
Engineering Applications of Artificial Intelligence 25 (2012) 254–273
Contents lists available at ScienceDirect
Engineering Applications of Artificial Intelligence
0952-19

doi:10.1

� Corr

E-m

oscar.co

sergio.d

joaquin
journal homepage: www.elsevier.com/locate/engappai
Multiobjective memetic algorithms for time and
space assembly line balancing
Manuel Chica a,�, Óscar Cordón a,b, Sergio Damas a, Joaquı́n Bautista c

a European Centre for Soft Computing, 33600 Mieres, Spain
b Department of Computer Science and Artificial Intelligence, E.T.S. Informática y Telecomunicación, 18071 Granada, Spain
c Nissan Chair ETSEIB Universitat Polit�ecnica de Catalunya, 08028 Barcelona, Spain
a r t i c l e i n f o

Available online 1 June 2011

Keywords:

Time and space assembly line balancing

problem

Automotive industry

Multiobjective optimisation

Memetic algorithms

NSGA-II

Ant colony optimisation

GRASP

Local search
76/$ - see front matter & 2011 Elsevier Ltd. A

016/j.engappai.2011.05.001

esponding author.

ail addresses: manuel.chica@softcomputing.es

rdon@softcomputing.es (Ó. Cordón),

amas@softcomputing.es (S. Damas),

.bautista@upc.edu (J. Bautista).
a b s t r a c t

This paper presents three proposals of multiobjective memetic algorithms to solve a more realistic

extension of a classical industrial problem: time and space assembly line balancing. These three

proposals are, respectively, based on evolutionary computation, ant colony optimisation, and greedy

randomised search procedure. Different variants of these memetic algorithms have been developed and

compared in order to determine the most suitable intensification–diversification trade-off for the

memetic search process. Once a preliminary study on nine well-known problem instances is

accomplished with a very good performance, the proposed memetic algorithms are applied considering

real-world data from a Nissan plant in Barcelona (Spain). Outstanding approximations to the pseudo-

optimal non-dominated solution set were achieved for this industrial case study.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, assembly lines are crucial in the industrial produc-
tion of high quantity standardized commodities and more
recently even gained importance in low volume production of
customised products (Boysen et al., 2008). An assembly line is
made up of a number of workstations, arranged either in series or
in parallel. Since the manufacturing of a production item is
divided into a set of tasks, a usual and difficult problem is to
determine how these tasks can be assigned to the stations
fulfilling certain restrictions. Consequently, the aim is to get an
optimal assignment of subsets of tasks to the stations of the plant.
Moreover, each task requires an operation time for its execution.

A family of academic problems – referred to as simple assembly
line balancing problems (SALBP) – was proposed to model this
situation (Baybars, 1986; Scholl, 1999). Taking this family as a base,
Bautista proposed a more realistic framework: the time and space
assembly line balancing problem (TSALBP) (Bautista and Pereira,
2007). The new model considers an additional space constraint to
become a simplified version of real-world problems. As described
in Bautista and Pereira (2007), this space constraint emerged due
to the study of the Nissan plant in Barcelona, Spain (a snapshot of
an assembly line of this industrial plant is shown in Fig. 1). The
ll rights reserved.

(M. Chica),
new TSALBP framework is of a great importance in industrial
engineering and operations research since it achieves a better
modelling of the real conditions of the balancing of assembly lines.
The proposal of more realistic ALB models, allowing us to properly
cope with real-life scenarios, have become a hot topic in the area in
the last few years (Boysen et al., 2008).

As many real-world problems, TSALBP formulations have a

multi-criteria nature (Chankong and Haimes, 1983) because they

contain three conflicting objectives to be minimised: the cycle time

of the assembly line, the number of the stations, and the area of

these stations. In this paper we deal with the TSALBP-1/3 variant

which tries to jointly minimise two objectives, the number of

stations and their area, for a given value of the remaining objective,

the product cycle time. TSALBP-1/3 has an important set of hard

constraints-like precedences or cycle time limits for each station

that make the problem solving difficult. These characteristics

initially demanded the use of constructive approaches like ant

colony optimisation (ACO) (Dorigo and Stützle, 2004) or greedy

randomised search procedures (GRASP) (Feo and Resende, 1995) as

done in the proposals described in Chica et al. (2010a,b), respec-

tively. Nevertheless, an advanced proposal based on the well-

known NSGA-II multiobjective evolutionary algorithm (Deb et al.,

2002) has been recently introduced in Chica et al. (2011a) using a

specific representation scheme and customised genetic operators

for the TSALBP. The latter advanced TSALBP-NSGA-II proposal has

overcome the problem shortcomings requiring a constructive

technique and has outperformed the existing algorithms, becoming

the state-of-the-art method.

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2011.05.001
mailto:manuel.chica@softcomputing.es
mailto:oscar.cordon@softcomputing.es
mailto:sergio.damas@softcomputing.es
mailto:joaquin.bautista@upc.edu
dx.doi.org/10.1016/j.engappai.2011.05.001

Fig. 1. An assembly line of the Nissan Pathfinder car, located in the industrial

plant of Barcelona (Spain).

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273 255
Memetic algorithms (MAs) (Moscato, 1989; Ong et al., 2006,
2010) have been widely used in industrial and engineering
applications like the fleet vehicle routing problem (Prins, 2009),
the design of spread spectrum radar poly-phase codes (Pérez-
Bellido et al., 2008), the design of logistic networks (Pishvaee
et al., 2010), or the construction of three-dimensional models of
real-world objects (Santamarı́a et al., 2009). However, the use of
local search to improve the solutions obtained by a global search
procedure for the TSALBP has not been extensively explored
(Bautista and Pereira, 2007; Chica et al., 2010b). In this paper,
we aim to make an advance in the solving of this complex and
challenging real-world problem by considering the application of
advanced MA designs to deal with it.

We will design new multiobjective memetic methods for
tackling the real-world TSALBP-1/3 variant. Such methods are
based both on the state-of-the-art multiobjective algorithm, the
advanced TSALBP-NSGA-II, and on the other existing multiobjec-
tive algorithms for the TSALBP. The new memetic proposals will
incorporate a successful multi-criteria local search (LS) scheme
used in a previous GRASP approach.

We aim at comparing different MA variants to show that there
is no general method that is able to achieve the best results for all
the problem instances (as stated in the No Free Lunch theorem
Wolpert and Macready, 1997). Thus, we will develop 15 different
MA designs to be compared to each other and to the basic global
search methods in a complete experimentation with nine well-
known problem instances.

Finally, an industrial case study will be considered to investi-
gate the appropriateness of our MA proposals for solving real-
world problems. This case study includes real-world data from
the Nissan Pathfinder engine manufacturing process obtained
from the assembly line of Barcelona. Up-to-date multiobjective
performance indicators and statistical tests are used to analyse
the behaviour of the algorithms.

The paper is structured as follows. In Section 2, the TSALBP-1/3
formulation is explained. The proposed multiobjective memetic
algorithms to solve the problem are described in Section 3. Then,
the experimental setup, the analysis of results, and the Nissan
case study are presented in Section 4. Finally, some concluding
remarks are discussed in Section 5.
2. Time and space assembly line balancing

The manufacturing of a production item is divided into a set V

of n tasks. Each task j requires a positive operation time tj for its
execution. This time is determined as a function of the manufac-
turing technologies and the resources employed. A subset of tasks
Sk (SkDV) is assigned to each station k (k¼1,2,y,m), referred to
as the workload of this station. Each task j can only be assigned to
a single station k.

Every task j has a set of immediate ‘‘preceding tasks’’ Pj which
must be accomplished before starting that task. These constraints
are represented by an acyclic precedence graph, whose vertices
correspond to the tasks and where a directed arc /i,jS indicates
that task i must be finished before starting task j on the produc-
tion line. Thus, task j cannot be assigned to a station that is
ordered before the one where task i was assigned.

Each station k presents a station workload time tðSkÞ that is
equal to the sum of the tasks’ lengths assigned to it. The workload
time of the station cannot exceed the cycle time c, common to all
the stations of the assembly line. In general, the SALBP (Baybars,
1986; Scholl, 1999) focuses on grouping these tasks into work-
stations by an efficient and coherent method. In short, the goal is
to achieve a grouping of tasks that minimises the inefficiency of
the line or its total downtime satisfying all the constraints
imposed on the tasks and stations.

Nevertheless, this formulation is too simple to deal with real-
life ALB problems. Different extensions to this formulation have
been proposed (Scholl, 1999), showing the great interest of the
scientific community (Boysen et al., 2008). In particular, there is a
significant and real need of introducing space constraints in the
assembly lines’ design. This is because of three main reasons
found in real manufacturing scenarios:
(1)
 The length of the workstation is limited. Workers start their
work as close as possible to the initial point of the work-
station, and must fulfil their tasks while following the
product. They need to carry the tools and materials to be
assembled in the unit. In this case, there are constraints for
the maximum allowable movement of the workers. These
constraints directly limit the length of the workstation and
the available space.
(2)
 The required tools and components to be assembled should
be distributed along the sides of the line. In addition, in the
automotive industry, some operations can only be executed
on one side of the line. This fact restricts the physical space
where tools and materials can be placed. If several tasks
requiring large areas are put together the workstation would
be unfeasible.
(3)
 Another usual source of spatial constraints comes from the
products evolution. Focusing again on the automotive indus-
try, when a car model is replaced with a newer one, it is usual
to keep the production plant unchanged. However, the new
space requirements for the assembly line may create more
spatial constraints.
Based on these new realistic spatial features, a new real-like
problem comes up. In order to model it, Bautista extended the
SALBP into the TSALBP by means of the following formulation
(Bautista and Pereira, 2007): the area constraint must be con-
sidered by associating a required area to each task. The areas of
tasks are devoted to store auxiliary elements for manufacturing
purposes like tools, shelves, containers, or hardware brackets. The
needed area for each task is defined by the logistics and methods
departments based on the characteristics of the involved auxiliary
elements. We should keep in mind that the inclusion of space
constraints in the problem formulation can decrease the effi-
ciency with respect to a formulation which does not consider
spatial constraints. However, these efficiency values only repre-
sent a theoretical nature because if spatial constraints are not
included, the assembly line cannot be arranged.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273256
Mainly, the required areas can be specified by two-dimen-
sional units, i.e. length (aj) and width (bj). The first dimension, aj,
is the truly useful variable for the TSALBP optimisation task.
From now on, the length associated to the tasks and the station’s
length will be referred as area and measured in linear metres.
Every station k will require a station area a(Sk), equal to the sum
of the areas of all the tasks assigned to that station. This needed
area must not be larger than the available area Ak of the station
k. For the sake of simplicity, we shall assume Ak to be identical
for all the stations and denoted by A, where A¼maxk ¼ 1,2,...,mAk.
This fact is not problematic since if there is a continuous
transportation system, as in our case, the areas of the stations
must be equal. Otherwise, the velocity of the conveyor belt
would require to be changed at each station and adapted to the
cycle time. A diagram with an example is given in Fig. 2 where
the area Ak of station k is given by the sum of the areas (lengths)
of its tasks, a1, a2, a3, and a4.

Overall, the TSALBP may be stated as: given a set of n tasks
with their temporal and spatial attributes, tj and aj, and a
precedence graph, each task must be assigned to just one station
such that:
1.
Fig
4 d

is t
all the precedence constraints are satisfied,

2.
 there is not any station with a workload time tðSkÞ greater than

the cycle time c,

3.
 there is not any station with a required area aðSkÞ greater than

the global available area A.

