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Abstract Real-parameter optimisation is a prolific research
line with hundreds of publications per year. There exists an
impressive number of alternatives in both algorithm families
and enhancements over their respective original proposals.
In this work, we analyse if this growth in the number of pub-
lications is correlated with a real progress in the field. We
have selected five approaches from one of the most signifi-
cant journals in the field and compared them with the winner
of the competition celebrated within the IEEE Congress on
Evolutionary Computation 2005. We observe that not only
thesemethods are unable to get the good results of the winner
of the competition, published several years before, but that
they often avoid this type of comparison. Instead, they usu-
ally compare with other approaches from the same family.
We conclude that the comparison with the state-of-the-art of
the field should be mandatory to promote a real progress
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and to prevent that the area becomes obfuscated for out-
siders.
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1 Introduction

Real-parameter optimisation consists in finding the assign-
ment for a set of real-valued decision variables that produces
the best solution for a given problem. Usually, this kind of
problems is also referred as global optimisation or continu-
ous optimisation in the literature. Without loss of generality,
the goal is to find the values of a parameter vector x =
{x1, . . . , xD} that minimises a given function f (x) and sat-
isfies some constraints:

min
x∈S f (x), (1)

xi ∈ [ai , bi ], i = 1, . . . , D (2)

where S is the set of possible values for x, commonly
known as the search space and constraints (2) define the
domains of the variables. Also, it is not uncommon to
tackle problems with constraints (Coello 2002) but, in
the context analysed in this work, they are rarely consid-
ered.

Different methods have been proposed for real-parameter
optimisation according to the properties of these func-
tions: continuity, dimensionality, differentiability, smooth-
ness, modality… In the 1950s, computers ability to execute
operations very fast promoted the conception of simulated
optimisation (Box 1957; Bremermann 1962; Fogel 2000;
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Friedberg 1958), and soon, the first evolutionary compu-
tation methods appeared: evolutionary programming (EP)
(Fogel 1962; Fogel et al. 1966), genetic algorithms (GAs)
(Goldberg 1989; Herrera et al. 2003; Holland 1962, 1975)
and evolution strategies (ESs) (Schwefel 1981; Rechenberg
1965; Schwefel 1968, 1975).

Since then, we have witnessed the birth of a large number
of strategies for simulated real-parameter optimisation, the
biologically inspired ones acquiring some special relevance
(Xiong et al. 2015). Evolutionary algorithms simulate bio-
logical evolution; solutions are individuals that mutate and
reproduce to generate new candidate ones; the fittest ones
survive whereas those unfit perish. Particle swarm optimi-
sation (PSO) (Kennedy and Eberhart 1995) imitates birds
flocking or fishes schooling when searching food or escap-
ing predators: the members of the swarm wander through
the area trying to optimise some utility measures, such
as their own comfort, and they consider their neighbours’
movements with the expectation of increasing their proba-
bility of success. Ant colony optimisation (ACO) (Dorigo
et al. 1996; Dorigo and Stützle 2004) takes its inspira-
tion from the foraging behaviour of ants; they explore an
area by random displacements and at the same time, they
deposit a substance on the floor, which is evaluated by the
other ants; as time passes by, pheromone tracks emerge,
connecting the food and the anthill. Harmony search (HS)
(Geem et al. 2001) mimics the improvisation process of
jazz musicians. HS was later shown to be a special case of
ES (Weyland 2010). Artificial bee colony (ABC) (Karaboga
and Basturk 2007) simulates honey bee swarms exploit-
ing food sources. Bacterial foraging optimisation (BFO)
(Passino 2002) is inspired by the social foraging behaviour
of Escherichia coli. And the list continues with many other
examples, such as leapfrog optimisation (Snyman 1982),
or shark smell optimisation (Abedinia et al. 2014). As
non-biologically inspired and firmly settled down methods,
it is worth citing differential evolution (DE) (Storn and
Price 1997) and scatter search (Glover 1977), among oth-
ers.

Many of the published works in the field have developed
experiments with particular function sets and specific run-
ning conditions, which complicates, or even prevents, the
comparison between two or more proposals. In 1996, a con-
crete benchmark, with both real-parameter and travelling
salesman problems, was proposed to carry out a coordinated
competition (Bersini et al. 1996). Unfortunately, it was not
widely adopted. Not until 2005 was the first widely consol-
idated benchmark on real-parameter optimisation proposed,
for the competition within the IEEE Congress on Evolution-
ary Computation (CEC) (Garcia et al. 2009; Liao et al. 2014;
Suganthan et al. 2005).

