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Abstract Population-based meta-heuristics are algo-

rithms that can obtain very good results for complex con-

tinuous optimization problems in a reduced amount of

time. These search algorithms use a population of solutions

to maintain an acceptable diversity level during the pro-

cess, thus their correct distribution is crucial for the search.

This paper introduces a new population meta-heuristic

called ‘‘variable mesh optimization’’ (VMO), in which the

set of nodes (potential solutions) are distributed as a mesh.

This mesh is variable, because it evolves to maintain a

controlled diversity (avoiding solutions too close to each

other) and to guide it to the best solutions (by a mechanism

of resampling from current nodes to its best neighbour).

This proposal is compared with basic population-based

meta-heuristics using a benchmark of multimodal contin-

uous functions, showing that VMO is a competitive

algorithm.

1 Introduction

Many real-world problems (advanced engineering design,

data analysis, financial planning, risk management, scien-

tific modelling, etc.) may be formulated as parameter

optimization problems with variables in continuous

domains, continuous optimization problems. Over the past

few years, increasing interest has arisen in solving these

kinds of problems (Lozano et al. 2011; Herrera and Lozano

2005; Michalewicz and Siarry 2008).

In recent years, a new family of search and optimization

algorithms has been used to solve this kind of problem that

does not offer a guarantee of locating an optimal solution,

but gives satisfactory results for a much larger range of

these problems. These algorithms extend basic heuristic

methods by including them in an iterative framework to

increase their exploration capabilities. This group of

advanced approximate algorithms has been given the name

of meta-heuristics and an overview of various existing

methods is found in Glover and Kochenberger (2003).

Meta-heuristics have proven to be highly useful for

approximately solving difficult optimization problems in

practice, because they may obtain good solutions in a

reduced amount of time. Real-coded genetic algorithms

(GAs) (Herrera et al. 1998), particle swarm optimization

(PSO) (Kennedy and Eberhart 1995), estimation of distri-

bution algorithms (EDAs), scatter search (SS) (Laguna and

Martı́ 2003) and difference evolution (DE) (Storn and Price

1997) are, among others, examples of the population-based

meta-heuristics (PMHs). This term, PMHs, is used to group

the meta-heuristics that use a solution set (called popula-

tion) in each algorithm iteration.

PMHs introduce different ways of exploring the search

space. They present powerful communication or coopera-

tion mechanisms (depending on the context) to converge
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the population toward promissory areas of the search space.

This type of meta-heuristics implements several mecha-

nisms to introduce diversity into the population and con-

sequently makes a better exploration of different regions of

the domain space possible, obtaining very good results in

continuous search spaces (Lozano et al. 2011).

Another element that has a strong influence over the

population search is the influence of the best solutions over

the remainder. In real coded genetic algorithms (Herrera

et al. 1998), the best individuals have a greater probability

of survival and of having influence over the offspring; and,

in other algorithms, the remaining solutions are oriented to

the best ones directly, as in PSO (Kennedy and Eberhart

1995) or, more indirectly, as in DE (Storn and Price 1997;

Brest et al. 2007).

With these two facts in mind, we come up with a new

PMH called variable mesh optimization (VMO) for real

parameter optimization. This model introduces a new

mechanism to explore the search space, by creating more

solutions around the most promising regions of the mesh.

Another mechanism is used to foment population diversity

by selecting the best representatives of the mesh for the

next iteration. In this algorithm, the population is repre-

sented by a set of nodes (potential solutions) that are ini-

tially distributed as a mesh, using a uniform distribution.

The search process developed by the VMO meta-heuristic

can be described by two operations:

– Expansion: this mechanism explores around the best

solutions found, by creating new nodes between each

node of the mesh and its best neighbour, and around the

external borders of the mesh.

– Contraction: this clearing process removes all nodes

that are too close to others with best fitness. The aim is

to maintain the population size and to foment mesh

diversity.

We study, based on experimental work, the influence of

its different components, showing that the ideas underlying

this technique can lead to successful results. Then, we

compare the performance of the VMO with other basic

PMHs with multimodal functions on continuous domains,

showing that VMO is a competitive model.

This paper is organized as follows: In Sect. 2, a detailed

description of the VMO is given, emphasizing the expan-

sion and contraction processes of the mesh. In Sect. 3, the

experimental framework and the statistical tests used to

validate the experimental results are presented. In Sect. 4,

we analyse the behaviour of several VMO components. In

Sect. 5, the proposed model is compared with others, to

ascertain whether its innovative design is conducive to the

outperformance of other PMHs. Finally, in Sect. 6, we

present the main conclusions and suggest future work.

2 Variable mesh optimization

VMO is a PMH in which the population is distributed as a

mesh. This mesh is composed of P nodes ðn1; n2; . . .; nPÞ
that represent solutions in the search space. Each node

is coded as a vector of M floating point numbers, ni ¼
ðvi

1; v
i
2; . . .; vi

MÞ ¼ vi
j; j ¼ 1; . . .;M that represent the solu-

tion to the optimization problem. In the search process

developed by VMO, two operations are executed: the

expansion and contraction processes. Both processes

introduce a suitable balance between exploration and

diversity for the VMO algorithm. In following subsections,

these operators are described in detail, and in Fig. 1 the

Fig. 1 Steps to apply the VMO

algorithm
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global algorithm is presented, using the parameters

explained in Table 1.

2.1 Mesh expansion operation

The algorithm develops the expansion process by moving

the population through the search space. For this action,

new nodes are obtained, using the current population of

each iteration, according to the following steps:

Step 1. (Initial mesh generation) The initial population

for the first algorithm iteration is composed of P nodes

that are randomly generated with uniform distribution.

Step 2. (Nodes generation towards local extremes in the

neighbourhood) The first kind of exploration conducted

in VMO is carried out in the neighbourhood of each

node (ni). The neighbourhood of ni is composed of the k

nodes closest (in terms of distance) to it. The best node

(fitness) in the neighbourhood is selected as the local

extreme (ni
*). Only when ni

* is better than ni, a new node

is generated between ni and ni� . For this reason, in this

step Z new nodes are created, where Z B P - 1.

To detect the neighbourhood of the i-th node, we used

the euclidean distance (see Eq. 1)

Deuclidianðn1; n2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

M

j¼1

ðv1
j � v2

j Þ
2

v

u

u

t ð1Þ

The new nodes (nz) are calculated using the function F

defined by Eq. 2

nz ¼ Fðni; n
�
i ;Prðni; n

�
i ÞÞ ð2Þ

where Pr is the near factor and represents the relation

between the fitness of the current node and its local

extreme. This factor is calculated by Eq. 3. It takes a value

in the range [0, 1], higher when better fitness has ni.