The TSALBP presents different formulations depending on
which of the three considered parameters (c, the cycle time; m,
the number of stations; and A, the area of the stations) are tackled
as objectives to be optimised and which will be considered as
fixed variables. The eight possible combinations result in eight
different TSALBP variants (Bautista and Pereira, 2007). Within
them, there are four multiobjective variants depending on the
given fixed variable: c, m, A, or none of them. While the former
three cases involve a bi-objective problem, the latter defines a
three-objective problem.

In this contribution we will tackle one of these formulations,
the TSALBP-1/3. It consists of minimising the number of stations
m and the station area A, given a fixed value of the cycle time c.
We chose this variant because it is quite realistic in the auto-
motive industry, our field of interest, since the annual production
of an industrial plant (and, therefore, the cycle time c) is usually
set by market objectives. Besides, the search for the best number
of stations and areas makes sense if we want to reduce costs and
make workers’ day better by setting up less crowded stations.
More information about the justification of this choice can be
found in Chica et al. (2010a).
. 2. A diagram showing the area configuration of a station k containing

ifferent tasks. The important space dimension for the optimisation problem

he length of the tasks, ai, that is called area in this paper.
We can mathematically formulate the TSALBP-1/3 variant as
follows:

Min f 0ðxÞ ¼m¼
XUBm

k ¼ 1

max
j ¼ 1,2,...,n

xjk, ð1Þ

f 1ðxÞ ¼ A¼ max
k ¼ 1,2,...,UBm

Xn

j ¼ 1

ajxjk: ð2Þ

subject to:

XLj

k ¼ Ej

xjk ¼ 1, j¼ 1,2, . . . ,n, ð3Þ

XUBm

k ¼ 1

max
j ¼ 1,2,...,n

xjkrm, ð4Þ

Xn

j ¼ 1

tjxjkrc, k¼ 1,2, . . . ,UBm, ð5Þ

Xn

j ¼ 1

ajxjkrA, k¼ 1,2, . . . ,UBm, ð6Þ

XLi

k ¼ Ei

kxikr
XLj

k ¼ Ej

kxjk, j¼ 1,2, . . . ,n; 8iAPj, ð7Þ

xjkAf0,1g, j¼ 1,2, . . . ,n; k¼ 1,2, . . . ,UBm, ð8Þ

where:
�
 n is the number of tasks,

�
 xjk is a decision variable taking value 1 if task j is assigned to

station k, and 0 otherwise,

�
 aj is the area information for task j,

�
 Ej is the earliest station to which task j may be assigned,

�
 Lj is the latest station to which task j may be assigned,

�
 UBm is the upper bound of the number of stations. In our case,

it is equal to the number of tasks.

Constraint in Eq. (3) restricts the assignment of every task to
just one station, (4) limits decision variables to the total number
of stations, (5) and (6) are concerned with time and area upper
bounds, (7) denotes the precedence relationship among tasks, and
(8) expresses the binary nature of variables xjk.

The specialised literature includes a large variety of exact and
heuristic problem-solving procedures as well as metaheuristics
for solving the SALBP (Baybars, 1986; Scholl and Voss, 1996;
Scholl and Becker, 2006). Regarding the TSALBP-1/3, a multi-
objective ACO algorithm based on the multiple ant colony system
(MACS) (Barán and Schaerer, 2003) was the first successful
proposal (Chica et al., 2010a). However, a later multiobjective
evolutionary algorithm, the advanced TSALBP-NSGA-II, outper-
formed MACS and became the state-of-the-art method (Chica
et al., 2011a). Procedures based on other metaheuristics as GRASP
have also been proposed (Chica et al., 2010b). Finally, expert
preferences were modelled and included into the metaheuristic
search process (Chica et al., 2011b, 2008).

The said three approaches to tackle TSALBP-1/3 will be
described in Section 3.1 as the global search modules of our
memetic proposals. With respect to the use of MAs, an ACO
algorithm incorporating an LS strategy was proposed in Bautista
and Pereira (2007) to solve a single-objective TSALBP variant.
Nevertheless, no multiobjective MA design has been proposed to
deal with any multiobjective TSALBP variant. The current con-
tribution aims at bridging this gap.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273 257
3. Proposed memetic algorithms

In this section we introduce different advanced MA designs
for tackling our industrial problem. Generally, (multiobjective)
MAs may be regarded as a marriage between a (multiobjective)
global search metaheuristic and local improvement operators.
This general structure has actually proved its efficacy when
solving a large number of real-world problems. Unfortunately, it
is well known that there is not any universal MA design to deal
with any general application. In fact, one drawback of MAs is
that, in order for it to be useful, their general structure must be
adapted to cope with the characteristics of the individual search
components considered and of the problem under solving. These
elements and how they are integrated to obtain the best
performance are the pieces of the MA puzzle. Designers must
use their knowledge, skills and expertise to make decisions on
the composition of each individual procedure and of their
integration in order to reach the best possible MA structure for
the specific application being tackled (Ishibuchi et al., 2003; Ong
et al., 2006, 2010). Some tentative designs based on the analysis
of several combinations with a different intensification–diversi-
fication trade-off must be tested to succeed in this task.

The latter design process is a consequence of the fact that each
(multiobjective) global search metaheuristic has its own peculia-
rities and defines different intensification–diversification degrees
when combined with a LS method. Therefore, it is necessary to
detail each global search method and how all the components are
integrated in the final scheme for each specific MA case. As an
example, in the design of a multiobjective MA for the current
problem we found that the three different multiobjective meta-
heuristics to be considered as global search methods handle the
final set of solutions, i.e. Pareto-optimal solutions, in different
ways. On the one hand, these solutions can be stored in an
external Pareto archive, as in MACS and GRASP. On the other
hand, they can be included in the general population of the
metaheuristic, as in the advanced TSALBP-NSGA-II. These specific
decisions are those not allowing for a universal MA design.

The structure of the current section keeps these ideas in mind
and follows the usual MA design pipeline. To do so, in Section 3.1
the three basic multiobjective global search methods tested are
reviewed. Then, the LS structure and operators are introduced in
Section 3.2. Finally, Section 3.3 describes the different chances
considered for the LS integration within the global search scheme.

3.1. Global search: multiobjective metaheuristics

We describe the three multiobjective metaheuristic designs
which have been applied to the TSALBP-1/3, i.e. the MACS
algorithm, a GRASP method, and the state-of-the-art advanced

TSALBP-NSGA-II.
3.1.1. MACS

MACS (Barán and Schaerer, 2003) was proposed as an exten-
sion of ant colony system (ACS) (Dorigo and Gambardella, 1997)
to deal with multiobjective problems. In Chica et al. (2010a), the
authors modified the original version of MACS to adapt it for
solving the TSALBP-1/3. The algorithm uses one pheromone trail
matrix and several heuristic information functions. In the case of
the TSALBP-1/3, the experimentation carried out in Chica et al.
(2010a) showed that the performance was better when MACS was
only guided by the pheromone trail information. Therefore, the
heuristic information functions have not been considered in this
contribution.

Since the number of stations is not fixed, the method is based
on constructive and station-oriented approach (Scholl, 1999) to
face the precedence problem (as usually done for the SALBP,
Scholl and Becker, 2006). Thus, the algorithm opens a station and
sequentially selects tasks to fill it by means of the MACS transi-
tion rule till a stopping criterion is reached. Then, a new station is
opened to be filled and the procedure is iterated till all the
existing tasks are allocated.

The pheromone information has to memorise which tasks are
the most appropriate to be assigned to a station. Hence, a
pheromone trail has to be associated to a pair ðstationk,taskjÞ,
k¼1yn, j¼1yn, with n being the number of tasks, so the
pheromone trail matrix has a bi-dimensional nature. Since MACS
is Pareto-based, i.e. a set of non-dominated solutions for the
problem is stored in a Pareto archive and updated at each step of
the algorithm, the pheromone trails are updated using the solu-
tions of this archive. Two station-oriented single-objective greedy
algorithms are used to obtain the initial pheromone value t0.

In addition, a novel mechanism was introduced in the con-
struction procedure in order to achieve a better search intensifi-
cation–diversification trade-off. This mechanism randomly
decides when to close the current station taking as a base both
a station closing probability distribution and an ant filling thresh-
old aiA ½0,1�. The probability distribution is defined by the station
filling rate (i.e. the overall processing time of the current set of
tasks Sk assigned to that station) as follows:

pðclosing kÞ ¼

P
iASk

ti

c
: ð9Þ

At each construction step, the current station filling rate is
computed. In case it is lower than the ant’s filling percentage
threshold ai (i.e. when it is lower than ai � c), the station is kept
opened. Otherwise, the station closing probability distribution is
updated and a random number is uniformly generated in [0,1] to
take the decision whether the station is closed or not. If the
decision is to close the station, a new station is created to allocate
the remaining tasks. Otherwise, the station will be kept open.
Once the latter decision has been taken, the next task is chosen
among all the candidate tasks using the MACS transition rule to
be assigned to the current station as usual:

j¼
argmax

jAO
ðtij � ½Z0

ij�
lb � ½Z1

ij�
ð1�lÞbÞ, if qrq0,

î, otherwise:

8<
: ð10Þ

where O represents the current feasible neighbourhood of the ant,
b weights the relative importance of the heuristic information with
respect to the pheromone trail, and l is computed from the ant
index h as l¼ h=M. M is the number of ants in the colony, q0A ½0,1�
is an exploitation–exploration parameter, q is a random value in
[0,1], and î is a node. This node î is selected according to the
probability distribution p(j) of Eq. (11). This probability is applied
to perform a controlled exploration of the neighbourhood O at
each decision node of the ant, as done in the original ACS. Again, b
weights the relative importance of the heuristic information with
respect to the pheromone trails and l depends on each ant index

pðjÞ ¼

tij � ½Z0
ij�
lb � ½Z1

ij�
ð1�lÞb

P
uAOtiu � ½Z0

iu�
lb � ½Z1

iu�
ð1�lÞb, if jAO,

0, otherwise:

8>><
>>: ð11Þ

The procedure goes on till there are no remaining tasks to be
assigned. Thus, the higher the ant’s threshold, the higher the
probability of a totally filled station, and vice versa. This is due to
the fact that there are less possibilities to close it during the
construction process. In this way, the ant population will show a
highly diverse search behaviour, allowing the method to properly
explore the different parts of the optimal Pareto front by appro-
priately distributing the generated solutions.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273258
The algorithm performs a local pheromone update every time
an ant crosses an edge /i,jS using the average costs of the t0

value. It is done as follows:

tij ¼ ð1�rÞ � tijþr � t0 ð12Þ

The interested reader is referred to Chica et al. (2010a) for a
complete description of the MACS proposal for the TSALBP-1/3.
3.1.2. GRASP

Another successful metaheuristic applied to the TSALBP-1/3
was a multiobjective GRASP method1 (Chica et al., 2010b). With
this approach, a solution is generated at each iteration and its
inclusion in the external Pareto archive is considered: if it is not
dominated, it is included in the archive and the resulting
dominated solutions are removed. The algorithm finishes with a
set of non-dominated solutions generated during all the
iterations.

As in MACS, the construction method is based on a station-
oriented approach. In the construction of the greedy solutions we
introduce randomness in two processes. On the one hand, we
allow the random selection of the next task among the best
candidates to be assigned to the current station. This process
starts by creating a candidate list of unassigned tasks. For each
candidate task j, we compute its heuristic value Zj. It measures
the preference of assigning it to the current opened station. Zj is
proportional to the processing time and area ratio of that task
(normalised with the upper bounds given by the time cycle, c, and
the sum of all tasks’ areas, UBA, respectively). In addition, Zj is also
proportional to the ratio between the number of successors of
task j and the maximum number of immediate successors of any
eligible task:

Zj ¼
tj

c
�

aj

UBA
�

jFjj

maxiAOjFij
ð13Þ

Then, we sort all the candidate tasks according to their
heuristic values and we set a quality threshold for them given
by q¼maxZj

�g � ðmaxZj
�minZj

Þ. All the candidate tasks with a
heuristic value Zj greater or equal to q are selected to be in the
restricted candidate list (RCL). In the former expression, g is the
intensification–diversification trade-off control parameter. We
found that g¼ 0:3 was the value that yield the best performance
(Chica et al., 2010a). Finally at the current construction step, we
randomly select a task among the elements of the RCL. The
construction procedure finishes when all the tasks have been
allocated in the needed stations.