The clear winner of the CEC 2005 competition was IPOP-
CMAES (Auger and Hansen 2005a), named G-CMAES

in some publications and during the conference, as recog-
nised in Garcia et al. (2009); Hansen (2005). This algorithm
is an evolution strategy with covariance matrix adaptation
and increasing population size. The CEC 2005 competition
became an important milestone in the field, because since
then, researchers have had a standard framework and a point
of reference at their disposal, IPOP-CMAES (apart from
the respective winners of subsequent competitions, such as
BIPOP-CMAES (Hansen 2009) for the Black-Box Optimi-
sation Benchmarking 2009, among others), for the venture
of designing better algorithms and contributing to the real-
parameter optimisation field.

In this work, we analyse the progress made ten years
after the CEC 2005 competition. In particular, we exam-
ine the published literature of real-parameter optimisation
from three points of view: the number of publications, the
generation of better algorithms, and the comparison rela-
tionships among the proposals. Our results show that the
literature contains published works that do not improve
upon IPOP-CMAES, at least under the empirical frame-
work defined in the CEC 2005 competition; but more
importantly, they avoid this comparison. In particular, we
observe the emergence of communities that compare new
proposals with methods from the same community, and
rarely consider approaches from other communities (as ini-
tial evolutionary models did with regard to other existing
methods, such as mathematical programming, simplex, or
pattern search, among others). We conclude that, avoid-
ing the comparison with the state-of-the-art, at that time,
is not a good practice, because the real progress is not
clear and the knowledge of the field becomes uncertain. We
shall emphasise that we do not intend to define the per-
formance criteria and conditions for which new proposals
should be accepted for publication. Instead, we advocate
that:

– A comparison with the state-of-the-art methods is always
necessary;

– A standard comparison methodology is advisable, ref-
erence point of the research community (functions and
running conditions); and

– Authors must specify the advantages that new proposals
incorporate over state-of-the-art models. We understand
the creative and subjective aspects of this part of the
work. Some proposals might clearly outperform the
best methods, some others might get better results in
a certain set of problems of particular interest, some
might just be new nature metaphors brought to simu-
lation without a clear performance advantage over the
state-of-the-art, but at least being operationally orig-
inal in the way they address the problem (Sörensen
2015)… On the contrary, we frankly discourage pub-
lishing the ith improvement of a model, for which
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Fig. 1 Cumulative number of publications of evolutionary algorithms
and nature-inspired algorithms for real-parameter optimisation of some
of the most important metaheuristic families. Left all the families

together; Right separated by family in logarithmic scale. Year 2005
is marked with a vertical line. (Results updated on October 6th, 2016)

its authors can not specify its benefits over the best
approaches.

The rest of the work is structured as follows. Section2
studies the number of publications in real-parameter opti-
misation from some of the most prominent metaheuristic
families. Section3 briefly describes the different proposed
benchmarks for carrying out studies in real-coding optimi-
sation. Section4 analyses some relevant publications in the
field in terms of the progress made and the comparisons car-
ried out with previous publications. Section5 evaluates the
case with a publication 10years after the CEC 2005 compe-
tition. The discussion is given in Sect. 6, and conclusions in
Sect. 7.

2 Research on real-parameter optimisation: a
snapshot

In the last decades, we havewitnessed a significant increment
in the number of publications of real-parameter optimisation
methods. These publications can be categorised into one of
the following groups:

– Enhancement of an existing metaheuristic Works in
this group aim to improve the performance of a given
metaheuristic, adapting some of their parameters and/or
decisions, or introducing specialised components.

– A new biologically inspired approachAprocess in nature
is analysed, simulated and adapted for real-parameter
optimisation. This way, a notorious variety of sources of
inspiration establishes the foundations of new algorithms
each year. These new biologically inspired models often
promote subsequent works in the previous group.

– Applications to specific real-parameter problemsPropos-
als in previous groups are sometimes applied to address
specific problems, such as THz quantitative analysis (Li
2015). We shall mention that in some cases, they include
specific improvements that might be analysed as cases of
the first group.

