01

3.122e+
00

4.333e–06
2.126e+

01
2.125e+

01
2.068e+

00
1.924e+

01
F

7
2.939e–04

2.591e+
01

1.069e+
02

1.913e+
00

4.759e–05
9.615e–09

1.000e–08
1.259e–02

3.599e+
00

F
8

3.408e+
01

4.998e+
03

3.694e+
03

1.465e+
04

1.361e+
05

1.008e+
00

1.040e–08
4.053e+

03
1.465e+

02
F

9
3.246e+

02
3.308e+

02
3.299e+

02
3.081e+

02
3.302e+

02
2.867e+

02
2.950e+

02
3.158e+

02
3.274e+

02
F

10
1.330e+

01
6.281e+

01
2.150e+

02
1.604e+

01
6.264e+

00
8.564e–09

9.880e–09
8.447e+

00
2.077e+

01
F

11
1.203e+

02
4.547e+

02
4.404e+

02
9.541e+

01
4.672e+

02
0.000e+

00
1.677e–02

5.029e+
01

2.652e+
02

F
12

1.030e+
02

3.101e+
03

3.132e+
03

5.101e+
01

1.046e+
02

1.790e–08
1.002e–08

7.057e+
01

7.493e+
01

F
13

1.358e+
02

3.383e+
08

6.656e+
08

2.791e+
03

6.509e+
09

2.237e+
00

3.818e+
01

2.271e+
02

3.222e+
02

F
14

1.225e+
02

1.787e+
02

5.449e+
02

7.195e+
01

5.267e+
01

4.657e–09
7.562e–01

9.430e+
01

2.354e+
02

F
15

3.953e–01
3.007e+

02
5.283e+

02
3.185e+

00
1.349e+

00
4.323e–09

9.964e–09
1.137e+

00
5.580e+

00
F

16
2.100e+

02
1.314e+

03
1.419e+

03
7.682e+

01
2.136e+

03
2.070e–03

4.923e–03
1.240e+

02
1.545e+

02
F

17
2.249e+

02
1.174e+

07
3.618e+

02
2.669e+

02
1.678e+

09
0.000e+

00
2.151e+

01
3.340e+

02
3.844e+

02
F

18
5.801e+

01
1.210e+

02
2.722e+

02
3.583e+

01
9.064e+

01
0.000e+

00
4.292e–04

6.656e+
01

9.191e+
01

F
19

6.735e+
00

2.258e+
02

2.394e+
02

7.005e+
00

3.896e+
00

7.657e–09
9.304e–09

7.388e+
00

1.983e+
01

Table
7:

R
esults

for
each

package
for

dim
ension

50.