Prðni; n
�
i Þ ¼

1

1þ jfitnessðniÞ � fitnessðn�i Þj
ð3Þ

The function F can be described in different ways. For

this study, the components vj
z of the new nodes nz are

calculated by Eq. 4:

vz
j ¼

mj; ifjmj � vi�

j j[ nj and

U½0; 1� �Prðni; n
�
i Þ

vi�
j þ U½�nj; nj�; ifjmj � vi�

j j � nj

U½vi
j;mj�; othercase

8

>

>

<

>

>

:

ð4Þ

where mj ¼ averageðvi
j; v

i�
j Þ;U½x; y� denotes a random value

(uniformly) in the interval [x, y], and nj defines the

minimum allowed distance for each component. Its value

decreases during the running of the algorithm, calculated

by Eq. 5,

nj ¼

rangeðaj;bjÞ
4

if c\0:15%C
rangeðaj;bjÞ

8
if 0:15%C� c\0:3%C

rangeðaj;bjÞ
16

if 0:3%C� c\0:6%C
rangeðaj;bjÞ

50
if 0:6%C� c\0:8%C

rangeðaj;bjÞ
100

if c� 0:8%C

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð5Þ

where C and c denote a maximum number of fitness

evaluations allowed and the current number of fitness

evaluations. In addition, the range(aj, bj) denotes the

domain amplitude (aj, bj) of each component.

F function behaves as follows: in the first case, the

average value between the current node and the local

extreme is obtained for the j-th component. In the second

case, the local extreme neighbourhood is displaced

depending on a distance value for the current iteration. In

the last case, a random number is generated between the

average value and the current node.

Figure 2 shows an example of this step, with k = 4.

Step 3. (Nodes generation towards the global extreme)

This step is used to accelerate the algorithm conver-

gence. For this, it explores in the direction of the node

which has the best fitness of the current population,

called the global extreme of the mesh (ng). X new nodes

are generated (X = P - 1), one for each ni towards ng

using Eq. 6.

nx ¼ Gðni; ng;Prðni; ngÞÞ ð6Þ

Table 1 Parameters of the VMO algorithm

Parameter Description

P Number of nodes of the population for each iteration

T Number of new nodes required in the expansion process

k Number of nodes that define the neighbourhoods of each

node of the mesh

C Algorithm stop condition (maximum number of fitness

evaluations)
Fig. 2 Example of Step 2
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In Eq. 7 we present the G function used in this work,

where vj
x represents the values computed for each compo-

nent of the new nodes nx.

vx
j ¼

averageðvi
j; v

g
j Þ; if U½0; 1� �Prðni; ngÞ

U½averageðvi
j; v

g
j Þ; v

g
j �; otherwise

�

ð7Þ

If there is a great difference (in fitness) between ni and

ng, then there will be a high probability for the j-th

component to take closer values to vj
g. In the other case, the

average value is obtained.

Figure 3 shows a example of this step.

Step 4. (Nodes generation starting from the frontier

nodes of mesh) In this step, Y new nodes are created from

the frontier nodes in the current population to complete

the expansion process. This step is only run if the

number of created nodes in the previous steps (Z ? X) is

lower than T, and Y = T - (Z ? X) are created in this

step. If Y [ P, only P new nodes are created, one for

each mesh node.

In this step, we consider frontier nodes (nt). The frontier

is composed of the nodes that are nearest (known as inte-

rior frontier or internal nodes, nu) and furthest (known as

exterior frontier or external nodes, ns) from the point that

represents the search space center. To detect these nodes,

the euclidean distance is used. The nodes of the highest

distance compose the set ns and the ones with the smallest

distance compose the set nu. Starting from these sets, new

nodes are created (one for each frontier node) using the

function H (see Eq. 8).

nh ¼ Hðnt;wÞ ð8Þ

For our study, the function H is defined by means of the

Eqs. 9 and 10, where the components vj
h of each new node

nh are calculated depending on the frontier type:

In Eq. (9) b Y/2c nodes are created, using ns set:

vh
j ¼

vs
j þ wj; if vs

j [ 0

vs
j � wj; if vs

j \0

�

ð9Þ

In Eq. (9) Y - b Y/2c nodes are created, using nu set:

vh
j ¼

jvu
j þ wjj; if vu

j [ 0

jvu
j � wjj; if vu

j � 0

�

ð10Þ

where wj represents a displacement for each component j

and is calculated in a decreasing way according to Eq. 11:

wj ¼ ðw0
j � w1

j Þ �
C � c

C
þ w1

j ð11Þ

The variable wj
0 represents the initial displacement and wj

1

its final value. In addition, the values C and c are used (see

the description of Eq. 5). In order to obtain decreasing

displacements wj
0 [ wj

1 and its values are calculated as:

wj
0 = range(aj, bj)/10 and wj

1 = range(aj, bj)/100.

Figure 4 shows an example of this step, with Y = 4.

2.2 Mesh contraction process

The contraction operation selects the nodes of the mesh

that will be used as the population for the next algorithm

iteration. Nodes with the best fitness are selected from

among the current mesh and the new nodes created for the

expansion process. In this way, it is similar to the elitist

selection operators in evolutionary algorithms (Deb 2001;

Herrera et al. 1998). Before the selection, a method to

increase diversity in the mesh is presented to keep a mini-

mum distance between the mesh nodes. To achieve this,

an adaptive clearing operator is proposed. In the following,

the contraction process is described:

Step 5. All mesh nodes are ordered depending on their

fitness (ascendant).

Fig. 3 Example of Step 3 Fig. 4 Example of Step 4
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Step 6. The difference between each node and their

successors is calculated for each dimension. Successor

nodes with any difference smaller than its corresponding

nj value are removed. The nj value is calculated by Eq. 5.

This strategy is called adaptive clearing, and finally we

are left with B nodes.

Step 7. The nodes with best fitness are selected as the

population for the next iteration. If B \ P then the mesh

is completed with new random nodes.

This mechanism considers two important elements: the

node qualities and their places in the solution space. The

nodes with better fitness have a higher probability of taking

part in the next population. Adaptive clearing allows the

method to carry out more general explorations and even-

tually to reduce its frequency to focus on a smaller search

space area. This element increases the method’s exploita-

tion level and makes it stronger.

3 Experimental framework

We have carried out different experiments to assess the

performance of VMO. In this section, we describe the test

functions (Sect. 3.1), the statistical methods (Sect. 3.2) that

were used to validate the results, and the experimental

setup (Sect. 3.3).

3.1 Test functions

The test suite that we have used for the experiments con-

sists of 20 benchmark multimodal functions chosen from

the set designed for the special session on real parameter

optimization organized in the 2005 IEEE congress on

evolutionary computation (CEC2005) (Suganthan et al.

2005). The unimodal functions are not used for this study

because these are simpler than the multimodal functions. In

Suganthan et al. (2005), the complete description of the

multimodal functions and their source codes can be found.

The set of test functions is composed of the following

functions:

– seven basic multimodal functions (F6–F12):

– Shifted Rosenbrock’s function.