– Others Finally, other works do not fit well in the groups
above because they are theoretical studies of previously
approaches or adaptations to discrete combinatorial prob-
lems, among others.

Figure1 shows the cumulative number of publications
of some of the most important metaheuristic families, all
together on the left and separated on the right, for real-
parameter optimisation. These results were obtained from
Scopus using queries of the form:

(“real-parameter optimisation” OR
“global optimisation”
OR “continuous optimisation”) AND
(“<family name>”).

Though these queries inevitably retrieve false positive docu-
ments, the results show the following significant trends:

– The number of publications of evolutionary algorithms
and nature-inspired algorithms for real-parameter opti-
misation has increased noticeably in the last years.

– The speed at which the number of publications of each
family increases substantially vary from one another. At
the extremes, we may point out the rapid increase (steep-
est slopes) of publications in PSO, DE, ACO, and ABC
families and the slower one (moderate slopes) of ES and
EP. Between these extremes, we find BFO, HS, DE, and
GA, although DE and GA records are sustained by a sig-
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nificantly higher and regular amount of publications per
year.

3 Benchmarks for research on real-coding
optimisation

Several benchmarks have been proposed for real-coding
optimisation since 2005. Though some attempts have been
published in journal articles (Addis and Locatelli 2007;
Jamil and Yang 2013; Jamil et al. 2013; Omidvar et al.
2015; Qu et al. 2016; Rönkkönen et al. 2011), the most
popular ones have been presented for special sessions on
real-coding optimisation in international congresses, such
as the IEEE Congress on Evolutionary Computation (CEC)
or the Genetic and Evolutionary Computation Conference
(GECCO), called Black-Box Optimisation Benchmarking
(BBOB). Both are popular, and they have evolved, incor-
porating different and interesting characteristics, according
to the contribution of several authors:

– In the CEC competitions, all the functions were initially
addressed for 10, 30, and 50 variables, focussing in the
optimisation of functions with higher dimensionality in
subsequent years. On the other hand, the BBOB bench-
mark set has functions with different dimensionalities,
from two to higher dimensions (but always lower than
those in the CEC competitions).

– While the CEC benchmarks have few functions with
noise, BBOB emphasised the relevance of noise treat-
ment from the first year, presenting two sets of functions:
noiseless and noisy ones.

– The characteristics of the functions are very different, as
was shown in Garden and Engelbrecht (2014). For exam-
ple, contrary to the BBOB functions, several of CECones
are composed by similar subfunctions, so algorithms that
perform well on these fewer subfunctions may probably
get good results on this benchmark. This is in line with
the fact that the functions of CEC share more similari-
ties among themselves than those of the BBOB (Garden
and Engelbrecht 2014). On the other hand and contrary
to the CEC functions, the BBOB ones emphasise ill-
conditioningwith lowandhigh gradients, somethods that
apply a type of hill-climbing process might be expected
to prosper better than others.

– The analyses on the CEC benchmarks are usually carried
out on each function, or group of functions with similar
features, separately. This helps researchers to extract con-
clusions connecting the performance of the algorithms
with the features of the functions. On the other hand in
BBOB, results are usually compared by means of cumu-
lative distributions of the necessary runtime to achieve a
certain maximal error. This helps researchers to provide

general conclusions on the general performance of the
methods.

More information about the CEC benchmarks for real-
coding optimisation can be obtained in Liang et al. (2005)
and thewebpage of P.N. Suganthan.1 More information about
theBBOBbenchmark can be obtained inHansen et al. (2016)
and the official website.2

To carry out studies on new algorithms for real-parameter
optimisation, it is advisable that researchers follow the most
recent version of one of these benchmarks and comparison
methodologies. The selection of one or the other depends
on the aspects the researcher seeks to analyse, although
real-world problems often have more variables than those
considered in some of the BBOB functions. This way, results
can be directly compared with those of previous and recog-
nised approaches, such as state-of-the-art ones.

4 The progress: significant contributions and their
comparative analysis’ weaknesses

Here, we analyse how the increment in the number of
publications might have pushed forward the real-parameter
optimisation field in the last decade. To carry out this goal,
we analyse five algorithms published in the most promi-
nent journal of the field, IEEE Transactions on Evolutionary
Computation, between 2009 and 2011, around 5years after
the CEC 2005 competition: SADE (2009) (Qin et al. 2009),
JADE (2009) (Zhang and Sanderson 2009), DEGL (2009)
(Das et al. 2009), Frank-PSO (2009) (Montes de Oca et al.
2009), and OLPSO (2011) (Zhan et al. 2011).