On the other hand, we also introduce randomness in the
decision of closing the current station according to a probability
distribution given by the filling rate of the station (see Eq. (9)). As
stated in MACS, the filling thresholds approach is also used to
achieve a diverse enough Pareto front. A different threshold is
selected in isolation at each iteration of the multiobjective
randomised greedy algorithm, i.e. the construction procedure of
each solution considers a different threshold.

The algorithm is run a number of iterations to generate
different solutions. When a solution is generated a local improve-
ment phase is performed on the solution. This improve-
ment is achieved by means of a multi-criteria LS scheme,
later explained in Section 3.3. The final output consists of a
Pareto set approximation composed of the non-dominated
solutions found.
1 Unlike MACS and NSGA-II, a GRASP approach always includes a LS improve-

ment applied to the constructed solutions. Therefore, we will not consider the

constructive step without the local improvement in this work.
3.1.3. Advanced TSALBP-NSGA-II

In Chica et al. (2011a) the authors proposed a novel multi-
objective genetic algorithm design, called advanced TSALBP-NSGA-

II, and based on the original NSGA-II search scheme (Deb et al.,
2002). Customised representation and operators were considered
in the algorithm design to properly solve the TSALBP-1/3 by
considering a global search technique.

The most important problem of the previous genetic algo-
rithm-based approaches that tried to solve the SALBP and TSALBP
(see for example Chica et al., 2010a and Sabuncuoglu et al., 2000)
was the representation scheme. The advanced TSALBP-NSGA-II

proposal took the biggest step ahead with respect to existing
algorithms by explicitly representing task-station assignments
regardless the cycle time of the assembly line. Thus, it ensures a
proper search space exploration for the joint optimisation of the
number and the area of the stations. Furthermore, the represen-
tation will also follow an order encoding to facilitate the con-
struction of feasible solutions with respect to the precedence
relations constraints. The allocation of tasks among stations is
made by employing separators, that are dummy genes which do
not represent any specific task and they are inserted into the list
of genes representing tasks. In this way, they define groups of
tasks being assigned to a specific station.

The maximum possible number of separators is n�1 (with n

being the number of tasks), as it would correspond to an assembly
line configuration with n stations. The number of separators
included in the genotype is variable and it depends on the
number of existing stations in the current solution. Therefore,
the algorithm works with a variable-length coding scheme,
although its order-based representation nature avoids the need
of any additional mechanism to deal with this issue.

Due to the latter fact, the crossover operator can be designed
from a classical order-based one. The partially mapped crossover
(PMX) operator was selected because (a) it is one of the most
extended crossover operators, and (b) it has already been used
in other genetic algorithm implementations for the SALBP
(Sabuncuoglu et al., 2000). PMX generates two offspring from two
parents by means of the following procedure: (a) two random cut
points are selected, (b) for the first offspring, the genes outside the
random points are copied directly from the first parent, and (c) the
genes inside the two cut points are copied but in the order they
appear in the second parent. Thanks to the advanced coding scheme
and to the use of a permutation-based crossover, the feasibility of
the offspring with respect to precedence relations is assured.

However, since information about the tasks-stations assign-
ment is encoded inside the chromosome, it is needed to assure
that: (a) there is not any station exceeding the fixed cycle time
limit, and (b) there is not any empty station in the configuration
of the assembly line. Therefore, a repair operator must be applied
for each offspring after crossover. The goals and methods of the
repair operator are: (a) redistribute spare tasks among available
stations by reallocating the spare tasks in other stations, and
(b) removing empty stations.

Two mutation operators have also been specifically designed
and uniformly applied to the selected individuals of the popula-
tion. The first one, the scramble operator, is based on reordering a
part of the sequence of tasks and reassigning them to stations.
The second one, the divider operator, is introduced to induce more
diversity in order to achieve a well-distributed Pareto front
approximation.

In order to additionally increase the diversity of the search to
obtain better distributed Pareto front approximations, a diversity
induction mechanism was adopted: Ishibuchi et al.’s (2008)
similarity-based mating.

The interested reader is referred to Chica et al. (2011a) for a
complete description of the method.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273 259
3.2. Multi-criteria LS structure and components

Mainly, there are two stochastic LS approaches for multi-
objective combinatorial optimisation problems (Teghem and
Jaszkiewicz, 2003; Paquete and Stützle, 2006). The first one uses
an acceptance criterion based on the weak component-wise
ordering of the objective value vectors of neighbouring solutions.
In addition, it maintains an unbounded archive of non-dominated
solutions found during the search process (a Pareto archive)
(Knowles and Corne, 2003; Zitzler and Thiele, 1999). The second
family is based on considering different scalarizations of the
objective function vector (Gandibleux and Freville, 2000;
Hansen, 1997; Jaszkiewicz, 2002). The MA designs introduced in
this contribution will be based on this second approach. The
weighted sum scalarization of the two objectives of our problem,
A and m, are calculated by the following formula:

Min ðl1Aþl2 mÞ: ð14Þ

This will be the function to be optimised by the multi-criteria
LS of the MAs. As usually done in the multiobjective MA area (see
for example Jaszkiewicz, 2002), the weight vector l¼ ðl1,l2

Þ is
created at random for each constructed solution.
Algorithm 1. The pseudo-code of the LS operator for the A objective.

1 while IterationsrMAX_ITERATIONS do
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Target_Station’Find the station with the highest area;

Tasks’Descending_Sortðtasks of Target_StationÞ;

while no scalarization function improvement AND Tasksa| do

Task’First element of Set_Of_Tasks;

Find ESj and LPj of Task j;

while no scalarization function improvement do

Possible_Station’station with the lowest area

A ½ESj,LPj�;

Move Task from Target_Station to Possible_Station;

if scalarization function improvement then

jMake the move permanent;

end

��������������
end

Remove Task from Set_Of_Tasks;

���������������������������
if Target_Station¼ | then

jRemove Target_Station;

end

Iterations’Iterationsþ1;

���
20 end
21 return true if scalarization function is improved;
The existing local improvement procedures for ALB are based
on moves (Rachamadugu and Talbot, 1991). The LS operators are
based on such moves of tasks. In our advanced specific design, two
different neighbour generation operators will be considered and
selected depending on the weight vector l (see Section 3.2). If
l14l2, the neighbour operator for minimising the A objective will
be followed since the LS optimisation will be more biased to the
improvement of the latter objective than the other. Otherwise, the
neighbour operator headed to improve m will be considered first. If
the selected neighbour operator does not succeed minimising the
weighted sum scalarization, the other operator is then applied.

To explain the operation mode of both operators it is necessary
to define, for each task j in the current TSALBP-1/3 solution, the
first, ESj, and last station, LPj, where task j may be re-assigned by
the corresponding LS operator according to the current assign-
ment of its immediate predecessors and successors. In general, a
move ðj,k1,k2Þ describes the assignment change of task j from
station k1 to station k2, where k1ak2 and k2A ½ESj,LPj�. ESj and LPj

are variables of the LS algorithm. They are re-calculated each time
a LS operator is going to be applied by locating where the
immediate precedent task of j, s, and the immediate successor
of j, p, are placed in the existing solution. Note that they should
not be confused with Ej and Lj which are definitions of the TSALBP
model and restrict the set of stations where the corresponding
task j could be never allocated (see Section 2).

The pseudo-code of the LS operator for the first objective, A, is
described in Algorithm 1. In this method, the solution neighbour-
hood is built by means of the explained task moves. The main goal
is to reduce the area occupied by the station with the highest area
by moving tasks to other stations. It works by first sorting the
tasks of a target station and selecting the task with the highest
area. Then, the algorithm tries to move this task to one of its
feasible stations in order to reduce the scalarization value of the
solution. If there is no possible improvement with this task, the
algorithm selects the next task of the sorted list of tasks of
the target station.
In the case of the second LS operator, the goal is reducing the
number of stations m. From the initial solution, a neighbourhood
is created by moving all the tasks from the station with the
lowest number of tasks (called the Target_Station) to other
stations, keeping a feasible solution. The operator works as
described in Algorithm 2. For a sorted list of stations with
respect to the number of tasks, the algorithm tries to move all
the tasks of each station in order to improve the scalarization
function value. This is done for a maximum number of stations.
Given a station to be removed, the algorithm uses a recursive
depth first search function (Algorithm 3) to look for a feasible
solution having the Target_Station’s tasks reallocated in other
stations. In the experiments developed, the maximum number of

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273260
stations (MAX_STATIONS) was set to 20 to limit the computa-
tional time of this LS operator.
Algorithm 2. The pseudo-code of the LS operator for the m objective.

1 while IterationsrMAX_ITERATIONS do
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Set_Of_Stations’Ascending Sort ðwith respect to no: of tasksÞ;

i’1;

while irMAX_STATIONS AND no scalarization function improvement do

Target_Station’i� th element of Set_Of_Stations;

Set_Of_Tasks’Descending_Sortðtasks of Target_StationÞ;

for all elements of Set_Of _Tasks do

jFind ESj and LPj;

end

First_Element¼ First Element of Set_Of_Tasks;

DFSðFirst_Element,Set_Of_TasksÞ;

if no scalarization function improvement then

ji’iþ1;

end

������������������������
end

Iterations’Iterationsþ1;

17 end
18 return true if scalarization function is improved;

Algorithm 3. The pseudo-code of the Depth First Search implemented in a recursive fashion, used by the LS operator for objective m.

1 Function DFS (Current_Task, Set_Of_Tasks)
2 if all elements of Set_Of_Tasks allocated then
3 // Base case

Calculate scalarization function of the objective function vector;

�����
4 else
5

6

7

8

9

10

11

12

for all the possible stations of Current_Task do

Move Current_Task to the selected station if feasible;

// Recursive call of the Depth First Search algorithm

Next_Task’Next task of Set_Of_Tasks;

DFSðNext_Task,Set_Of _TasksÞ;

if no scalarization function improvement then

jUndo Current_Task movement;

end

�����������������
end

����������������������
13 end
14 return true if scalarization function is improved;
3.3. Multiobjective LS integration

The most important issue in the LS integration scheme in a MA
is the balance between the application of the basic global search
method and the LS (Ishibuchi et al., 2003). In memetic computing,
LS is usually applied to each trial solution obtained during the
global search process. However, this is very time-consuming
process and it has been reported that this do not necessarily lead
to the best performing MA (Krasnogor and Smith, 2000).

An alternative choice is considering a selective application of
the LS as done for example in Ishibuchi et al. (2003), Herrera et al.
(2005) and Noman and Iba (2005). That is one of the alternatives
we will use in this work. We have considered a criterion that was
originally proposed in Hart (1994) and later used in contributions
such as Krasnogor and Smith (2000), Lozano et al. (2004) and
Santamarı́a et al. (2009). It is based on a random application with
uniform distribution considering a probability value of 0.0625.
We will compare this criterion with the traditional scheme of
applying the LS improvement to every constructed solution
during the global search process.