– Griewank’s function, displaced and rotated without

frontiers.

– Ackley’s function, displaced and rotated with the

global optimum in the frontier.

– Rastrigin’s function, displaced.

– Rastrigin’s function, displaced and rotated.

– Weierstrass’ function, displaced and rotated.

– Schwefel’s problem 2.13.

– Two expanded multimodal functions (F13 and F14).

– Eleven hybrid functions (F15–F25). Each one of them

has been defined through combination of 10 out of the

14 previous functions (different in each case).

All functions were displaced to ensure that their optima

can never be found in the center of the search space. In two

functions, in addition, the optima cannot be found within

the initialization range, and the domain of the search is not

limited (the optimum is out of the initialization range).

3.2 Statistical methodology for comparisons

When a new optimization algorithm proposal is developed,

it is necessary to compare it with previous approaches.

Statistical analysis needs to be carried out to find signifi-

cant differences among the results obtained by the studied

methods. In Garcı́a et al. (2009a, b), the uses of some

nonparametric tests (Sheskin 2007) are presented to com-

pare the results in computational intelligence. In particular,

we have considered two alternative methods based on

nonparametric tests to analyse the experimental results:

– Application of Iman and Davenport’s test (1980) and

Holm’s method (1979) as post hoc procedures. The first

test may be used to see whether there are significant

statistical differences among the algorithms in certain

groups (three or more algorithms). If differences are

detected, then Holm’s test is employed to compare the

best ranking algorithm (control algorithm) with the

remaining ones.

– Utilization of the Wilcoxon (1945) matched-pairs

signed-ranks test. With this test, the results of two

algorithms may be directly compared.

Any reader interested in this topic can find additional

information on the Web site http://sci2s.ugr.es/sicidm.

3.3 The experimental setup

The experiments have been developed in the two following

ways:

– First, we analyse the influence of any parameters and

their components on the VMO.

– Size of mesh: VMO is tried with different sizes of

the initial population to test if this has a strong

influence on the quality of results.

– Adaptive clearing operator: the influence of the

adaptive clearing on the behaviour of the VMO is

tested.

– The expansion towards the frontiers (h function):

the influence on the results of the exploration

operator across the frontier nodes is observed.
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– Then, we compare the VMO results with other

algorithms from the literature.

All experiments have been carried out with dimension

D = 10, D = 30 and D = 50, and the maximum number

of fitness evaluations (stopping criterion) that we allowed

for each algorithm is C ¼ 10; 000 � D. The value of the k

parameter used was k = 3 for all experiments and the other

parameters were defined in each test suite. Each algorithm

is run 25 times for each test function, and the average error

of the best found solution is computed. The function error

value for a solution x is defined as (f(xj) - f(xj
*)), where xj

*

is the global optimum of the function. The results obtained

in each experimental case are executed using the same test

suite and are shown in Appendix as tables.

4 Internal analysis of VMO

In this section, we study the VMO’s behaviour for some

internal elements: size of the initial population (Sect. 4.1),

adaptive clearing operator (Sect. 4.2) and generation by

means of the frontier’s nodes (Sect. 4.3).

4.1 Size of mesh

The definition of the size of the population is very

important in current PMHs to obtain a high performance

from these methods. For instance, in the GAs the popula-

tions must be big enough (Minetti 2005); due to the fact

that not all the individuals influence the evolution of the

population, a process of selection is conducted in each

iteration to obtain a subgroup of the population to generate

new individuals. In the specific case of the PSO (Kennedy

and Eberhart 1995), use of smaller populations is recom-

mended (Engelbrecht 2006) because all the agents change

their position, directly influencing their displacement in the

flock.

The process presented by the VMO is similar to PSO, in

which all the population nodes are involved in the explo-

ration. Due to this similarity, different sizes of mesh are

studied: P = (8, 12, 24, 50 and 100). In all cases, the total

expansion size used for these studies is T ¼ 3
2

P. The results

for the test functions are shown in Appendix Tables 14, 15

and 16.

To apply the nonparametric test to this case study, we

present in Table 2 the average ranking of the VMO algo-

rithm for different mesh sizes for all dimensions (the

VMO(P) refers to the VMO algorithm with P population

size, the best rank is presented in bold typeface). The

results of Iman–Davenport’s test show that the mesh size

could produce significant differences; due to this fact, the

hypothesis of equality has been rejected for each dimension

(see Table 3). This conclusion was obtained because the

statistical test value was greater than the critical value,

2.4920 in this case.

To continue, Holm’s test is applied to compare the

configuration with the best rank in each dimension

(VMO(50) for D = 10 and VMO(12) for D = 30 and

D = 50), with each of the four remaining ones. For this

test, the algorithms are ordered in descending order

according to rank.

Table 4 contains all the computations associated with

Holm’s procedure (z = (R0 - Ri)/SE, p value, and a/i) for

a standard error for each dimension of SE = 0.5. The last

column indicates whether the control algorithm performs

significantly better than the corresponding algorithm (first

column), in this case the equality hypothesis is rejected.

This conclusion is arrived at because the p values are

smaller than the corresponding a/i values. For this com-

parison, the results obtained with a mesh size of 50 nodes

are significantly superior to three of the compared config-

urations (VMO(8), VMO(12) and VMO(24)) for D = 10.

Only in comparison with VMO(100) are the differences

insignificant. For D = 30 and D = 50, the VMO algorithm

with a population size of 12 nodes obtained significantly

superior results to the other mesh configurations.

We have applied Wilcoxon’s test to compare VMO(50)

configuration with VMO(100) for D = 10. In this test, the

values of R- and R? (associated with the control algorithm

in comparison) are specified (the lowest ones, which cor-

respond to the worst results, are highlighted in bold face),

together with the p values computed for this test and

whether the hypothesis is rejected (the p value is lower than

the significance value) or not. Table 5 shows the results,

showing that that VMO(50) obtained better results than

Table 2 Ranking of the VMO algorithm for different mesh sizes for

each dimension

Algorithm Rank (D = 10) Rank (D = 30) Rank (D = 50)

VMO(8) 4.4750 3.449 2.875

VMO(12) 3.650 1.400 1.400

VMO(24) 2.900 2.600 2.775

VMO(50) 1.651 3.950 3.250

VMO(100) 2.325 3.600 4.700

Table 3 Results of Iman–Davenport’s test for different mesh sizes

for each dimension

Dimension Test value Critical value Hypothesis

D = 10 18.154 2.4920 Rejected

D = 30 13.674 2.4920 Rejected

D = 50 23.974 2.4920 Rejected
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VMO(100) (the R? values are higher than the R- ones).

But this difference is not statistically significant (because

0.157 [ 0.05). Because VMO(50) is the best mesh size, it

will used in the studies for dimension 10.