In Sect. 4.1, we compare previous algorithms against
which was considered the state-of-the-art in 2005, IPOP-
CMAES (Auger and Hansen 2005a) and under the empirical
framework defined at theCEC2005 competition. In Sect. 4.2,
we examine the comparisons carried out in their respective
publications.

4.1 Performance analysis

We have used the benchmark functions, dimensions, and
stopping condition proposed at the CEC 2005 competi-
tion to compare the aforementioned methods. Though other
methodologies have been proposed, they did not appear until
2009 (GECCO-BBOB’09; CEC06-09 were focused on other
aspects, such as constraints, multi-objective…). Thus, the
CEC 2005 specifications were the clear framework reference
at the time the considered approaches were being conceived,

1 http://www.ntu.edu.sg/home/epnsugan/index_files/cec-benchmarkin
g.htm.
2 http://coco.gforge.inria.fr/.
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Table 1 Wilcoxon results on the CEC 2005 functions with D = 10

IPOP-CMAES vs. R+ R− p value

Frank-PSO 278 22 6.39e−5

OLPSO 310 15 8.166e−6

SADE 263 37 6.498e−4

DEGL 325 0 5.960e−8

JADE 298 27 7.498e−5

Table 2 Wilcoxon results on the CEC 2005 functions with D = 30

IPOP-CMAES vs. R+ R− p value

Frank-PSO 286.5 38.5 4.03e−4

OLPSO 325 0 5.96e−8

SADE 217 83 0.0564

DEGL 277 48 0.0013

JADE 216.5 108.5 0.1524

Table 3 Wilcoxon results on the CEC 2005 functions with D = 50

IPOP-CMAES vs. R+ R− p value

Frank-PSO 276 24 9.084e−5

OLPSO 281 44 8.082e−4

SADE 205 120 0.2457

DEGL 276 49 0.0015

JADE 217 108 0.148

and the most straightforward way to analyse their perfor-
mance against those of the state-of-the-art ones. Despite
of this, some of these works considered a set of functions
appearing in previous publications and some others partially
followed the CEC 2005 specifications, but none used the full
benchmark or a more recent one.

Wilcoxon’smatched-pairs signed-ranks test (Demsar 2006;
Wilcoxon 1945) was applied to compare these algorithms
over all the functions. This test computes the performance
differences of two algorithms and ranks them according
to their magnitudes. Rankings are subsequently aggregated
according to their sign, R+ for IPOP-CMAES and R− for
the other method. Finally, we compute the probability that
supports the null-hypothesis, the p value, which assumes that
both algorithms’ performances are equivalent. Tables1, 2 and
3 show the results of the Wilcoxon test for each dimension.

According to the results in Tables1, 2 and 3, we observe
that none of the analysed algorithms outperforms IPOP-
CMAES. On the contrary, IPOP-CMAES often provides
statistically better results, in general, even when it was pub-
lished four or six years before.

4.2 Who compares with whom?

In this section, we take previous algorithms, Frank-PSO,
OLPSO, SADE, DEGL, and JADE, and analyse which
other methods they were compared with. Figure2 depicts
that comparison social network. Nodes are algorithms, and
arcs represent the comparisons that were carried out in
their respective publications. Nodes are vertically organised
according to their respective publication year (see Table4),
so the most recent methods are located near the bottom of
the figure and arcs always go downward. Year 2005 is high-
lighted to differentiate those methods published before the
CEC 2005 competition and those published afterwards, for
which competingmethods are included in the graph, too. The
following facts can be observed from Fig. 2:

– IPOP-CMAES is hardly considered in subsequent exper-
iments, even though it was declared the state-of-the-art
method for real-parameter optimisation in 2005. The
exceptions are NSDE and DEGL. However, NSDE is
not clearly better than IPOP-CMAES from the results
in Yang et al. (2007): 11 functions with better results, 9
functionswithworse ones, and 5 functionswithout statis-
tical performance differences, and the functions used to
compare DEGL and IPOP-CMAES in Das et al. (2009)
are not those of the CEC 2005 competition. This con-
tradiction with our results shows that different empirical
frameworks, functions or problems, may favour the gen-
eration of different results, and it raises some issues with
no free lunch theorems commented in Sect. 6. Finally, in
case the transitive relation was assumed, which would
be a very optimistic hypothesis, we could consider that
there is a comparison relation between IPOP-CMAES
and JADE and OLPSO, though we observed in Sect. 4.1
that IPOP-CMAES outperformed them.
We shall comment that IPOP-CMAES was beaten by
BIPOP-CMAES (Hansen 2009) at the GECCO in 2009.
But this new version is not considered in OLPSO pub-
lication either, which is the only one after 2009 among
those analysed.