Another issue that could significantly affect the MA intensifi-
cation–diversification trade-off is the LS depth measured by
the number of LS iterations we are considering. The higher the
number of LS iterations, the higher the intensification (and the
lower the diversification) the MA is applying. We will consider
three different number of LS iterations, 20, 50, and 100, and study
their influence in the experiments developed.
4. Experimentation

In this section we aim at studying the performance and
behaviour of the different designed multiobjective MAs. First, we
describe the experimental setup (Section 4.1). Then, an analysis of

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273 261
the MA variants performance is done (Section 4.2.2). Finally, the
real-world case study of Nissan is tackled in Section 4.3.
4.1. Experimental setup

We run each algorithm 10 times with different random seeds,
setting a fixed run time as stopping criterion (900 s). All the
algorithms were launched in the same computer: Intel PentiumTM

D with two CPUs at 2.80 GHz and CentOS Linux 4.0 as operating
system. Furthermore, the same programming language, Cþþ, and
framework were utilised for the development of all the algo-
rithms here described. The framework with the algorithms of the

experimental study is publicly available at http://www.nissanchair.
com/TSALBP. The specific parameter values considered for the
different algorithms are shown in Table 1.

We will consider the two usual kinds of multiobjective
performance indicators (metrics) existing in the specialised lit-
erature (Zitzler et al., 2000, 2003; Deb, 2001; Knowles and Corne,
2002; Coello et al., 2007): (a) unary performance indicators, those
which measure the quality of a non-dominated solution set
approximation returned by an algorithm; and (b) binary perfor-
mance indicators, those which compare the performance of two
different multiobjective algorithms. In the following paragraphs
we present a brief description of the used performance indicators:

Hypervolume ratio unary indicator: The hypervolume ratio
(HVR) (Coello et al., 2007) has become a very useful unary
performance indicator. Its use is very extended as it can jointly
measure the distribution and convergence of a Pareto set approx-
imation. The HVR can be calculated as follows:

HVR¼
HVðPÞ

HVðPnÞ
, ð15Þ

where HV(P) and HVðPnÞ are the volume (S indicator value) of the
Pareto front approximation and the true Pareto front, respec-
tively. When HVR equals 1, then the Pareto front approximation
and the true Pareto front are equal. Thus, HVR values lower than
1 indicate a generated Pareto front approximation that is not as
good as the true Pareto front.

Since we are working with real-world problems we have to
keep in mind some obstacles which make difficult the computa-
tion of this performance indicator. First, we should notice that the
true Pareto fronts are not known. In our case, we will consider a
pseudo-optimal Pareto set, i.e. an approximation of the true
Pareto set, obtained by merging all the Pareto set approximations
Pj

i generated for each problem instance by any algorithm in any
run. Thanks to this pseudo-optimal Pareto set, we can compute
the HVR performance indicator values, considering them in our
analysis of results.
Table 1
Used parameter values for the multiobjective MAs.

Parameter Value Pa

MACS

Number of ants 10 b
r 0.2 q0

Ants’ thresholds (2 ants per each) {0.2, 0.4, 0.6, 0.7, 0.9}

GRASP

g 0.3 D

Advanced TSALBP-NSGA-II

Population size 100 Is

Crossover probability 0.8 M

a values for scramble mutation {0, 0.8}

LS

Application criteria {always, selective} N
Besides, there is an additional problem with respect to the HVR

performance indicator. In minimisation problems, as ours, there is
a need to define a reference point to calculate the volume of a
given Pareto front. The HVR values are not proper to be compared
if there is not any upper boundary of the region within which all
feasible points will lie (Knowles and Corne, 2002). Thus, we
defined the reference point for each instance as the ‘‘logical’’
maximum values for the two objectives (anti-ideal solution).
These reference points are specific for each problem instance.

Ie binary performance indicator: The previous performance
indicator allows us to determine the absolute and individual
quality of a Pareto front approximation, but cannot be used for
comparison purposes (Zitzler et al., 2003). On the opposite, binary
indicators aim to compare the performance of two different
multiobjective algorithms by comparing the Pareto set approx-
imations generated by each of them. In this contribution, we will
consider the e binary indicator, Ie.

The Ie indicator (Zitzler et al., 2003) is a quality assessment
method for multiobjective optimisation that avoids particular
difficulties of unary and classical methods (Knowles, 2006). Two
different definitions are possible: the standard (multiplicative) Ie
and the additive indicator Ieþ . In this contribution, we have opted
by the multiplicative indicator. Given two Pareto front approx-
imations, P and Q, the value IeðP,Q Þ is calculated as follows:

IeðP,Q Þ ¼ inf
eAR
f8z2AQ ,(z1AP : z1

$ez
2g, ð16Þ

where z1
$ez2 iff z1

i re � z2
i , 8iAf1, . . . ,og, with o being the number

of objectives, assuming minimisation.
According to Zitzler et al. (2003), the Ie binary indicator can be

properly used to compare the performance of two different
multiobjective algorithms by analysing the crossed values of the
metric as follows. If both IeðP,Q Þr1 and IeðQ ,PÞ41, then it can be
considered that the Pareto set approximation P generated by the
first algorithm dominates Q, the one generated by the second
algorithm, in a weak sense.

The Ie performance indicator values of the approximation sets
of the 10 runs performed for every pair of algorithms have been
represented by two kinds of boxplots (see Figs. 3, 5, and 7; and
Figs. 9, 13, 14, respectively). For all the boxplots, the minimum
and maximum values are the lowest and highest lines, the upper
and lower ends of the box are the upper and lower quartiles, a
thick line within the box shows the median, and the isolated
points are the outliers of the distribution.

In the first kind of boxplots (Figs. 3, 5, and 7), each rectangle
contains nine boxplots representing the distribution of the Ie
values for a certain ordered pair of algorithms in the nine
considered problem instances (see Section 4.2.1). Each box refers
to the algorithm A in the corresponding row and algorithm B in
rameter Value

2

0.2

iversity thresholds {0.2, 0.4, 0.6, 0.7, 0.9}

hibuchi’s similarity-based mating g, d values 10

utation probability 0.1

o. of iterations {20, 50, 100}

http://www.nissanchair.com/TSALBP
http://www.nissanchair.com/TSALBP

2 Note that not only the time and area information of each task influence the

complexity of the problem instance, but also other factors as the cycle time limit

and the order strength of the precedence graph, which actually are the most

conclusive factors.
3 Available at http://www.assembly-line-balancing.de
4 As said, a GRASP approach always include a local search improvement

applied to every constructed solution. Hence, we just focus on the number of

allowed iterations for the LS.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273262
the corresponding column, and gives the IeðA,BÞ values. The 10
considered values to obtain each boxplot correspond to the
computation of the Ie metric on the two Pareto sets generated
by algorithms A and B in each of the 10 runs.

The second kind of boxplots (Figs. 9, 13, 14) facilitates the
analysis when few algorithms are involved in the comparison. In
this case, each rectangle represents one of the nine problem
instances. Inside each rectangle, boxplots representing the dis-
tribution of the Ie values for a certain pair of algorithms are
drawn. Given Fig. 9 as an example, the top-left rectangle shows
the boxplots comparing three pairs of algorithms: M vs. G, M vs.
N, and G vs. N (see the caption of the figure for the notations) for
the first problem instance. As Ie is a binary indicator, two boxplots
have been drawn for each algorithm comparison. The white
boxplots represent the distributions IeðM,GÞ, IeðM,NÞ, and IeðG,NÞ
generated in the 10 runs, while the coloured boxplots do so for
the IeðG,MÞ, IeðN,MÞ, and IeðN,GÞ values.

In order to allow an easy visual comparison of the performance
of the different algorithms, the attainment surfaces (Fonseca and
Fleming, 1996) will be represented. These graphics offer a visual
and quantitative information, sometimes more useful than
numeric values, mainly in complex problems as ours. We can
define an attainment surface as the surface uniquely determined
by a set of non-dominated points that divides the objective space
into the region dominated by the set and the region that is not
dominated by it (Fonseca and Fleming, 1996). Given r runs of an
algorithm, it would be interesting to summarise the r attainment
surfaces obtained, using only one summary surface. Such sum-
mary attainment surfaces can be defined by imagining a diagonal
line in the direction of increasing objective values cutting through
the r attainment surfaces generated. The intersection on this line
that weakly dominates at least r�pþ1 of the surfaces and is
weakly dominated by at least p of them, defines one point on the
‘‘p-th summary attainment surface’’. In our case, this surface is the
union of all the goals that been attained in the r¼10 independent
runs of the algorithm.

Finally, a statistical test will be performed in order to analyse
the significance of the results in the comparison of the quality of
the Pareto front approximations obtained by the different multi-
objective MAs by means of the Ie indicator. This is done in order to
avoid the fact that one exceptionally good result in any of the
repetitions of the compared algorithms could be responsible for
the differences in the overall values and results in a wrong
analysis. The Mann–Whitney U test, also known as Wilcoxon
ranksum test, will be used for this aim. Unlike the commonly used
t-test, the Wilcoxon test does not assume normality of the
samples and it has already demonstrated to be helpful analysing
the behaviour of evolutionary algorithms (Garcı́a et al., 2009).

Nevertheless, we should remark the fact that there is not any
reference methodology to apply a statistical test to a binary
indicator in multiobjective optimisation. Thus, we have decided
to follow the procedure proposed in Sánchez and Villar (2008),
described as follows. Let A and B be the two algorithms to be
compared. After running both algorithms just once, let pA(B) be
1 if the Pareto set approximation P generated by A dominates Q

obtained by B, 0 otherwise. For comparisons with the Ie indicator,
it is considered that the Pareto set approximation P dominates Q

when IeðP,Q Þr1 and IeðQ ,PÞ41, as stated in Zitzler et al. (2003).
Given 10 repetitions B1, . . . ,B10 of the multiobjective algorithm B,
let PAðBÞ ¼ ð1=10Þ

P10
i ¼ 1 pAðBiÞ. Given another 10 repetitions

A1, . . . ,A10 of A, let PAðBÞ ¼ ðPA1
ðBÞ,PA2

ðBÞ, . . . ,PA10
ðBÞÞ. The vector

PA(B) can be seen as a sample of a random variable with an overall
number of 100 different observations representing the fraction of
times that the output of algorithm A dominates that of algorithm
B. If the expectation of PA(B) is greater than the expectation of
PB(A), then we can state that algorithm A is better than algorithm
B for the current experiment, since it is more likely that results of
the former improve those of the latter than the opposite.

Hence, in order to know if there is a significant difference
between the performance of the two compared algorithms, we
can use a Wilcoxon test (null hypothesis EðPAðBÞÞ ¼ EðPBðAÞÞ,
alternate hypothesis EðPAðBÞÞ4EðPBðAÞÞ) to discard the expecta-
tions of the probability distributions PA(B) and PB(A) are the same.
The significance level considered in all the tests to be presented is
p¼0.05. Besides, notice that, in case of including more than one
problem instance in the comparison, as done in Section 4.2.3,dPAðBÞ and dPBðAÞ are computed for the considered algorithms as the
average of the PA(B) and PB(A) values for all the considered
problem instances.
4.2. Preliminary analysis on nine well-known problem instances

In this section we will show the results of the proposed MAs
for nine different real-like problem instances. The analysis devel-
oped will serve us as a first step to apply the algorithms to the
real-world problem instance in Section 4.3.
4.2.1. Problem instances

Nine problem instances with different features have been
selected for this first experimentation: arc111 with cycle time
limits of c¼5755 and 7520 (P1 and P2), barthol2 (P3), bart-
hold (P4), lutz2 (P5), lutz3 (P6), mukherje (P7), scholl (P8),
and weemag (P9). They have been chosen to be as diverse as
possible to test the performance of the algorithms and their
variants when they deal with different problem conditions.2

Originally, these instances were SALBP-1 instances3 only having
time information. However, we have created their area informa-
tion by reverting the task graph to make them bi-objective (as
done in Bautista and Pereira, 2007). The nine TSALBP-1/3
instances considered are publicly available at http://www.nissan
chair.com/TSALBP.
4.2.2. Analysis of the results of the memetic approaches

We have run the different MA variants resulting from the use
of the three different global search methods (i.e. MACS, GRASP,
and TSALBP-NSGA-II), the two different LS application criteria
(always or selective), and the three LS iterations number (20, 50,
and 100). Therefore, we will have six memetic MACS variants,
three memetic GRASP methods,4 and six memetic variants of the
advanced TSALBP-NSGA-II. All of them will also be benchmarked
against the two basic global search approaches not considering
the use of LS (i.e. MACS and TSALBP-NSGA-II).