Journal of Statistical Software 31

Fu
nc

tio
n

nl
op

tr
pa

rm
a

ad
ag

io
D

Eo
pt

im
df

op
ti

m
ma

ls
ch

ma
ls

ch
PS

O
NM

OF
_C

RS
2

_C
MA

ES
_N

M
_H

JK
B

ai
ns

-C
MA

ai
ns

-S
W

_P
SO

F
1

8.
42

3e
+
02

1.
14

0e
+
04

3.
58

6e
+
04

5.
67

9e
+
03

1.
22

3e
–1

0
4.
34

3e
+
02

4.
44

6e
+
02

2.
31

1e
+
01

1.
82

0e
+
01

F
2

6.
15

3e
+
01

7.
66

0e
+
01

1.
03

3e
+
02

9.
91

2e
+
01

3.
13

6e
+
01

1.
58

7e
+
02

1.
55

2e
+
02

7.
51

8e
+
01

6.
23

2e
+
01

F
3

2.
26

3e
+
07

1.
20

8e
+
09

2.
31

7e
+
10

9.
45

0e
+
07

2.
13

0e
+
09

1.
18

8e
+
02

1.
14

7e
+
02

6.
42

9e
+
05

8.
94

1e
+
03

F
4

4.
83

0e
+
02

5.
19

1e
+
02

1.
65

0e
+
03

4.
55

0e
+
02

5.
43

7e
+
01

3.
28

3e
+
02

3.
29

7e
+
02

3.
34

7e
+
02

9.
32

1e
+
02

F
5

7.
86

1e
+
00

9.
32

2e
+
01

2.
32

7e
+
02

4.
88

4e
+
01

1.
95

9e
–0

1
1.
74

7e
+
02

1.
78

0e
+
02

1.
15

2e
+
00

2.
28

8e
+
03

F
6

6.
63

0e
+
00

1.
98

7e
+
01

1.
98

8e
+
01

1.
13

2e
+
01

4.
36

6e
–0

6
2.
13

8e
+
01

2.
13

5e
+
01

4.
07

3e
+
00

1.
98

2e
+
01

F
7

1.
20

6e
+
01

7.
03

0e
+
01

2.
86

7e
+
30

4.
46

9e
+
01

9.
61

2e
–0

5
9.
77

3e
–0

9
1.
01

0e
–0

8
2.
70

5e
+
00

2.
29

1e
+
01

F
8

5.
12

8e
+
03

1.
20

3e
+
04

1.
15

5e
+
04

8.
60

0e
+
04

1.
00

7e
+
06

1.
80

3e
+
03

6.
98

9e
–0

4
3.
42

3e
+
04

4.
16

9e
+
03

F
9

6.
48

8e
+
02

6.
31

7e
+
02

6.
29

8e
+
02

6.
19

0e
+
02

6.
40

1e
+
02

5.
67

5e
+
02

5.
66

8e
+
02

6.
12

8e
+
02

6.
42

4e
+
02

F
10

5.
81

9e
+
01

8.
86

8e
+
01

1.
78

7e
+
03

3.
33

4e
+
02

1.
20

4e
+
01

1.
13

5e
–0

8
9.
91

9e
–0

9
3.
27

8e
+
01

8.
81

0e
+
01

F
11

3.
80

6e
+
02

9.
13

2e
+
02

9.
16

5e
+
02

4.
52

0e
+
02

9.
67

5e
+
02

2.
34

6e
+
00

1.
35

7e
–0

1
3.
25

3e
+
02

5.
98

7e
+
02

F
12

2.
84

6e
+
02

7.
07

4e
+
03

2.
37

2e
+
04

2.
51

6e
+
03

1.
17

0e
+
04

2.
53

8e
+
00

2.
02

0e
+
00

1.
87

4e
+
02

1.
74

6e
+
02

F
13

5.
18

9e
+
05

3.
57

0e
+
08

1.
47

0e
+
10

2.
09

0e
+
07

2.
82

0e
+
10

1.
19

5e
+
02

7.
71

1e
+
01

4.
76

4e
+
03

1.
99

2e
+
03

F
14

3.
63

4e
+
02

4.
05

7e
+
02

1.
21

9e
+
03

3.
25

7e
+
02

9.
09

9e
+
01

2.
64

0e
+
00

4.
12

7e
+
00

2.
51

7e
+
02

6.
56

1e
+
02

F
15

7.
26

0e
+
01

5.
89

6e
+
02

2.
24

2e
+
03

8.
72

3e
+
01

3.
40

9e
+
00

7.
33

3e
–0

6
9.
95

0e
–0

9
9.
71

1e
+
00

6.
32

9e
+
01

F
16

4.
45

2e
+
02

2.
72

9e
+
03

1.
11

1e
+
04

7.
04

7e
+
02

1.
89

8e
+
04

2.
85

9e
+
00

1.
69

8e
+
00

3.
62

6e
+
02

3.
36

1e
+
02

F
17

6.
63

1e
+
02

7.
31

3e
+
07

8.
67

9e
+
02

4.
29

1e
+
04

1.
50

0e
+
10

2.
21

9e
+
02

2.
26

5e
+
02

8.
25

0e
+
02

9.
07

2e
+
02

F
18

1.
47

9e
+
02

2.
44

8e
+
02

5.
68

6e
+
02

1.
52

1e
+
02

2.
31

3e
+
02

9.
42

1e
–0

1
1.
26

0e
–0

1
1.
60

0e
+
02

2.
68

9e
+
02

F
19

5.
43

3e
+
01

9.
88

1e
+
02

1.
16

5e
+
03

1.
49

6e
+
02

9.
15

7e
+
00

1.
45

7e
–0

8
8.
68

4e
–0

9
2.
20

3e
+
01

8.
88

6e
+
01

Ta
bl
e
8:

R
es
ul
ts

fo
r
ea
ch

pa
ck
ag

e
fo
r
di
m
en

sio
n
10

0.