In these experiments, we can conclude that the mesh

size has a relation to the dimension of the problem. For

problems with a small dimension, a population size of

between 50 and 100 nodes obtains good results, and for

high dimensions the best results are obtained with a mesh

of 12 nodes.

4.2 Adaptive clearing operator

Here, we study the effect of applying an adaptive clearing

operator to the VMO algorithm. For this study, we compare

the results among other clearing operators and our adaptive

proposal. The results of this comparison are shown in

Appendix Tables 17, 18 and 19. VMO-NC and VMO-AC

represent the solutions to the algorithm, without the

clearing operator and using the adaptive clearing, respec-

tively. VMO-C1, VMO-C2, VMO-C3, VMO-C4 and

VMO-C5 show the VMO solutions with the clearing

operator for different constant values of the distance

(nj ¼ rangeðaj;bjÞ
4

;
rangeðaj;bjÞ

8
;

rangeðaj;bjÞ
16

;
rangeðaj;bjÞ

50
and

rangeðaj;bjÞ
100

,

respectively), depending of the domain amplitude in each

test function (see Eq. 6).

In Table 6, we show the mean rankings of each executed

alternative for different clearing operators.

First, we apply Iman–Davenport’s test to each dimen-

sion. Table 7 shows the results, detecting statistically sig-

nificant differences for each dimension. Thus, we applied

Holm’s multiple comparisons test to find out which algo-

rithm was statistically better than the others.

Holm’s test compares the algorithm with the best rank

for each dimension VMO-AC, with each one of the other

configurations, in pairs. Table 8 shows the results of

Holm’s test with the significance value 0.05. We can see

that there are significant differences in the majority of

cases, with the exception of VMO-C3 and VMO-C2, where

there are no significant differences in dimension 10.

Table 4 Results of the Holm’s

test for each dimension with a

significance value 0.05

i Algorithm z = (R0 - Ri)/SE p value a/i Hypothesis

D = 10, VMO(50) as reference algorithm

4 VMO(8) 5.649 1.60E-08 0.0125 Rejected

3 VMO(12) 3.999 6.33E-05 0.0166 Rejected

2 VMO(24) 2.499 0.012 0.0250 Rejected

1 VMO(100) 1.349 0.177 0.0500 Accepted

D = 30, VMO(12) as reference algorithm

4 VMO(50) 5.100 3.39E-7 0.0125 Rejected

3 VMO(100) 4.400 1.08E-5 0.0166 Rejected

2 VMO(8) 4.099 4.13E-5 0.0250 Rejected

1 VMO(24) 2.400 0.016 0.0500 Rejected

D = 50, VMO(12) as reference algorithm

4 VMO(100) 6.600 4.11E-11 0.0125 Rejected

3 VMO(50) 3.699 2.15E-4 0.01666 Rejected

2 VMO(8) 2.949 0.003 0.0250 Rejected

1 VMO(24) 2.750 0.005 0.0500 Rejected

Table 5 Results of Wilcoxon’s test (significance value, 0.05)

VMO(50) vs R? R- p value Hypothesis

VMO(100) 138.00 72.00 0.157 Accepted

Table 6 Ranking of VMO’s algorithm with different clearing oper-

ators for each dimension

Algorithm Rank (D = 10) Rank (D = 30) Rank (D = 50)

VMO-NC 6.449 6.649 5.850

VMO-C5 5.525 5.625 4.575

VMO-C4 4.575 4.975 4.700

VMO-C1 4.200 3.900 4.024

VMO-C3 2.825 3.125 4.300

VMO-C2 2.575 2.600 3.250

VMO-AC 1.850 1.125 1.300

Table 7 Results of the Iman–Davenport’s test for different alterna-

tives of clearing operator for each dimension

Dimension Test value Critical value Hypothesis

D = 10 26.315 2.1791 Rejected

D = 30 64.320 2.1791 Rejected

D = 50 14.641 2.1791 Rejected
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We have also applied Wilcoxon’s test to determine

which of them presents the best behaviour. Table 9 shows

the results between VMO-AC and VMO-C3, and VMO-AC

and VMO-C2 for D = 10. In both cases, the differences in

favour of VMO-AC (R? values are higher than R-) are

statistically significant. VMO-AC is the best algorithm,

proving that a clearing method improves the results, and the

proposed adaptive clearing method statistically improves

results obtained with a fixed distance value. Thus, in the

following, the VMO uses the adaptive clearing method.

4.3 Generation from the frontier nodes

This generation process explores the domain space around

the frontiers of the population. For this reason, it is nec-

essary to carry out an experimentation to determine whe-

ther the process should be applied. Then, we will present a

statistical study of the experimental results shown in

Table 20 in the Appendix, in which the column VMO-NF

represents the algorithm VMO when the frontier’s operator

is not used, and VMO-F when it is used. For this study, we

use Wilcoxon’s test to compare both algorithms for each

dimension.

It can clearly be seen (see Table 10) that VMO-F

obtains better results than VMO-NF in all dimensions

(R? values are higher than the R- ones). In addition,

the statistical test indicates that these improvements are

statistically significant.

In the following, the algorithm VMO will be used with

the adaptive clearing operator and the nodes generation

operator starting from the frontiers.

5 Comparative study with others algorithms

A comparative study is conducted between VMO and other

PMHs that have a demonstrably high level of performance.

These algorithms belong to evolutionary algorithms and

Table 8 Results of the Holm’s

test for each dimension
i Algorithm z = (R0 - Ri)/SE p value a/i Hypothesis

D = 10, VMO-AC as reference algorithm

6 VMO-NC 6.733 1.65E-11 0.0080 Rejected

5 VMO-C5 5.379 7.46E-8 0.0100 Rejected

4 VMO-C4 3.989 6.63E-5 0.0125 Rejected

3 VMO-C1 3.440 5.86E-4 0.0166 Rejected

2 VMO-C3 1.427 0.153 0.0250 Accepted

1 VMO-C2 1.061 0.288 0.0500 Accepted

D = 30, VMO-AC as reference algorithm

6 VMO-NC 8.087 6.07E-16 0.0080 Rejected

5 VMO-C5 6.587 4.48E-11 0.0100 Rejected

4 VMO-C4 5.635 1.74E-8 0.0125 Rejected

3 VMO-C1 4.062 4.86E-5 0.0170 Rejected

2 VMO-C3 2.927 0.003 0.0250 Rejected

1 VMO-C2 2.159 0.031 0.0500 Rejected

D = 50, VMO-AC as reference algorithm

6 VMO-NC 6.661 2.73E-11 0.0080 Rejected

5 VMO-C4 4.977 6.45E-7 0.0100 Rejected

4 VMO-C5 4.794 1.63E-6 0.0125 Rejected

3 VMO-C3 4.391 1.13E-5 0.0167 Rejected

2 VMO-C1 3.989 6.65E-5 0.0250 Rejected

1 VMO-C2 2.855 0.004 0.0500 Rejected

Table 9 Results of Wilcoxon’s test (significance value 0.05)

VMO-AC vs R? R- p value Hypothesis

VMO-C3 156.50 53.50 0.038 Rejected

VMO-C2 167.50 42.50 0.013 Rejected

Table 10 Results of Wilcoxon’s test (significance value 0.05)

VMO-F vs R? R- p value Hypothesis

D = 10

VMO-NF 190.50 19.50 0.001 Rejected

D = 30

VMO-NF 180.50 29.50 0.002 Rejected

D = 50

VMO-NF 180.50 29.50 0.002 Rejected
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swarm Intelligence. The local search algorithms are not

used to improve the solutions. To continue, a brief

description of the methods is presented:

– Steady-state genetic algorithm (SSGA) (Syswerda

1989), with an election of parents negative assortative

mating (Fernandes and Rosa 2001) with Nnam = 3., and

a replacement strategy of replacing the worst.