Memetic MACS algorithm: We have designed three memetic
variants with 20, 50, and 100 iterations applying the LS to all the
solutions (MACS-LS1, MACS-LS2, and MACS-LS3, respectively),
and other three variants with 20, 50, and 100 iterations but only
applying randomly the LS to a 0.0625 percent of the generated
solutions (MACS-LS4, MACS-LS5, and MACS-LS6, respectively).
The HVR values are shown in the first 14 rows of Table 2. The
boxplots of the Ie performance indicator values of the memetic

http://www.nissanchair.com/TSALBP
http://www.nissanchair.com/TSALBP
http://www.assembly-line-balancing.de

Table 2
Mean and standard deviation xðsÞ of the HVR performance indicator values for the different variants of the MACS (M), GRASP (G), and advanced TSALBP-NSGA-II (TN) MAs.

Higher values indicate better performance. Underlined values are the best results of each algorithm while bold values corresponds to the global best result.

Algorithm abbreviation Memetic MACS algorithm

P1 P2 P3 P4 P5

M 0.7597 (0.004) 0.7581 (0.01) 0.6605 (0.009) 0.7129 (0.015) 0.5052 (0.014)

M-LS1 0.9463 (0.003) 0.9614 (0.003) 0.9154 (0.002) 0.9384 (0.015) 0:7440 ð0:008Þ

M-LS2 0:9479 ð0:003Þ 0:9643 ð0:003Þ 0:9186 ð0:003Þ 0:9535 ð0:018Þ 0:7440 ð0:008Þ

M-LS3 0:9479 ð0:003Þ 0:9643 ð0:003Þ 0:9186 ð0:003Þ 0:9535 ð0:018Þ 0:7440 ð0:008Þ

M-LS4 0.9221 (0.006) 0.9439 (0.008) 0.8924 (0.004) 0.9516 (0.01) 0.6840 (0.013)

M-LS5 0.9267 (0.005) 0.9494 (0.007) 0.8975 (0.003) 0.9462 (0.013) 0.6848 (0.013)

M-LS6 0.9267 (0.005) 0.9494 (0.007) 0.8975 (0.003) 0.9462 (0.013) 0.6848 (0.013)

P6 P7 P8 P9

M 0.5744 (0.023) 0.7181 (0.01) 0.5081 (0.006) 0.7107 (0.008)

M-LS1 0:8921 ð0:015Þ 0.9834 (0.001) 0.8156 (0.002) 0:9053 ð0:004Þ

M-LS2 0:8921 ð0:015Þ 0:9888 ð0:001Þ 0:8316 ð0:003Þ 0:9053 ð0:004Þ

M-LS3 0:8921 ð0:015Þ 0:9888 ð0:001Þ 0:8316 ð0:003Þ 0:9053 ð0:004Þ

M-LS4 0.8216 (0.012) 0.9725 (0.001) 0.7969 (0.005) 0.8671 (0.011)

M-LS5 0.8216 (0.012) 0.9773 (0.002) 0.8113 (0.005) 0.8671 (0.011)

M-LS6 0.8216 (0.012) 0.9773 (0.002) 0.8112 (0.005) 0.8671 (0.011)

GRASP

P1 P2 P3 P4 P5

G-LS1 0.9727 (0.001) 0.9646 (0.001) 0.8427 (0.002) 0.9758 (0.003) 0:7640 ð0:009Þ

G-LS2 0:9750 ð0:002Þ 0:9685 ð0:001Þ 0:8483 ð0:003Þ 0:9859 ð0:002Þ 0:7640 ð0:009Þ

G-LS3 0:9750 ð0:002Þ 0.9683 (0.001) 0:8483 ð0:003Þ 0.9853 (0.002) 0:7640 ð0:009Þ

P6 P7 P8 P9

G-LS1 0:9146 ð0:006Þ 0.9721 (0.002) 0.8065 (0.002) 0:9267 ð0:003Þ

G-LS2 0:9146 ð0:006Þ 0:9773 ð0:002Þ 0:8115 ð0:003Þ 0:9267 ð0:003Þ

G-LS3 0:9146 ð0:006Þ 0.9768 (0.002) 0:8115 ð0:003Þ 0:9267 ð0:003Þ

Memetic advanced TSALBP-NSGA-II

P1 P2 P3 P4 P5

TN 0.9853 (0.004) 0.9474 (0.015) 0.8286 (0.049) 0.9411 (0.012) 0.7528 (0.047)

TN-LS1 0:9953 ð0:003Þ 0:9911 ð0:003Þ 0:9819 ð0:010Þ 0.9908 (0.003) 0:9444 ð0:014Þ

TN-LS2 0.9931 (0.005) 0.9907 (0.004) 0.9788 (0.009) 0.9986 (0.001) 0.9300 (0.023)

TN-LS3 0.9922 (0.005) 0.9904 (0.004) 0.9770 (0.008) 0:9987 ð0:001Þ 0.9300 (0.023)

TN-LS4 0.9775 (0.012) 0.9710 (0.012) 0.9506 (0.009) 0.9906 (0.004) 0.8500 (0.047)

TN-LS5 0.9790 (0.008) 0.9676 (0.015) 0.9509 (0.007) 0.9979 (0.001) 0.8220 (0.04)

TN-LS6 0.9790 (0.008) 0.9676 (0.015) 0.9509 (0.007) 0.9983 (0.001) 0.8220 (0.04)

P6 P7 P8 P9

TN 0.8962 (0.057) 0.8891 (0.022) 0.9346 (0.038) 0.8174 (0.015)

TN-LS1 0:9769 ð0:012Þ 0.9875 (0.003) 0:9874 ð0:007Þ 0.9627 (0.013)

TN-LS2 0.9767 (0.011) 0:9885 ð0:003Þ 0.9490 (0.046) 0:9647 ð0:007Þ

TN-LS3 0.9767 (0.011) 0.9884 (0.003) 0.9486 (0.046) 0:9647 ð0:007Þ

TN-LS4 0.9374 (0.018) 0.9730 (0.003) 0.9314 (0.032) 0.9092 (0.014)

TN-LS5 0.9331 (0.022) 0.9763 (0.004) 0.9340 (0.03) 0.9095 (0.014)

TN-LS6 0.9331 (0.022) 0.9763 (0.004) 0.9341 (0.03) 0.9095 (0.014)

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273 263
MACS variants are shown in Fig. 3. The analysis of the obtained
results arises that:
�
 The basic MACS algorithm is clearly outperformed by every
memetic MACS variant. The difference is significant in view of
the HVR values in Table 2 and the Ie boxplots in Fig. 3.

�
 The memetic MACS variants which applied the LS operator to

all the generated solutions, i.e. MACS-LS1, MACS-LS2, and
MACS-LS3, outperform those variants which selectively
applied the LS operator (MACS-LS4, MACS-LS5, MACS-LS6) in
every problem instance. Again, both performance indicators
show the same conclusion.

�
 There is no difference in performance between running the LS

operator with 50 and 100 iterations (MACS-LS2 and MACS-LS3,
respectively). Therefore, the appropriate trade-off is obtained
with 50 iterations and running the memetic MACS algorithm
for more iterations is not necessary.

�
 The latter memetic variants, MACS-LS2 and MACS-LS3, are the

best ones in view of the results obtained in both performance
indicators. They show a better convergence than the memetic
MACS-LS1 and, of course, than the memetic variants that
applied less intensification in the LS operator (MACS-LS4,
MACS-LS5, MACS-LS6). The latter facts are confirmed by the
attainment surface plots of the Pareto front approximations
generated by the memetic MACS variants in Fig. 4.

�
 However, in some instances, MACS-LS1 obtains solutions of

the Pareto front that are not achieved by the ‘‘best’’ MACS-
based MAs, MACS-LS2 and MACS-LS3. This situation can also

M

M−LS1

M−LS2

M−LS3

M−LS4

M−LS5

M−LS6

Fig. 3. Ie values represented by means of boxplots comparing different memetic variants of the MACS algorithm.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273264
be observed in the attainment surface plot at the bottom of
Fig. 4. It is due to the fact that MACS-LS1 induces more
diversity in the search process rather than a higher intensifica-
tion by means of more LS iterations as applied by the other
two variants.

GRASP: We analyse the behaviour of the GRASP methods with
different LS intensification degrees. According to the HVR perfor-
mance indicator values (central part of Table 2), the boxplots in
Fig. 5 with Ie values, and the attainment surface plots of Fig. 6, the
most important considerations are:
�
 Overall, the variants with more LS iterations (GRASP-LS2 and
GRASP-LS3) again outperform the variant with only 20 itera-
tions (GRASP-LS1).

�
 There is a need of running the LS operators more than 20

iterations in all the problem instances but P5, P6, and P9 (see
HVR values and Ie boxplots).

�
 The best Pareto front approximations are obtained by the

algorithms that apply the highest number of LS iterations
(see Fig. 6).

Memetic advanced TSALBP-NSGA-II : The HVR values correspond-
ing to these memetic designs are collected at the bottom part of
Table 2 while the corresponding values of the Ie performance
indicator are depicted in Fig. 7. In this case, we can conclude that:
�
 As in MACS, the MAs show a better performance than the basic
advanced TSALBP-NSGA-II. However, in this case the difference
between the MAs and the basic global search methods is lower
because of the outstanding performance of the basic advanced

TSALBP-NSGA-II.
�
 Applying the LS to all the solutions found by the advanced

TSALBP-NSGA-II is again better than considering a selective
application. We can observe how TN-LS1, TN-LS2, and TN-LS3
outperform the other three variants in both the HVR values of
Table 2 and the Ie boxplots of Fig. 7.

�
 Unlike the other two designs, i.e. memetic MACS and GRASP,

the best memetic advanced TSALBP-NSGA-II is the TN-LS1
variant, which runs the LS operator just 20 iterations. Only in
instances P4, P7, and P9, the memetic variants with higher LS
intensification achieve better performance, but with a very low
difference. The attainment surface plot in Fig. 8 corroborates
this conclusion, showing how the use of less iterations (more
diversification rather than intensification) allows obtaining
some solutions that are not reached by the MAs that consider
more LS iterations.

4.2.3. Global analysis

In this section we will summarise the global conclusions of the
performance of the different memetic approaches proposed for
solving the TSALBP-1/3:
�
 The application of the multi-criteria LS method to every
solution generated by the global search methods is always
better than using a selective criterion based on its application
to the 0.0625% of those solutions.

�
 Normally, 50 iterations are enough for the LS methods. There-

fore, spending time by running more iterations is not recom-
mended since the obtained intensification–diversification
trade-off performs equal or worst.

�
 In order to achieve the best solutions, a good exploratory

global search method as the advanced TSALBP-NSGA-II is

30 32 34 36 38 40 42 44 46
45

50

55

60

65

70

Number of stations

A
re

a
(le

ng
th

 in
 m

et
er

s)

Problem instance P9
M
Memetic M−LS1
Memetic M−LS2
Memetic M−LS3
Memetic M−LS4
Memetic M−LS5
Memetic M−LS6

52 54 56 58 60 62 64 66 68 70 72
80

90

100

110

120

130

140

150

160

170

Number of stations

A
re

a
(le

ng
th

 in
 m

et
er

s)

Problem instance P3
Memetic M−LS1
Memetic M−LS2
Memetic M−LS3
Memetic M−LS4
Memetic M−LS5
Memetic M−LS6

Fig. 4. Attainment surface plots of the MACS MAs for instances P3 and P9.