32 Rmalschains: Memetic Algorithms with Local Search Chains in R

Function
nloptr

D
Eoptim

dfoptim
malsch

adagio
PSO

NMOF
_CRS2

_HJKB
ains-SW

_NM
_PSO

F
1

9.214e+
04

1.237e+
05

2.390e–10
4.477e+

02
8.724e+

04
3.805e+

03
1.452e+

03
F

2
7.802e+

01
1.330e+

02
3.253e+

01
1.696e+

02
1.193e+

02
9.715e+

01
7.881e+

01
F

3
8.230e+

09
1.818e+

10
5.505e+

05
2.167e+

02
1.135e+

11
8.114e+

08
2.049e+

06
F

4
1.360e+

03
1.696e+

03
1.264e+

02
3.296e+

02
3.095e+

03
1.133e+

03
2.468e+

03
F

5
7.193e+

02
1.012e+

03
1.152e–01

1.790e+
02

7.572e+
02

4.085e+
01

5.042e+
03

F
6

1.544e+
01

1.836e+
01

4.375e–06
2.143e+

01
1.987e+

01
9.610e+

00
2.025e+

01
F

7
1.588e+

02
3.086e+

02
1.914e–04

1.023e–08
6.781e+

76
7.089e+

01
1.193e+

02
F

8
3.593e+

04
3.771e+

05
3.849e+

06
4.766e+

00
5.036e+

04
1.831e+

05
3.698e+

04
F

9
1.398e+

03
1.346e+

03
1.287e+

03
1.191e+

03
1.268e+

03
1.279e+

03
1.344e+

03
F

10
7.295e+

02
5.299e+

03
2.489e+

01
9.986e–09

4.016e+
03

4.851e+
02

3.168e+
02

F
11

9.918e+
02

1.394e+
03

1.914e+
03

6.989e–01
1.846e+

03
1.162e+

03
1.308e+

03
F

12
3.927e+

04
6.711e+

04
1.210e+

05
3.331e+

01
6.468e+

04
1.336e+

03
6.099e+

02
F

13
1.546e+

09
6.365e+

09
7.181e+

10
3.500e+

02
6.681e+

10
5.097e+

07
5.576e+

04
F

14
9.292e+

02
1.223e+

03
2.385e+

02
2.731e+

01
2.494e+

03
7.873e+

02
1.816e+

03
F

15
7.902e+

02
1.443e+

03
5.847e+

00
9.943e–09

1.079e+
48

1.326e+
02

3.411e+
02

F
16

5.305e+
03

1.979e+
04

7.854e+
04

9.839e+
00

4.409e+
04

1.102e+
03

7.710e+
02

F
17

5.516e+
03

1.340e+
08

5.063e+
10

7.692e+
01

4.388e+
09

2.249e+
03

1.756e+
03

F
18

3.928e+
02

5.283e+
02

3.847e+
02

2.518e–01
1.155e+

03
3.860e+

02
6.726e+

02
F

19
7.931e+

02
2.655e+

03
1.822e+

01
8.385e–08

7.097e+
03

2.828e+
02

2.991e+
02

Table
9:

R
esults

for
each

package
for

dim
ension

200.