– The average number of algorithms considered for com-
parisons purposes from2005onwards is 7, beingOLPSO,
OPSO, and NSDE extreme cases with 13, 13, and 2 algo-
rithms considered, respectively.

– Differences between the year of publication of the algo-
rithms compared may vary significantly. Considering the
minimal difference, just one algorithm is comparedwith a
method published the year before, jDE, and the maximal
min-difference is 6 (OPSO). Recall that the graph does
not show comparison relations for algorithms published
before 2005.
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Fig. 2 Algorithms comparison social network

– Very interestingly, we observe that there appear some
communities where algorithms are compared among
themselves, but share few relations with algorithms from
other communities. Particularly, notice that the graph can
be divided into two components, separated by a dashed
line, where just three algorithms, FEP, JADE, and CPSO-
H, establish connections with algorithms from the other
community, the two formers with OLPSO and the latter
with DEGL. In addition, two of these three relations con-
nect algorithms with five or more years difference of date
of publication.

To conclude, we may point out the significant failure
of many publications that do not compare their respective
proposals with the state-of-the-art of the real-parameter opti-
misation discipline, even when it appeared around five years
before. In our opinion, that is a weakness scientific studies
should avoid, given that real progress should be measured
with regard to the current state-of-the-art of the field.

5 Ten years after the CEC 2005 competition

There is a very recent publication in the IEEE Trans. on Evo-
lutionary Computation journal, 10years after the CEC 2005
competition,where authors propose a new crossover operator
for DE algorithms and show its advantages when applied in
two classic methods and three advanced ones (Guo and Yang
2015): DE/rand/1/eig, DE/best/1/eig, DEGL/eig, JADE/eig,
and SADE/eig. Each of these new versions of the algorithm
was proved to get better results than its corresponding origi-
nal method.

Hereafter, we analyse if any of these recent algorithms
may outperform IPOP-CMAES in the context of the CEC
2005 competition. We also include SHADE (Tanabe and
Fukunaga 2013), which, though it has not been published
in any journal, to our knowledge, was the best non-CMAES-
based approach in theCEC2013 real-parameter competition.
Tables5, 6 and 7 compare thesemethodswith IPOP-CMAES
according to the guidelines commented in Sect. 4.

As in Sect. 4, we observe that these recent versions of
previous algorithms can not clearly surpass IPOP-CMAES,
in general, in the context of the CEC 2005 competition. On
the contrary, IPOP-CMAES often obtains statistically bet-
ter results. The only exception is SHADE, which is the sole
approach, among those considered in this study, that attains
a very slightly superior performance than IPOP-CMAES in
the context with the highest number of dimensions (R− is
greater than R+ in Table7). Although the analysis does
not reveal statistical differences among these results, we
observed that SHADE reaches better outcomes in functions
f4, f9, f12, f13, f14, f17, f21, f23, and f24.

6 Discussion: What are researchers doing in the
experimental analysis?

A group of potential problems arise from the question ’What
are researchers doing in the experimental analysis?’: the
consequences of comparing against algorithms of the same
community and ignoring the current state-of-the-art; how
the diversity of proposals complicates determining the line
of real improvements, or even delays the progress of the
research field; the difficulties to identify the current state-
of-the-art; whether there is a example of a clear and real
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Table 4 Year and reference of nodes in Graph 2

Name Year References

OEGA 1989 Goldberg (1989)

CEP 1993 Bäck and Schwefel (1993)

TEGA 1993 Eshelman and Schaffer (1993)

BLXGA 1993 Eshelman and Schaffer (1993)

UEGA 1993 Eshelman and Schaffer (1993)

SAGA 1994 Esbensen and Mazumder (1994)

AGA 1994 Srinivas and Patnaik (1994)