G−LS1

G−LS2

G−LS3

Fig. 5. Ie values represent by means of boxplots comparing different GRASP

variants.

20 22 24 26 28 30 32 34
5500

6000

6500

7000

7500

8000

8500

9000

Number of stations

A
re

a
(le

ng
th

 in
 m

et
er

s)

Problem instance P2

G−LS1
G−LS2
G−LS3

Fig. 6. Attainment surface plots of the GRASP methods for instance P2.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273 265
needed. If we apply the LS method to global search procedures
that do not explore conveniently the search space, some
regions of the Pareto front will never be reached. The use of
the advanced TSALBP-NSGA-II allows its associated memetic
design to spend less time in the LS intensification. This
conclusion is drawn in view of the fact that the best MA in
this group is the TN-LS1, then, TN-LS2 and TN-LS3, and finally,
the rest of the memetic variants, TN-LS4, TN-LS5, and TN-LS6,
which behave similarly.

�
 We can also provide a similar ranking of the memetic MACS

algorithms: MACS-LS2, MACS-LS3, MACS-LS1, MACS-LS4,
MACS-LS5, MACS-LS6. Nevertheless, some similar facts to
those described in the previous item can be recognised in
the MACS algorithm, where some solutions are only achieved
by the MAs considering the lowest number of LS iterations.

�
 As expected, GRASP is the metaheuristic that performs a worst

global search. It needs more LS iterations than the other MAs,
probably because of the low quality of the solutions generated
in the global search stage. GRASP-LS3, GRASP-LS2, and GRASP-
LS1 are the MAs in order of performance.

By selecting the best variant of each memetic design, MACS-
LS2, GRASP-LS3, and TN-LS1, it can be clearly observed how there
is a strong relation between the quality of the global search and
the number of iterations required by the LS. When we use worse
global search procedures, more iterations in the LS provide better
results. The selected best variants will be compared to each other
but taking in mind that these best variants can change depending
on the instance.

We have used the same performance indicators to reach the
conclusions, i.e. the HVR values of Table 2, the Ie boxplots of Fig. 9
comparing the three MAs, and the attainment surface plots (two
of them are shown in Fig. 11). For a better comparison, a
statistical test is also applied on the dominance probabilities
calculated for the Ie indicator on every pair of algorithms. These
dominance probabilities are shown in the boxplots of Fig. 10. See
Section 4.1 to recall their calculation process.

Table 3 provides the results of the Wilcoxon statistical test on
the dominance probabilities of the best variants of the algorithms.
Every cell of the table includes the p-values for the nine problem
instances together with a ‘‘þ ’’, ‘‘� ’’, or ‘‘¼ ’’ symbol, with a
different meaning. Every symbol shows that the algorithm in that
row is significantly better (þ), worse (�) or equal (¼) in
performance (using the Ie indicator) than the one that appears
in the column.

TN

TN−LS1

TN−BL2

TN−LS3

TN−LS4

TN−LS5

TN−LS6

Fig. 7. Ie values represented by means of boxplots comparing different memetic variants of the advanced TSALBP-NSGA-II.

30 35 40 45 50 55
10

15

20

25

30

35

Number of stations

A
re

a
(le

ng
th

 in
 m

et
er

s)

Problem instance P5

TN
Memetic TN−LS1
Memetic TN−LS2
Memetic TN−LS3
Memetic TN−LS4
Memetic TN−LS5
Memetic TN−LS6

Fig. 8. Attainment surface plots of the memetic advanced TSALBP-NSGA-II for

instance P5.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273266
The clearest conclusion in view of the indicators is the
memetic advanced TSALBP-NSGA-II is the best MA. It obtains
better HVR and Ie performance indicator values in all the problem
instances but P7. This is the only problem instance where the
advanced TSALBP-NSGA-II is not the best algorithm. In this case,
the memetic MACS algorithm outperforms the remainder.
Although there is not a big difference between the latter two
algorithms, the memetic advanced TSALBP-NSGA-II is worse in P7
because of the performance variability of its runs. The memetic
MACS algorithm is more stable and achieves similar behaviour in
the 10 runs corresponding to the latter problem instance.

The good performance of the advanced TSALBP-NSGA-II is again
clear looking at the dominance probabilities of Fig. 10 and the
results of the statistical test shown in Table 3. In this analysis, the
results obtained by the advanced TSALBP-NSGA-II are significantly
better (represented by means of a ‘‘þ ’’ symbol in the table) than
those by the rest of the algorithms, MACS and GRASP.

A comparison between the memetic MACS and GRASP is more
difficult since their behaviour varies depending on the problem
instance. The memetic MACS algorithm performance is better
than GRASP in P3, P7, and P8, but worse in P1, P4, and P9. In P2,
P5, and P6, they behave similarly and the values of the perfor-
mance indicators are very close. The results of the Wilcoxon
statistical test are in line with this analysis since there is no
significance between them as can be observed from the ‘‘¼ ’’
symbol of Table 3. Therefore, it cannot be stated which of these
two MAs is the best one without focusing on a particular instance.
The attainment surface plots in Fig. 11 corroborate this fact.

4.3. Experimentation on the Nissan case study

In the last section of the experimentation we will apply the
proposed MAs to a real-world case study. First, we will describe
the Nissan case study in Section 4.3.1 and then we will present
and analyse the obtained results in Sections 4.3.2 and 4.3.3.
4.3.1. Nissan case study description

We consider the application of the best MA variants to a real-
world problem corresponding to the assembly process of the

P1 P2 P3

P4 P5 P6

P7

M−G

P8 P9

G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G

M−G G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G

M−G G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

Fig. 9. Ie boxplots comparing the best variant of each memetic design in the 9 instances (one rectangle per instance). The memetic MACS-LS2 is noted by M, GRASP-LS3 by

G, and the advanced TSALBP-NSGA-II-LS1 by N.

Problem instances P1 to P9

M−G N−G

0.0

0.2

0.4

0.6

0.8

1.0

G−M M−N N−M G−N

Fig. 10. Boxplots represent the following Ie dominance probabilities for P1 to P9:

(M-G) PMACS-LS2ðGRASP-LS3Þ, (G-M) PGRASP-LS3ðMACS-LS2Þ, (M-N) PMACS-LS2

ðNSGA-II-LS1Þ, (N-M) PNSGA-II-LS1ðMACS-LS2Þ, (G-N) PGRASP-LS3ðNSGA-II-LS1Þ, and

(N-G) PNSGA-II-LS1ðGRASP-LS3Þ.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273 267
Nissan Pathfinder engine (shown in Fig. 12) at the plant of
Barcelona (Spain). The assembly of these engines is divided into
378 operation tasks, although we have grouped these opera-
tions into 140 different tasks. The available cycle time is 180 s.
More information can be found at http://www.nissanchair.com/
TSALBP.

Appendix A reports the details about the tackled Nissan
instance, which is originated in the final assembly phase of the
Nissan Pathfinder engines. It shows the task number (n), internal
identifier from NISSAN (id.), duration of the task (t) in seconds,
required area (a) in metres, and precedence constraints of each
task. Some changes have been made to the original data which are
described as follows:
�
 The original line corresponds to a mixed-model assembly line.
Following the procedure in use in Nissan, the duration of tasks
has been modified taking into account the expected produc-
tion mix of the variants to assemble. Notice that, the produc-
tion mix does not alter the area required for each task.

�
 The space requirements originated by tools and machinery

required for the assembly have been omitted. Due to the
similitude of the tasks and the low cost of the used machinery,
each workstation is considered to contain all the tools. Thus,

http://www.nissanchair.com/TSALBP
http://www.nissanchair.com/TSALBP

28 29 30 31 32 33 34 35
5500

6000

6500

7000

7500

8000

8500

9000

9500

Number of stations

A
re

a
(le

ng
th

 in
 m

et
er

s)

Problem instance P1

52 54 56 58 60 62 64
1000

1500

2000

2500

3000

3500

Number of stations

A
re

a
(le

ng
th

 in
 m

et
er

s)

Problem instance P8

Memetic M−LS2
G−LS3
Memetic TN−LS1
Pseudo−optimal

Memetic M−LS2
G−LS3
Memetic TN−LS1
Pseudo−optimal

Fig. 11. Attainment surface plots of the best variant of each of the three memetic

designs for instances P1 and P8.

Table 3
p-values and statistical significance (represented by a symbol ‘‘þ ’’, ‘‘� ’’, or ‘‘¼ ’’) of

the best three MA approaches for the 9 problem instances. TN is the advanced

TSALBP-NSGA-II.

MACS-LS2 GRASP-LS3 TN-LS1

MACS-LS2 � 0.1659 0.000051

¼ �

GRASP-LS3 0.1659 � 0.000057

¼ �

TN-LS1 0.000051 0.000057 �

þ þ

Fig. 12. The Nissan PathFinder engine. It consists of 747 pieces and 330 parts.

Table 4
Mean and standard deviation xðsÞ of the HVR performance indicator values for the

best variants of MACS, GRASP, and advanced TSALBP-NSGA-II MAs in the Nissan

case study. Higher values indicate better performance. Underlined values are the

best results of each algorithm while bold values correspond to the global best

results.

Memetic MACS algorithm GRASP Memetic advanced
TSALBP-NSGA-II

M 0.7993 (0.007) G 0.7562 (0.01) TN 0.7043 (0.056)

M-LS1 0.9413 (0.007) G-LS1 0:8999 ð0:005Þ TN-LS1 0.9717 (0.006)

M-LS2 0:9428 ð0:006Þ G-LS2 0:8999 ð0:005Þ TN-LS2 0:9773 ð0:006Þ

M-LS3 0:9428 ð0:006Þ G-LS3 0.8993 (0.006) TN-LS3 0:9773 ð0:006Þ

M-LS4 0.9124 (0.007) TN-LS4 0.9071 (0.038)

M-LS5 0.9108 (0.008) TN-LS5 0.9083 (0.038)

M-LS6 0.9108 (0.008) TN-LS6 0.9083 (0.038)

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273268
the space required for them can be subtracted from the total
available space for a workstation.

�
 The duration, required area, and precedence constraints of

tasks have been slightly altered due to confidentiality issues.

4.3.2. Analysis of the results of the proposed memetic approaches

As done with the real-like instances, we have analysed the
performance of the different memetic designs and variants
proposed. We have compared six memetic MACS variants, three
GRASP methods, and six memetic variants of the advanced

TSALBP-NSGA-II. The HVR values of the algorithms can be seen in
Table 4 and the Ie values of the boxplots in Fig. 13. In the next
paragraphs the results obtained by the algorithms are analysed.

Memetic MACS algorithm: We can reach the following
conclusions:
�
 The memetic variants of the MACS algorithm improve the
performance of the MACS algorithm. The difference is clear
both in the HVR values and in the boxplots.

�
 As happened with the preliminary experimentation, the

memetic MACS variants that applied the LS methods to all
the solutions (M-LS1, M-LS2, M-LS3) are better than the
remainder (M-LS4, M-LS5, M-LS6).

�
 Among the first three memetic MACS variants, M-LS2 and

M-LS3 are those achieving the best results according to the
used performance indicators. Therefore, an intermediate value
between 20 iterations (M-LS1) and 100 iterations (M-LS3) is
enough to lead to a proper convergence.