– Linearly decreasing inertia weight in particle swarm

optimization (LDWPSO) (Shi and Eberhart 1998): the

algorithm PSO proposed by Shi and Ebenhart is taken

into account, applying the authors’ configuration: the

inertia varies from the maximum value (wmax = 0.9) to

the minimum value (wmin = 0.4); the parameters c1

and c2 are equal to 2.8 and 1.3, respectively.

– Opposite differential evolution (ODE) (Rahnamayan

et al. 2008): this algorithm is a DE that enforces

diversity in the search, considering in the search

process the opposite of each new solution created.

The parameters used in all cases were defined by the

authors themselves.

We present a statistical analysis conducted over the

results shown in Appendix Tables 23, 24 and 25. In this

analysis, we compare VMO with other algorithms pre-

sented in this section, using Wilcoxon’s test.

According to Wilcoxon’s test results summarized in

Tables 11, 12 and 13 it can be observed that:

– VMO is significantly better than the SSGA and

LDWPSO for D = 10. The statistical test indicates

that these improvements are statistically significant.

VMO is only worse in absolute terms in relation to

ODE ((R? values are lower than the R- ones)), but not

in a significant way.

Table 11 Results of Wilcoxon’s test for D = 10

VMO vs R? R- p value Hypothesis

SSGA 210.0 0.0 0.000 Rejected

ODE 89.0 121.0 0.550 Accepted

LDWPSO 210.0 0.0 0.000 Rejected

Table 12 Results of Wilcoxon’s test for D = 30

VMO vs R? R- p value Hypothesis

SSGA 210.0 0.0 0.000 Rejected

ODE 156.5 53.5 0.040 Rejected

LDWPSO 210.0 0.0 0.000 Rejected

Table 13 Results of Wilcoxon’s test for D = 50

VMO vs R? R- p value Hypothesis

SSGA 210 0 0.000 Rejected

ODE 205 5 0.000 Rejected

LDWPSO 167 43 0.044 Rejected

Table 14 Results for different

mesh sizes for dimension 10
Function VMO(8) VMO(12) VMO(24) VMO(50) VMO(100)

F6 1.32E?02 4.22E?01 7.15E?01 6.02E?01 8.41E?01

F7 4.15E?03 3.79E?03 3.91E?03 6.39E?02 4.00E?03

F8 2.04E?01 2.04E?01 2.04E?01 2.03E?01 2.03E?02

F9 1.49E?01 1.28E?01 1.12E?01 3.10E?00 9.68E?00

F10 2.11E?01 1.51E?01 7.00E?00 4.79E?00 7.04E?00

F11 5.21E?00 2.74E?00 2.48E?00 5.12E?00 2.47E?00

F12 6.53E?02 1.04E?02 1.60E?02 7.55E?01 9.97E?01

F13 1.73E?00 1.57E?00 7.81E-01 7.48E-01 7.60E-01

F14 2.93E?00 2.75E?00 2.57E?00 2.74E?00 2.55E?00

F15 3.34E?02 2.59E?02 2.95E?02 2.14E?02 2.24E?02

F16 1.45E?02 1.27E?02 1.14E?02 1.03E?02 1.04E?02

F17 1.53E?02 1.42E?02 1.29E?02 1.20E?02 1.30E?02

F18 8.26E?02 8.51E?02 8.27E?02 7.46E?02 7.50E?02

F19 8.06E?02 8.62E?02 8.00E?02 6.98E?02 7.49E?02

F20 8.49E?02 8.55E?02 7.99E?02 7.87E?02 7.52E?02

F21 6.70E?02 7.48E?02 6.79E?02 5.53E?02 5.27E?02

F22 8.21E?02 7.91E?02 7.75E?02 7.51E?02 7.61E?02

F23 9.72E?02 8.78E?02 8.84E?02 6.45E?02 7.32E?02

F24 4.16E?02 4.12E?02 4.16E?02 4.06E?02 3.90E?02

F25 4.13E?02 3.98E?02 4.00E?02 3.88E?02 3.65E?02
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– VMO is statistically better than all the alternatives

taken into consideration for the D = 30. The difference

in respect to ODE increases.

– Finally, for dimension 50, results obtained by VMO are

significantly better than all the PMHs it was compared

with.

Table 15 Results for different

mesh sizes for dimension 30
Test function VMO(8) VMO(12) VMO(24) VMO(50) VMO(100)

F6 9.12E?02 2.82E?02 1.98E?03 1.75E?03 2.15E?03

F7 8.13E?03 2.72E?02 7.94E?03 2.79E?04 2.98E?04

F8 2.10E?01 2.09E?01 2.09E?01 2.10E?01 2.10E?01

F9 1.23E?02 1.04E?02 9.69E?01 1.32E?02 1.12E?02

F10 5.15E?01 5.31E?00 5.08E?01 6.15E?01 5.72E?01

F11 1.50E?01 1.41E?01 1.77E?01 1.60E?01 1.56E?01

F12 1.72E?04 9.56E?03 1.34E?04 1.37E?04 1.25E?04

F13 4.87E?00 4.52E?00 4.37E?00 5.06E?00 4.57E?00

F14 1.21E?01 1.01E?01 1.17E?01 1.24E?01 1.19E?01

F15 3.59E?02 3.36E?02 3.30E?02 3.78E?02 3.54E?02

F16 2.10E?02 2.68E?02 1.58E?02 2.40E?02 2.03E?02

F17 2.86E?02 1.97E?02 2.36E?02 3.21E?02 2.18E?02

F18 9.30E?02 8.07E?02 8.98E?02 9.31E?02 9.37E?02

F19 8.30E?02 8.06E?02 9.40E?02 8.32E?02 9.37E?02

F20 8.60E?02 8.06E?02 8.38E?02 8.31E?02 8.36E?02

F21 7.05E?02 5.00E?02 7.20E?02 7.77E?02 7.24E?02

F22 5.92E?02 5.07E?02 5.68E?02 5.55E?02 6.31E?02

F23 8.80E?02 5.35E?02 8.27E?02 8.87E?02 9.04E?02

F24 2.14E?02 2.00E?02 2.68E?02 2.13E?02 2.19E?02

F25 2.09E?02 2.01E?02 2.01E?02 2.06E?02 2.05E?02

Table 16 Results for different

mesh sizes for dimension 50
Test function VMO(8) VMO(12) VMO(24) VMO(50) VMO(100)