Stoc-GA 1995 KrishnaKumar et al. (1995)

GA-LS 1995 KrishnaKumar et al. (1995)

SimpleGA 1995 KrishnaKumar et al. (1995)

Sens-GA 1995 KrishnaKumar et al. (1995)

PSO 1995 Kennedy and Eberhart (1995)

DE 1997 Storn and Price (1997)

DecIW-PSO 1998 Shi and Eberhart (1998a), Shi and
Eberhart (1998b), Shi and Eberhart
(1999)

IFEP 1999 Yao et al. (1999)

FEP 1999 Yao et al. (1999)

PSO-lbest 1999 Keenedy (1999)

G3 2001 Deb et al. (2001)

OGA/Q 2001 Leung and Wang (2001)

StochPSO 2001 Eberhart and Shi (2001)

LPSO 2002 Kennedy and Mendes (2002)

ConstPSO 2002 Clerc and Kennedy (2002)

PSO 2003 Trelea (2003)

ADE 2003 Zaharie (2003)

FDR-PSO 2003 Peram et al. (2003)

IncIW-PSO 2003 Zheng et al. (2003a), Zheng et al.
(2003b)

BestLEP 2004 Lee and Yao (2004)

AdapLEP 2004 Lee and Yao (2004)

MetaMA 2004 Ong and Keane (2004)

CPSO-H 2004 Bergh and Engelbrecht (2004)

EDA/L 2004 Zhang et al. (2004)

UPSO 2004 Parsopoulos and Vrahatis (2004)

FIPS 2004 Mendes et al. (2004)

HPSOTVAC 2004 Ratnaweera et al. (2004)

SADE 2005 Qin et al. (2009)

IPOP-CMAES 2005 Auger and Hansen (2005a)

SDE 2005 Omran et al. (2005)

FADE 2005 Liu and Lampinen (2005)

CMAES 2005 Auger and Hanse (2005b)

DMS-PSO 2005 Liang and Suganthan (2005)

AHPSO 2005 Janson and Middendorf (2005)

jDE 2006 Brest et al. (2006)

CLPSO 2006 Liang et al. (2006)

NSDE 2007 Yang et al. (2007)

Table 4 continued

Name Year References

SPSO 2007 Particle swarm Central (2007)

OPSO 2008 Ho et al. (2008)

JADE 2009 Zhang and Sanderson (2009)

SADE 2009 Qin et al. (2009)

DEGL 2009 Das et al. (2009)

Frank-PSO 2009 Montes de Oca et al. (2009)

OLPSO 2011 Zhan et al. (2011)

Table 5 Wilcoxon results on the CEC 2005 functions with D = 10

IPOP-CMAES vs. R+ R− p value

DE/rand/1/eig 312.0 13.0 0.000054

DE/best/1/eig 322.0 3.0 0.000017

DEGL/eig 299.0 26.0 0.000228

JADE/eig 272.0 28.0 0.000465

SADE/eig 263.0 37.0 0.001183

SHADE 221 104 0.04679

Table 6 Wilcoxon results on the CEC 2005 functions with D = 30

IPOP-CMAES vs. R+ R− p value

DE/rand/1/eig 317.0 8.0 0.00003

DE/best/1/eig 278.0 47.0 0.001801

DEGL/eig 239.0 86.0 0.038281

JADE/eig 195.0 130.0 0.374579

SADE/eig 242.0 83.0 0.031354

SHADE 184.5 140.5 0.5383

Table 7 Wilcoxon results on the CEC 2005 functions with D = 50

IPOP-CMAES vs. R+ R− p value

DE/rand/1/eig 303.0 22.0 0.000148

DE/best/1/eig 278.0 47.0 0.001801

DEGL/eig 215.0 110.0 0.153849

JADE/eig 227.0 98.0 0.0803

SADE/eig 210.0 115.0 0.196519

SHADE 134.5 190.5 0.4938

evolution in any community; and open questions about the
convenience of empirical benchmarks. We discuss all these
subjects in more detail below.

The lack of a comparison with state-of-the-art algorithms
Examples given in Sects. 4 and 5, representative for a large
number of articles that have been published, show that a
significant portion of the publications on real-parameter opti-
misation in the last decade can not outperform IPOP-CMAES
(or BIPOP-CMAES), at least in the empirical context defined
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by the CEC 2005 competition. But the striking fact is that
most of them do not consider neither IPOP-CMAES or
BIPOP-CMAES as a competitor in their experiments.