Journal of Statistical Software 33

Function DEoptim dfoptim malsch PSO NMOF
_HJKB ains-SW _PSO

F1 1.248e+06 6.012e–10 4.490e+02 1.673e+05 1.152e+05
F2 1.614e+02 4.974e+01 1.805e+02 1.176e+02 9.175e+01
F3 7.654e+11 2.554e+11 5.055e+02 6.247e+10 4.607e+09
F4 7.349e+03 1.225e+02 3.301e+02 4.946e+03 7.770e+03
F5 1.037e+04 1.780e–01 1.796e+02 1.548e+03 1.328e+04
F6 2.074e+01 4.384e–06 2.149e+01 1.827e+01 2.056e+01
F7 3.401e+113 Inf 1.043e–08 7.542e+02 1.621e+41
F8 2.333e+06 1.850e+07 2.207e+03 1.214e+06 2.790e+05
F9 3.753e+03 3.224e+03 3.036e+03 3.447e+03 3.619e+03
F10 4.964e+04 6.528e+01 8.398e–02 7.783e+03 2.163e+03
F11 4.732e+03 4.841e+03 9.419e+01 3.830e+03 3.578e+03
F12 8.341e+05 3.315e+05 4.134e+02 6.081e+04 4.227e+04
F13 4.559e+11 5.983e+11 9.248e+02 2.073e+10 6.367e+08
F14 5.428e+03 2.983e+02 2.350e+02 3.435e+03 5.658e+03
F15 6.215e+70 1.557e+01 8.771e–09 2.414e+03 1.432e+24
F16 4.267e+05 6.175e+05 7.094e+02 1.216e+04 7.976e+03
F17 4.927e+10 2.927e+11 2.705e+02 9.704e+05 5.943e+04
F18 2.253e+03 8.097e+02 7.229e+01 1.301e+03 2.140e+03
F19 2.765e+06 4.757e+01 9.046e–09 5.039e+03 2.836e+03

Table 10: Results for dimension 500. “Inf” means that no candidate solution was found.

Function DEoptim dfoptim malsch PSO NMOF
_HJKB ains-SW _PSO

F1 3.897e+06 1.217e–09 4.496e+02 1.018e+06 7.858e+05
F2 1.758e+02 4.363e+01 1.864e+02 1.272e+02 9.742e+01
F3 3.508e+12 7.968e+11 9.932e+02 4.524e+11 9.417e+10
F4 1.889e+04 2.388e+02 8.290e+02 1.249e+04 1.719e+04
F5 3.485e+04 1.178e–01 1.798e+02 9.271e+03 2.960e+04
F6 2.119e+01 4.430e–06 2.153e+01 2.080e+01 2.081e+01
F7 Inf Inf Inf Inf Inf
F8 8.711e+06 5.036e+07 3.156e+04 5.384e+06 1.198e+06
F9 8.110e+03 6.516e+03 6.203e+03 7.550e+03 7.721e+03
F10 1.580e+05 1.300e+02 5.039e–01 3.267e+04 1.213e+04
F11 1.088e+04 9.693e+03 5.398e+02 8.429e+03 7.738e+03
F12 2.797e+06 1.208e+06 1.234e+03 4.922e+05 4.083e+05
F13 2.462e+12 2.061e+12 2.078e+03 2.156e+11 3.353e+10
F14 1.423e+04 5.873e+02 6.725e+02 9.017e+03 1.278e+04
F15 Inf Inf Inf Inf 1.040e+120
F16 1.669e+06 1.011e+06 2.618e+03 1.432e+05 1.220e+05
F17 4.686e+11 5.119e+11 1.552e+03 1.158e+09 1.879e+07
F18 5.847e+03 1.294e+03 6.735e+02 3.262e+03 4.941e+03
F19 3.460e+67 1.003e+02 1.680e–01 2.230e+04 2.945e+04

Table 11: Results for dimension 1000. “Inf” means that no candidate solution was found.

	Introduction
	The theory of the algorithm
	General scheme
	The evolutionary algorithm
	The local search method

	A simple example
	Other packages in R for continuous optimization
	Experimental study: Comparison with other algorithms
	Test suite and experimental conditions
	Parameters and used methods
	Results in average error
	Analysis of computation time
	Scalability
	Study of accuracy per function and dimension

	Conclusions
	Average accuracy result tables