F6 2.55E?03 1.78E?03 2.05E?03 2.59E?03 4.21E?03

F7 4.49E?03 3.71E?03 4.03E?03 4.26E?03 5.26E?03

F8 2.11E?01 2.11E?01 2.12E?01 2.11E?01 2.15E?01

F9 5.21E?02 2.28E?02 9.24E?02 3.17E?02 9.65E?02

F10 1.54E?02 1.07E?01 1.22E?02 1.28E?02 1.33E?02

F11 7.96E?01 4.24E?01 8.26E?01 8.63E?01 1.09E?02

F12 9.92E?04 9.67E?04 9.97E?04 1.42E?05 1.14E?06

F13 8.00E?00 8.03E?00 9.41E?00 8.16E?00 9.32E?00

F14 2.19E?01 2.19E?01 2.15E?01 2.11E?01 2.19E?01

F15 5.81E?02 4.26E?02 5.81E?02 5.90E?02 6.96E?02

F16 3.04E?02 2.00E?02 2.49E?02 3.56E?02 5.66E?02

F17 4.95E?02 2.72E?02 2.18E?02 5.25E?02 6.02E?02

F18 1.30E?03 9.26E?02 9.53E?02 1.14E?03 1.20E?03

F19 9.91E?02 9.41E?02 9.56E?02 1.07E?03 1.17E?03

F20 1.05E?03 9.29E?02 9.55E?02 1.03E?03 1.18E?03

F21 1.24E?03 9.60E?02 9.77E?02 9.96E?02 1.29E?03

F22 9.56E?02 9.83E?02 1.00E?03 9.98E?02 1.30E?03

F23 1.15E?03 1.02E?03 1.75E?03 1.57E?03 1.27E?03

F24 5.05E?02 2.00E?02 2.12E?02 1.10E?03 1.36E?03

F25 1.64E?03 1.68E?03 1.74E?03 1.71E?03 1.81E?03
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Table 17 Results for different kinds of clearing operators for dimension 10