GRASP: Again, variants including LS clearly outperform the
basic algorithm (first stage of the GRASP in this case). The best
convergence is obtained by G-LS1 and G-LS2 with a low difference
with respect to the third option. Then, there is not a need for a
high number of iterations to provide the best results, 20 iterations
are enough. In fact, the highest exploitation value (100 iterations)
slightly decreases the performance of the algorithm.

M

M−LS1

M−LS2

M−LS3

M−LS4

M−LS5

M−LS6

G−LS1

G−LS2

G−LS3

TN

TN−LS1

TN−LS2

TN−LS3

TN−LS4

TN−LS5

TN−LS6

Fig. 13. Ie values represented by means of boxplots comparing the memetic variant of each of the three memetic designs for the Nissan case study.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273 269
Memetic advanced TSALBP-NSGA-II : The following items sum-
marise the obtained conclusions:
�
 The performance of the memetic variants is again much better
than the TSALBP-NSGA-II in all the performance indicators.

�
 As happened with the memetic MACS algorithms, the variants

that apply the LS to all the solutions outperform those based
on the selective LS application. Consequently, TN-LS1, TN-LS2,
and TN-LS3 are also better than TN-LS4, TN-LS5, and TN-LS6 in
the Nissan case study.

�
 However, for the advanced TSALBP-NSGA-II, more than 20

iterations are needed to achieve the best performance as
T-LS2 and T-LS3 results improve T-LS1 ones. This situation is
equivalent to the memetic MACS algorithms in the Nissan case
study but differs from what happened for the same MA designs
in the experiments developed in Section 4.2.

1.00

NISSAN CASE STUDY

 MACS−GRASP

16 18 20 22 24 26 28 30
3

3.5

4

4.5

5

5.5

6

6.5

7

Number of stations

A
re

a
(le

ng
th

 in
 m

et
er

s)

Problem instance NISSAN CASE STUDY

Memetic M−LS2
G−LS1
Memetic TN−LS2
Pseudo−optimal

1.05

1.10

1.15

1.20

GRASP−MACS MACS−NSGA−II NSGA−II−GRASPNSGAII−MACS GRASP−NSGA−II

Fig. 14. Ie boxplots and attainment surface plot of the best variants of the MAs for the Nissan case study.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273270
4.3.3. Global analysis and final benchmarking

The global conclusions for the Nissan case study are basically

that: (a) the memetic variants in all the algorithms are better than
the basic global search with a significant performance difference
(i.e. proper memetic designs have been achieved); (b) the MAs
that apply the LS to all the solutions are always better than the
rest; (c) there is not a great difference between the number of
iterations used in the algorithms, but normally a trade-off value of
50 iterations is the most appropriate.

For the final benchmarking we have selected the best MA for
each global search method as done in the preliminary study.
Table 4 shows the HVR values of the memetic MACS-LS2 algo-
rithm, the GRASP-LS1, and the memetic TN-LS2. The boxplots of
the Ie performance indicator comparing the latter three algo-
rithms as well as their attainment surface plots are represented in
Fig. 14.

Dominance probabilities based on the Ie performance indicator
comparisons between the best algorithms are calculated and
represented using the boxplots in Fig. 15. Wilcoxon statistical
test is also applied for the Nissan case study as done with the real-
like instances in Section 4.2.3. The results of the test are shown in
Table 5.

NISSAN CASE STUDY

N−GN−MG−M G−NM−NM−G

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 15. Boxplots represent the following Ie dominance probabilities for the Nissan

case study: (M-G) PMACS-LS2ðGRASP-LS1Þ, (G-M) PGRASP-LS1ðMACS-LS2Þ, (M-N) PMACS-LS2

ðNSGA-II-LS2Þ, (N-M) PNSGA-II-LS2ðMACS-LS2Þ, (G-N) PGRASP-LS1ðNSGA-II-LS2Þ, and (N-G)

PNSGA-II-LS2ðGRASP-LS1Þ.

Table 5
p-values and statistical significance (represented by a symbol ‘‘þ ’’, ‘‘� ’’, or ‘‘¼ ’’) of

the best three MA approaches for the Nissan case study. TN is the advanced

TSALBP-NSGA-II.

MACS-LS2 GRASP-LS1 TN-LS2

MACS-LS2 � 0.0004 0.0767

þ ¼

GRASP-LS1 0.0004 � 0.000016

� �

TN-LS2 0.0767 0.000016 �

¼ þ

Table 6
Problem instance from Nissan Pathfinder motor engine assembly line balancing. Num

immediately predecessor tasks (P) are given for each task.

n Id. t a P

1 50100 60 3

3 50120 20 0.5 1

5 50501 20 0.5 1

7 50800 45 1 1

9 51000 20 0.5 1

11 51400 15 0.5 1

13 51600 15 1 1

15 52000 8 1 9,10,11,13,14

17 52200 80 1 9,10,11,13,14

19 52600 5 0.5 9,10,11,13,14

21 52650 5 0.5 9,10,11,13,14

23 52710 7 0.5 26,27

25 52730 30 0.5 26,27

27 52760 5 0.5 15,16,17,18,19,20,21

29 52820 10 0.5 28

31 52901 10 0 6,7,8,30

33 53100 30 1 32

35 53300 5 0.5 36

37 53400 15 0 32,35

39 53630 5 0.5 33,34,36,37

41 54000 60 0.5 38,39,40

43 54120 15 1.5 38,39,40

45 54210 25 0.5 41,42,43

47 54240 35 0.5 46

49 54260 5 0.5 42,43

51 54280 25 0 47,48,49

53 54300 15 0 47,48,49

55 54320 20 0 47,48,49

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273 271
In view of the results provided by all these indicators we can
conclude that the memetic advanced TSALBP-NSGA-II is the best
algorithm to deal with the real-world Nissan instance, reaching
almost all the solutions in the pseudo-optimal Pareto front (see
Fig. 14), and obtaining better Ie values, dominance probabilities
(Fig. 15), and HVR values than the remainder. The advanced TSALBP-

NSGA-II is also significantly better than GRASP-LS1 according to the
statistical test shown in Table 5. Although there is no statistical
significance with respect to MACS-LS2 (see symbol ‘‘¼ ’’ in the
corresponding cells of the table), the obtained p-value is very close
to the considered significance level (0.05). In addition, Fig. 15 clearly
shows how the advanced TSALBP-NSGA-II is outperforming MACS-
LS2 on several comparisons while the latter is never able to do so.

The memetic MACS algorithm is the second algorithm in
performance. It converges better than the GRASP-LS1 and its
difference is statistically significant (see the statistical test results
in Table 5). GRASP-LS1 is finally the worst performing algorithm.
5. Concluding remarks and future works

In this contribution, we have successfully proposed novel
memetic designs to solve the TSALBP-1/3. The new MAs to tackle
this industrial problem are multiobjective and make use of a multi-
criteria LS procedure with two problem-specific neighbourhood
operators, one per objective. The proposals are based on three
different global search methods: a MACS algorithm, a GRASP, and
an advanced NSGA-II-based technique for the TSALBP-1/3.

We have studied different variants to analyse the impact of
the intensification and diversification induced by the multi-
criteria LS on the performance of the MAs when solving nine
realistic and one real-life problem instance. From this study, we
have concluded that the LS is more powerful if it is applied to all
the generated solutions and not just to a reduced number of
them (a 0.0625 percent of the solutions). In addition, the LS
depth, i.e. the number of iterations to be considered for the LS,
ber (n), internal identifier (id.), operation time (t), required area (a) and set of

n id. t a P

2 50110 75 2 3,31

4 50500 60 1 3,5

6 50600 60 1.5 4,5

8 50900 10 0.5 1

10 51200 30 0.5 1

12 51401 15 0.5 11

14 51800 10 0.5 3,13

16 52010 8 0.5 9,10,11,13,14

18 52400 40 0.5 9,10,11,13,14

20 52610 5 0.5 9,10,11,13,14

22 52700 7 0.5 26,27

24 52720 30 0.5 26,27

26 52750 5 0.5 15,16,17,18,19,20,21

28 52800 30 1 22,23,24,25

30 52900 15 1 29

32 53050 15 0.5 31

34 53200 10 0.5 32

36 53301 25 1 32

38 53600 5 0.5 33,34,36,37

40 53650 5 0.5 33,34,36,37

42 54100 15 1.5 38,39,40

44 54200 25 0.5 41,42,43

46 54230 5 0.5 44,45

48 54250 35 0.5 46

50 54270 15 0.5 47,48,49

52 54290 30 0 47,48,49

54 54310 15 0 47,48,49

56 54330 10 0 47,48,49

Table 6 (continued)

n Id. t a P n id. t a P

57 54370 10 0.5 50,51,52,53,54,55,56 58 54500 20 0.5 57,59,60

59 54501 5 0 41 60 54520 20 0.5 42,43

61 54700 45 1 57,58 62 54720 30 0.5 61

63 54800 30 0.5 57 64 54820 10 0.5 57

65 55050 5 0 61,62,63,64 66 55200 10 0.5 61,62,63,64

67 55250 15 0.5 66 68 55300 60 1.5 65,67

69 55350 10 0.5 68 70 55400 30 1 67

71 55500 10 0.5 68 72 55540 10 0.5 68

73 55800 40 1.5 71,72 74 55900 25 0.5 68,69,70,73

75 56000 10 0.5 74 76 56020 10 1 74

77 56100 15 0.5 75 78 56200 15 0.5 79

79 56220 15 0.5 74 80 56300 10 0.5 76,77,78

81 56400 10 1 76,77,78 82 56401 10 0 80,81

83 56420 20 0.5 82 84 56430 10 0 83

85 56440 20 0.5 75,84 86 56500 25 0.5 82

87 56600 20 0.5 82 88 56700 15 0.25 84

89 56750 20 0.5 88 90 56760 30 0.5 88

91 56800 20 0.5 85,86,87,88 92 56880 25 0.5 89,90,91

93 56900 10 0.5 92 94 56920 5 0.5 89,90,91

95 56940 20 0.5 94 96 57000 10 0.5 93,95,99

97 57050 5 0.5 93,95,99 98 57100 80 0 92

99 57120 30 0 89,90,91 100 57150 10 0.5 98,99

101 57160 10 0.5 98,99 102 57200 20 0.5 100,101

103 57210 30 0.5 100,101 104 57250 5 0 102,103

105 57300 30 0.5 106 106 57301 25 0.5 100,101

107 57400 5 0 100,101,104 108 57450 5 0 100,101,104

109 57500 5 0.5 108 110 57505 5 0 108

111 57510 10 0 109,110 112 57520 10 0 109,110

113 57530 15 0.5 108 114 57540 20 0 113

115 57550 20 0 113 116 57700 45 1 111,112,114,115

117 57900 20 0.5 118 118 57950 25 0 116

119 58000 25 0 116 120 58050 20 0.5 119

121 58200 45 1.5 105,107,117,120 122 58201 15 0.5 121

123 58250 10 0.5 122 124 58300 10 0 123

125 58310 20 1 124 126 58350 30 0.5 125

127 58351 10 0.5 126 128 58400 25 0.5 117,120

129 58500 30 0.5 126 130 58900 30 0.75 127,128,129

131 59000 40 0.5 117,120 132 59100 25 1 131

133 59300 25 0.5 130 134 59320 20 0.5 132

135 59340 15 0.5 134 136 59400 20 0.5 135

137 59500 30 0.5 136 138 59510 30 0.5 136

139 59600 15 1 137,138 140 59900 120 0 133,139

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273272
was also studied. The behaviour of this parameter depends on
the problem instance and the search capabilities of the global
search method. When the latter method already shows a good
intensification–diversification trade-off, the resulting MA will
perform better with a low number of LS iterations. We can state
that, in this experimentation, there is not a need to perform
more than 50 iterations in any case.

Apart from the LS study, the three memetic designs were
compared to each other. The memetic advanced TSALBP-NSGA-II

showed its excellent performance, obtaining the best solutions.
The second MA in quality was not clear enough since the memetic
MACS and GRASP performed differently depending on the pro-
blem instance. The memetic advanced TSALBP-NSGA-II was again
the best approach to deal with the real instance of the Nissan
industry plant in Barcelona, obtaining outstanding results.

Future work is devoted to: (i) apply preferences in the
algorithms by means of interactive procedures, (ii) deal with the
combined three-objective optimisation of cycle time, area, and
number of stations, and (iii) study the use of other MOACO
algorithms to solve the problem.
Acknowledgements

This work has been supported by the UPC Nissan Chair and the
Spanish Ministerio de Educación y Ciencia under the PROTHIUS-III
project (DPI2010-16759) and by the Spanish Ministerio de Ciencia
e Innovación under project TIN2009-07727, both including EDRF
fundings.
Appendix A. Description of the Nissan Pathfinder instance

The assembly line of the Nissan Pathfinder is distributed
serially where nine types of engines (p1,y,p9) with different
characteristics are assembled. The first three engines are for
4�4 vehicles, the last four for trucks of medium weight, and
the models p4 and p5 are user for vans.

Further information about the tasks of the assembly line is
reported in Table 6.
References

Barán, B., Schaerer, M., 2003. A multiobjective ant colony system for vehicle
routing problem with time windows. In: 21st IASTED International Confer-
ence, Innsbruck, Germany, pp. 97–102.

Bautista, J., Pereira, J., 2007. Ant algorithms for a time and space constrained
assembly line balancing problem. European Journal of Operational Research
177, 2016–2032.

Baybars, I., 1986. A survey of exact algorithms for the simple assembly line
balancing problem. Management Science 32 (8), 909–932.

Boysen, N., Fliedner, M., Scholl, A., 2008. Assembly line balancing: which model to
use when? International Journal of Production Economics 111, 509–528.

M. Chica et al. / Engineering Applications of Artificial Intelligence 25 (2012) 254–273 273
Chankong, V., Haimes, Y.Y., 1983. Multiobjective Decision Making Theory and
Methodology. North-Holland.

Chica, M., Cordón, O., Damas, S., Bautista, J., 2010a. Multiobjective, constructive
heuristics for the 1/3 variant of the time and space assembly line balancing
problem: ACO and random greedy search. Information Sciences 180, 3465–3487.

Chica, M., Cordón, O., Damas, S., Bautista, J., 2010b. A multiobjective GRASP for the
1/3 variant of the time and space assembly line balancing problem. In: Trends
in Applied Intelligent Systems, Lecture Notes in Artificial Intelligence, vol.
6098. pp. 656–665.

Chica, M., Cordón, O., Damas, S., 2011a. An advanced multi-objective genetic
algorithm design for the time and space assembly line balancing problem.
Computers and Industrial Engineering 61 (1), 103–117. doi:10.1016/j.cie.
2011.03.001.

Chica, M., Cordón, O., Damas, S., Bautista, J., 2011b. Including different kinds of
preferences in a multi-objective ant algorithm for time and space assembly
line balancing on different nissan scenarios. Expert Systems with Applications
38, 709–720.

Chica, M., Cordón, O., Damas, S., Bautista, J., Pereira, J., 2008. Incorporating
preferences to a multi-objective ant algorithm for time and space assembly
line balancing. Ant Colony Optimization and Swarm Intelligence, Lecture
Notes in Computer Science, vol. 5217. Springer, Berlin, Germany, pp. 331–338.

Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A., 2007. Evolutionary Algorithms for
Solving Multi-objective Problems, second ed. Springer.

Deb, K., 2001. Multi-objective Optimization using Evolutionary Algorithms. Wiley.
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6
(2), 182–197.

Dorigo, M., Gambardella, L., 1997. Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolution-
ary Computation 1 (1), 53–66.

Dorigo, M., Stützle, T., 2004. Ant Colony Optimization. MIT Press, Cambridge.
Feo, T.A., Resende, M.G.C., 1995. Greedy randomized adaptive search procedures.

Journal of Global Optimization 6, 109–133.
Fonseca, C.M., Fleming, P.J., 1996. On the performance assessment and comparison

of stochastic multiobjective optimizers. In: Proceedings of the Fourth Inter-
national Conference on Parallel Problem Solving from Nature (PPSN), Lecture
Notes in Computer Science, vol. 1141. Berlin, Germany, pp. 584–593.

Gandibleux, X., Freville, A., 2000. Tabu search based procedure for solving the 0–1
multiobjective knapsack problem: the two objectives case. Journal of Heur-
istics 6 (3), 361–383.

Garcı́a, S., Molina, D., Lozano, M., Herrera, F., 2009. A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case
of study on the CEC’2005 special session on real parameter optimization.
Journal of Heuristics 15, 617–644.

Hansen, M.P., 1997. Tabu search for multiobjective optimization: MOTS. In: 13th
International Conference on Multiple Criteria Decision Making, MCDM’97,
Cape Town, South Africa.

Hart, W.E., 1994. Adaptive global optimization with local search. Ph.D. Thesis,
University of Califorina, San Diego.

Herrera, F., Lozano, M., Molina, D., 2005. Continuous scatter search: an analysis of
the integration of some combination methods and improvement strategies.
European Journal of Operational Research 169 (2), 450–476.

Ishibuchi, H., Narukawa, K., Tsukamoto, N., Nojima, Y., 2008. An empirical study on
similarity-based mating for evolutionary multiobjective combinatorial opti-
mization. European Journal of Operational Research 188 (1), 57–75.

Ishibuchi, H., Yoshida, T., Murata, T., 2003. Balance between genetic search and
local search in memetic algorithms for multiobjective permutation flow shop
scheduling. IEEE Transactions on Evolutionary Computation 7 (2), 204–223.

Jaszkiewicz, A., 2002. Genetic local search for multiple objective combinatorial
optimization. European Journal of Operational Research 137 (1), 50–71.

Knowles, J., 2006. ParEGO: a hybrid algorithm with on-line landscape approxima-
tion for expensive multiobjective optimization problems. IEEE Transactions on
Evolutionary Computation 10 (1), 50–66.

Knowles, J., Corne, D., 2002. On metrics for comparing nondominated sets. In:
Proceedings of the 2002 Congress on Evolutionary Computation (CEC), vol. 1,
Honolulu, HI, USA, pp. 711–716.
Knowles, J., Corne, D., 2003. Instance generators and test suites for the multi-
objective quadratic assignment problem. Proceedings of Evolutionary Multi-
criterion Optimization (EMO 2003), Lecture Notes in Computer Science, vol.
2632. Springer-Verlag, Berlin, Germany, pp. 295–310.

Krasnogor, N., Smith, J., 2000. A memetic algorithm with self-adaptive local
search: TSP as a case of study. In: Genetic and Evolutionary Computation
Conference, GECCO’05, pp. 987–994.

Lozano, M., Herrera, F., Krasnogor, N., Molina, D., 2004. Real-coded memetic
algorithm with crossover hill-climbing. Evolutionary Computation 12,
273–302.

Moscato, P., 1989. On evolution, search, optimization, genetic algorithms and
martial arts: towards memetic algorithms. Technical Report 826, Caltech
Concurrent Computation Program, Pasadena.

Noman, N., Iba, H., 2005. Enhancing differential evolution performance with local
search for high dimensional function optimization. In: Genetic and Evolu-
tionary Computation Conference, GECCO’05, pp. 967–974.

Ong, Y.S., Lim, M., Zhu, N., Wong, K., 2006. Classification of adaptive memetic
algorithms: a comparative study. IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics 36 (1), 141–152.

Ong, Y.S., Lim, M., Zhu, N., Wong, K., 2010. Memetic computation—past, present
and future. IEEE Computational Intelligence Magazine 5 (2), 24–31.

Paquete, L., Stützle, T., 2006. A study of stochastic local search algorithms for the
biobjective QAP with correlated flow matrices. European Journal of Opera-
tional Research 169, 943–959.

Pérez-Bellido, A.M., Salcedo-Sanz, S., Ortiz-Garcı́a, E.G., Portilla-Figueras, J.A.,
López-Ferreras, F., 2008. A comparison of memetic algorithms for the spread
spectrum radar polyphase codes design problems. Engineering Applications of
Artificial Intelligence 21 (8), 1233–1238.

Pishvaee, M.S., Farahani, R.Z., Dullaert, W., 2010. A memetic algorithm for bi-
objective integrated forward/reverse logistics network design. Computers and
Operations Research 37 (6), 1100–1112.

Prins, C., 2009. Two memetic algorithms for heterogeneous fleet vehicle
routing problems. Engineering Applications of Artificial Intelligence 22,
916–928.

Rachamadugu, R., Talbot, B., 1991. Improving the equality of workload assign-
ments in assembly lines. International Journal of Production Research 29,
619–633.

Sabuncuoglu, I., Erel, E., Tayner, M., 2000. Assembly line balancing using genetic
algorithms. Journal of Intelligent Manufacturing 11, 295–310.

Sánchez, L., Villar, J.R., 2008. Obtaining transparent models of chaotic systems with
multi-objective simulated annealing algorithms. Information Sciences 178,
950–970.

Santamarı́a, J., Cordón, O., Damas, S., Garcı́a-Torres, J.M., Quirin, A., 2009.
Performance evaluation of memetic approaches in 3D reconstruction of
forensic objects. Soft Computing 13 (8–9), 883–904.

Scholl, A., 1999. Balancing and Sequencing of Assembly Lines, second ed. Physica-
Verlag, Heidelberg.

Scholl, A., Becker, C., 2006. State-of-the-art exact and heuristic solution procedures
for simple assembly line balancing. European Journal of Operational Research
168 (3), 666–693.

Scholl, A., Voss, S., 1996. Simple assembly line balancing—heuristic approaches.
Journal of Heuristics 2, 217–244.

Teghem, J., Jaszkiewicz, A., 2003. Multiple objective metaheuristics for combina-
torial optimization: a tutorial. In: Proceedings of the Fourth Metaheuristic
International Conference, MIC 2003, Kyoto, Japan, pp. 25–28.

Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation 1 (1), 67–82.

Zitzler, E., Deb, K., Thiele, L., 2000. Comparison of multiobjective evolutionary
algorithms: empirical results. Evolutionary Computation 8 (2), 173–195.

Zitzler, E., Thiele, L., 1999. Multiobjective evolutionary algorithms: a comparative
case study and the strength pareto approach. IEEE Transactions on Evolu-
tionary Computation 3 (4), 257–271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G., 2003.
Performance assessment of multiobjective optimizers: an analysis and review.
IEEE Transactions on Evolutionary Computation 7 (2), 117–132.

dx.doi.org/10.1016/j.cie.2011.03.001
dx.doi.org/10.1016/j.cie.2011.03.001

	Multiobjective memetic algorithms for time and space assembly line balancing
	Introduction
	Time and space assembly line balancing
	Proposed memetic algorithms
	Global search: multiobjective metaheuristics
	MACS
	GRASP
	Advanced TSALBP-NSGA-II

	Multi-criteria LS structure and components
	Multiobjective LS integration

	Experimentation
	Experimental setup
	Preliminary analysis on nine well-known problem instances
	Problem instances
	Analysis of the results of the memetic approaches
	Global analysis

	Experimentation on the Nissan case study
	Nissan case study description
	Analysis of the results of the proposed memetic approaches
	Global analysis and final benchmarking

	Concluding remarks and future works
	Acknowledgements
	Description of the Nissan Pathfinder instance
	References