F VMO-NC VMO-AC VMO-C1 VMO-C2 VMO-C3 VMO-C4 VMO-C5

F6 1.11E?08 6.02E?01 1.25E?03 3.83E?02 1.27E?02 1.76E?02 6.52E?02

F7 3.76E?03 6.39E?02 7.91E?02 5.71E?03 4.03E?03 1.57E?03 5.02E?03

F8 2.04E?01 2.03E?01 2.04E?01 2.04E?01 2.03E?01 2.04E?01 2.04E?01

F9 1.96E?03 3.10E?00 6.45E?01 3.85E?01 2.01E?01 1.27E?01 9.07E?00

F10 8.05E?01 4.79E?00 1.93E?01 1.09E?01 1.95E?01 5.08E?01 4.88E?01

F11 9.19E?00 5.12E?00 6.39E?00 3.77E?00 2.07E?00 4.36E?00 6.27E?00

F12 4.03E?04 7.55E?01 1.29E?03 5.09E?02 5.19E?02 3.83E?02 6.39E?02

F13 7.24E?00 7.48E-01 1.93E?00 1.83E?00 1.42E?00 1.93E?00 2.96E?00

F14 3.87E?00 2.74E?00 3.08E?00 3.17E?00 3.27E?00 3.55E?00 3.71E?00

F15 5.70E?02 2.14E?02 3.42E?02 2.85E?02 3.88E?02 3.56E?02 4.51E?02

F16 2.96E?02 1.03E?02 1.44E?02 1.19E?02 1.24E?02 2.05E?02 2.24E?02

F17 1.53E?02 1.20E?02 1.50E?02 1.34E?02 1.41E?02 2.16E?02 2.36E?02

F18 1.08E?03 7.46E?02 8.87E?02 8.72E?02 8.83E?02 1.02E?03 1.07E?03

F19 1.09E?03 6.98E?02 8.74E?02 8.40E?02 9.02E?02 1.03E?03 1.06E?03

F20 1.08E?03 7.87E?02 8.71E?02 8.50E?02 9.08E?02 1.04E?03 1.05E?03

F21 1.27E?03 5.53E?02 8.87E?02 7.55E?02 8.22E?02 1.27E?03 1.19E?03

F22 9.58E?02 7.51E?02 8.37E?02 7.81E?02 7.75E?02 9.13E?02 9.57E?02

F23 1.27E?03 6.45E?02 9.40E?02 8.96E?02 8.78E?02 1.23E?03 1.19E?03

F24 4.18E?02 4.06E?02 4.34E?02 3.96E?02 3.66E?02 5.92E?02 6.94E?02

F25 4.29E?02 3.88E?02 4.09E?02 4.03E?02 4.67E?02 1.45E?03 1.68E?03

Table 18 Results for different kinds of clearing operators for dimension 30

F VMO-NC VMO-AC VMO-C1 VMO-C2 VMO-C3 VMO-C4 VMO-C5

F6 1.02E?10 2.82E?02 2.90E?04 5.03E?03 1.52E?03 9.17E?03 1.93E?03

F7 2.76E?03 2.72E?02 1.17E?04 1.05E?03 1.83E?03 2.72E?03 3.77E?03

F8 2.10E?01 2.09E?01 2.10E?01 2.09E?01 2.10E?01 2.10E?01 2.10E?01

F9 1.82E?04 1.04E?02 3.10E?02 1.99E?02 1.42E?02 1.82E?02 7.48E?02

F10 4.97E?02 5.31E?00 1.09E?02 8.48E?01 1.38E?02 4.09E?02 4.12E?02

F11 3.99E?01 1.41E?01 2.79E?01 1.54E?01 1.59E?01 2.41E?01 2.90E?01

F12 1.14E?06 9.56E?03 4.07E?04 2.24E?04 1.29E?04 4.85E?04 6.68E?04

F13 1.15E?02 4.52E?00 1.37E?01 1.16E?01 9.60E?00 1.35E?01 2.49E?01

F14 1.37E?01 1.01E?01 1.23E?01 1.24E?01 1.26E?01 1.31E?01 1.32E?01

F15 8.28E?02 3.36E?02 4.30E?02 4.30E?02 5.45E?02 6.79E?02 6.66E?02

F16 6.36E?02 2.68E?02 2.65E?02 2.90E?02 2.40E?02 5.01E?02 5.25E?02

F17 3.38E?02 1.97E?02 2.86E?02 2.69E?02 2.79E?02 5.59E?02 6.53E?02

F18 1.17E?03 8.07E?02 8.29E?02 8.27E?02 8.29E?02 1.09E?03 1.17E?03

F19 1.18E?03 8.06E?02 8.29E?02 8.27E?02 8.26E?02 1.08E?03 1.16E?03

F20 1.17E?03 8.06E?02 8.29E?02 8.28E?02 8.36E?02 1.13E?03 1.17E?03

F21 1.34E?03 5.00E?02 8.41E?02 5.71E?02 8.58E?02 1.27E?03 1.32E?03

F22 1.34E?03 5.07E?02 5.17E?02 5.67E?02 1.01E?03 1.26E?03 1.26E?03

F23 2.53E?03 5.35E?02 8.93E?02 8.82E?02 8.12E?02 1.04E?03 1.34E?03

F24 1.93E?03 2.00E?02 5.26E?02 3.05E?02 5.74E?02 1.10E?03 1.05E?03

F25 1.41E?03 2.01E?02 5.92E?02 5.43E?02 5.89E?02 5.99E?02 5.86E?02
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Table 19 Results for different kinds of clearing operators for dimension 50

F VMO-NC VMO-AC VMO-C1 VMO-C2 VMO-C3 VMO-C4 VMO-C5

F6 3.18E?10 1.78E?03 7.85E?06 3.82E?03 3.13E?03 3.61E?03 2.68E?03

F7 3.96E?03 3.71E?03 4.54E?03 3.71E?03 3.91E?03 3.81E?03 3.71E?03

F8 2.14E?01 2.11E?01 2.11E?01 2.11E?01 2.13E?01 2.11E?01 2.11E?01

F9 1.75E?04 2.28E?02 6.66E?02 2.33E?02 5.83E?02 6.19E?02 4.49E?02

F10 6.64E?02 1.07E?01 2.41E?01 1.65E?01 3.28E?01 3.88E?01 4.48E?01

F11 9.71E?01 4.24E?01 5.87E?01 3.80E?01 6.47E?01 7.17E?01 6.37E?01

F12 1.57E?06 9.67E?04 4.25E?05 1.93E?05 5.87E?05 6.07E?05 7.39E?05

F13 1.07E?02 8.03E?00 3.91E?01 3.09E?01 1.00E?02 9.33E?01 1.08E?02

F14 1.44E?01 2.19E?01 2.25E?01 2.23E?01 2.28E?01 2.21E?01 2.26E?01

F15 1.11E?03 4.26E?02 5.55E?02 5.42E?02 5.35E?02 5.75E?02 5.87E?02

F16 7.60E?02 2.00E?02 5.08E?02 5.33E?02 5.12E?02 5.23E?02 5.00E?02

F17 5.19E?02 2.72E?02 5.04E?02 5.01E?02 5.50E?02 5.84E?02 5.93E?02

F18 1.35E?03 9.26E?02 1.11E?03 1.21E?03 1.49E?03 1.63E?03 1.26E?03

F19 1.31E?03 9.41E?02 1.11E?03 1.09E?03 1.51E?03 1.76E?03 1.24E?03

F20 1.31E?03 9.29E?02 1.25E?03 1.23E?04 1.18E?03 1.28E?03 1.25E?03

F21 1.41E?03 9.60E?02 1.22E?03 1.29E?03 1.23E?03 1.28E?03 1.37E?03

F22 1.56E?03 9.83E?02 1.34E?03 1.19E?03 1.30E?03 1.29E?03 1.40E?03

F23 1.46E?03 1.02E?03 2.00E?03 1.84E?03 1.41E?03 1.52E?03 1.32E?03

F24 1.25E?03 2.00E?02 1.32E?03 2.09E?02 1.42E?03 1.85E?03 1.44E?03

F25 2.13E?03 1.68E?03 1.80E?03 1.78E?03 1.75E?03 1.65E?03 1.81E?03

Table 20 Results for the frontier’s operator for dimension 10

Test function VMO-F VMO-NF

F6 6.02E?01 7.64E?00

F7 6.39E?02 6.38E?02

F8 2.03E?01 2.03E?01

F9 3.10E?00 7.38E?00

F10 4.79E?00 3.91E?01

F11 5.12E?00 6.57E?00

F12 7.55E?01 5.26E?02

F13 7.48E-01 1.52E?00

F14 2.74E?00 3.88E?00

F15 2.14E?02 4.44E?02

F16 1.03E?02 2.56E?02

F17 1.20E?02 1.86E?02

F18 7.46E?02 1.20E?03

F19 6.98E?02 1.15E?03

F20 7.87E?02 1.15E?03

F21 5.53E?02 1.19E?03

F22 7.51E?02 9.94E?02

F23 6.45E?02 1.28E?03

F24 4.06E?02 1.31E?03

F25 3.88E?02 1.85E?03

Table 21 Results for the frontier’s operator for dimension 30

Test function VMO-F VMO-NF

F6 2.82E?02 3.36E?02

F7 2.72E?03 2.72E?03

F8 2.09E?01 2.10E?01

F9 1.04E?02 1.48E?02

F10 5.31E?00 7.69E?01

F11 1.41E?01 3.21E?01

F12 1.05E?04 7.24E?03

F13 4.52E?00 3.49E?01

F14 1.01E?01 1.32E?01

F15 3.36E?02 1.04E?03

F16 4.68E?02 6.31E?02

F17 1.97E?02 7.11E?02

F18 8.07E?02 1.33E?03

F19 8.06E?02 1.37E?03

F20 8.06E?02 1.33E?03

F21 5.00E?02 1.40E?03

F22 5.07E?02 1.46E?03

F23 5.35E?02 1.41E?03

F24 2.00E?02 1.42E?03

F25 2.01E?02 1.86E?03
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Table 22 Results for the frontier’s operator for dimension 50

Test function VMO-F VMO-NF

F6 1.78E?03 1.14E?02

F7 3.71E?03 3.71E?03

F8 2.11E?01 2.12E?01

F9 2.28E?02 4.10E?02

F10 1.07E?01 7.46E?01

F11 4.24E?01 6.19E?01

F12 9.67E?04 9.56E?04

F13 8.03E?00 1.21E?02

F14 2.19E?01 2.36E?01

F15 4.26E?02 9.59E?02

F16 2.00E?02 7.42E?02

F17 2.72E?02 9.89E?02

F18 9.26E?02 1.32E?03

F19 9.41E?02 1.35E?03

F20 9.29E?02 1.34E?03

F21 9.60E?02 1.02E?03

F22 9.83E?02 1.49E?03

F23 1.02E?03 1.47E?03

F24 2.00E?02 1.52E?03

F25 1.68E?03 1.89E?03

Table 23 Results of the comparison with others algorithms for

dimension 10

Test function ODE LDWPSO SSGA VMO

F6 1.59E-01 5.68E?04 3.65E?04 6.02E?01

F7 1.27E?03 3.02E?00 3.36E?04 6.39E?02

F8 2.04E?01 2.05E?01 3.21E?04 2.03E?01

F9 7.67E-09 2.98E?01 3.06E?04 3.10E?00

F10 1.37E?01 3.46E?01 2.99E?04 4.79E?00

F11 1.75E?00 7.19E?00 2.92E?04 5.12E?00

F12 2.13E?01 1.44E?03 2.62E?04 7.55E?01

F13 6.47E-01 2.47E?00 2.65E?04 7.48E-01

F14 3.24E?00 3.62E?00 2.63E?04 2.74E?00

F15 3.04E?02 4.28E?02 2.63E?04 2.14E?02

F16 1.09E?02 1.72E?02 2.63E?04 1.03E?02

F17 1.34E?02 2.03E?02 2.57E?04 1.20E?02

F18 4.88E?02 9.34E?02 2.58E?04 7.46E?02

F19 4.84E?02 9.26E?02 2.43E?04 6.98E?02

F20 5.08E?02 9.27E?02 2.44E?04 7.87E?02

F21 5.40E?02 1.02E?03 2.37E?04 5.53E?02

F22 7.70E?02 8.57E?02 2.42E?04 7.51E?02

F23 5.66E?02 1.11E?03 2.39E?04 6.45E?02

F24 2.00E?02 5.29E?02 2.32E?04 4.06E?02

F25 1.74E?03 5.06E?02 2.36E?04 3.88E?02

Table 24 Results of the comparison with others algorithms for

dimension 30

Test function ODE LDWPSO SSGA VMO

F6 1.31E-05 1.58E?09 1.37E?05 2.82E?02

F7 4.70E?03 2.84E?02 1.36E?05 2.72E?02

F8 2.10E?01 2.10E?01 1.32E?05 2.09E?01

F9 3.98E-02 2.42E?02 1.33E?05 1.04E?02

F10 1.17E?02 2.91E?02 1.32E?05 5.31E?00

F11 3.09E?01 3.73E?01 1.28E?05 1.41E?01

F12 4.94E?04 2.94E?05 1.26E?05 9.56E?03

F13 2.61E?00 1.40E?02 1.29E?05 4.52E?00

F14 1.32E?01 1.36E?01 1.26E?05 1.01E?01

F15 3.48E?02 7.11E?02 1.27E?05 3.36E?02

F16 1.51E?02 4.36E?02 1.25E?05 2.68E?02

F17 2.01E?02 5.48E?02 1.27E?05 1.97E?02

F18 9.05E?02 9.06E?02 1.24E?05 8.07E?02

F19 9.05E?02 9.02E?02 1.21E?05 8.06E?02

F20 9.05E?02 9.05E?02 1.24E?05 8.06E?02

F21 5.00E?02 1.04E?03 1.20E?05 5.00E?02

F22 8.68E?02 7.15E?02 1.20E?05 5.07E?02

F23 5.34E?02 1.09E?03 1.19E?05 5.35E?02

F24 4.17E?02 2.36E?02 1.18E?05 2.00E?02

F25 1.63E?03 2.61E?02 1.21E?05 2.01E?02

Table 25 Results of the comparison with others algorithms for

dimension 50

Test function ODE LDWPSO SSGA VMO

F6 1.21E?05 1.20E?10 2.52E?05 1.78E?03

F7 2.31E?06 8.29E?02 2.54E?05 3.71E?03

F8 4.79E?04 2.11E?02 2.49E?05 2.11E?01

F9 9.05E-02 5.10E?02 2.40E?05 2.28E?02

F10 1.24E?01 2.45E?02 2.42E?05 1.07E?01

F11 3.32E?05 6.21E?02 2.35E?05 4.24E?01

F12 3.34E?09 2.15E?06 2.33E?05 9.67E?04

F13 3.14E?06 2.40E?03 2.33E?05 8.03E?00

F14 3.13E?02 3.96E?02 2.33E?05 2.19E?01

F15 2.25E?02 7.81E?02 2.31E?05 4.26E?02

F16 5.36E?05 5.27E?02 2.31E?05 2.00E?02

F17 2.15E?06 7.08E?02 2.30E?05 2.72E?02

F18 7.56E?05 1.04E?03 2.30E?05 9.26E?02

F19 7.01E?05 1.09E?03 2.28E?05 9.41E?02

F20 2.78E?06 7.17E?02 2.27E?05 9.29E?02

F21 5.55E?05 9.93E?02 2.24E?05 9.60E?02

F22 3.01E?05 5.41E?02 2.24E?05 9.83E?02

F23 4.81E?06 1.14E?03 2.23E?05 1.02E?03

F24 9.74E?05 1.16E?03 2.22E?05 2.00E?02

F25 3.90E?07 5.41E?02 2.19E?05 1.68E?03
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6 Conclusions

A PMH-denominated variable mesh optimization (VMO)

was introduced in this paper. It includes new ways of

exploring the search space:

– To use attraction towards the node with the best fitness

(local extremes) on the neighbourhood of each mesh

node, towards the node with the best fitness of the mesh

(global extreme) and the frontiers of the mesh in the

same algorithm iteration. For these exploration meth-

ods, the algorithm obtains a suitable balance between

the exploitation and the exploration of the search space.

– To conduct an elitist initial population selection in each

iteration, taking into account the quality and the

separability between the nodes by means of a clearing

operator. This mechanism introduces diversity in the

population that facilitates a larger exploration of the

solution space. In addition, the population contains

the best representative of each zone of the explored

search space.

– The clearing operator functions in an adaptive manner

because it decreases the allowed distance between the

nodes as the algorithm is conducted, depending on the

extent of each interval. This operator causes the method

to start with a high exploration level that decreases as

the allowed distance during the running of the

algorithm. It occurs in reverse proportion to the

exploitation level of the method.

It has been shown that the proposed VMO algorithm

presents a good scalability level presenting good results

with dimensions 30 and 50.

The promising research line initiated with the present

optimization framework based on VMO is worthy of fur-

ther study. We will extend our investigation to test dif-

ferent mechanisms to create new nodes towards local and

global extremes (for example, some operators presented in

Herrera et al. 2003). Furthermore, we will study the

clearing operator to regulate the diversity levels that it

introduces in the mesh and to see its influence on the

behaviour of the VMO algorithm.

Appendix: Results of the experiments

In this appendix, the results used for the statistical analysis

for each study case are presented. Each algorithm is run 25

times for each test function, and the average error of the

best found solution is computed. The function error value

for a solution x is defined as (f(xj) - f(xj
*)), where xj

* is the

global optimum of the function. The captions in the tables

detail which experiment it belongs to and the dimension of

the test functions used (see Tables 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25).
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