The papers have the tendency of comparing among pro-
posals of the same community The analysis of the graph
illustrating the social network of comparisons in Sect. 4.2
suggests that the emergence of communities associated to
specific metaheuristic families, which compare new pro-
posals with algorithms in the same community, and less
frequently with methods from other communities, may pro-
mote the growth of their respective number of publications
and not necessarily the real progress on the real-parameter
optimisation field. Authors might find it easier, and therefore
purposely choose , to attain certain progress within these par-
ticular communities, instead of in the general area.

The diversity of proposals complicates determining the
line of real improvements Though diversity has a positive
effect on the field, since it promotes the conception of new
ideas and the complimentary contributionwith other research
lines, researchers should be aware that it may have unde-
sirable consequences on scientific research and engineering
applications, too. Particularly, since the literature becomes
populated with too many alternatives with unclear exclusive
advantages, it is difficult for newcomers to identify the best
ones. We have shown that choosing the most recently pub-
lished real-parameter optimisation alternative from the most
important journal of the field, might not be sufficient to get
an idea of the current state-of-the-art in the field. As an exam-
ple, themost recent publication, among those analysed in this
work, does not cite the latest andmost relevant CMAES vari-
ants for general real-parameter optimisation, IPOP-CMAES
and/or BIPOP-CMAES.

Excessive diversity in proposals without a clear objec-
tive can even delay the progress in the field In our opinion,
although diversity is clearly positive, researchers should not
avoid the main goal, and invest their efforts in attaining a
clear progress at the frontier of the current state-of-the-art
in the field. New algorithms, and specially those leading
the inspiration on a new metaphor, might not be better than
the state-of-the-art for the general context, but their specific
benefits over the state-of-the-art should be clearly stated.
Therefore, the comparison should be mandatory. Diversity
is good if concrete objectives of achieving new goals are
targeted.

It is important, although difficult sometimes, to identify
the current state-of-the-art for comparison purposes A dif-
ficult issue is to distinguish the current state-of-the-art of
the field. In our work, we had expected that new proposals
published in relevant journals could have improved IPOP-
CMAES, which was considered the best algorithm in 2005.
BIPOP-CMAES (Hansen 2009) is one of those algorithms,
and there are others with similar results, but without statisti-
cal differences. Even so, the good results of BIPOP-CMAES

in the CEC benchmark and BBOB do not imply that this
algorithm be the best one. It has been observed that it does
not scale well with the dimensionality, even though tuning
its parameters (Liao et al. 2015). Another algorithm that can
be considered state-of-the-art for medium dimensionalities
is SHADE (Tanabe and Fukunaga 2013) and its extensions,
commented below.

Is there any example of clear and real evolution in any
community? L-SHADE JADE (Zhang and Sanderson 2009)
was proposed in 2009 as a DEwith a newmutation operation
and an adaptive mechanism that controls two of its parame-
ters, crossover rate (CR) and weighting factor (F), according
to previous improvements. SHADE (Tanabe and Fukunaga
2013) was proposed four years later, whose main difference
with JADE was the usage of several possible values in the
adaptive mechanism. Then, L-SHADE (Tanabe and Fuku-
naga 2014) extended SHADE in 2014. While the population
size was fixed in SHADE, L-SHADE reduced it during the
search, to increase exploitation over the best sampled regions
of the search space.

In each publication, the new proposal was compared
against advanced and modern DEs, including the previous
one and showing statistically better performance. This is a
good example of evolution, leading eventually to an algo-
rithm that shows to be robust on several benchmarks. In
Table7, we observed that SHADE had a good performance,
and it was fourth in the CEC’2013 competition. In addition,
not only L-SHADE was the winner in the CEC’2014 com-
petition, but the winners of subsequent competitions were
versions of it (SPS-L-SHADE-EIG (Guo et al. 2015) in 2015
and LSHADE_EpSin (Awad et al. 2016) in 2016 with the
CEC’2014 benchmark). Thus, this can be seen as an excel-
lent example of a clean evolution in a certain community,
although these algorithms should also have been compared
with competitive algorithms from other communities.

There are still many open questions about the convenience
of current benchmarks We shall mention that the CEC 2005
functions and empirical frameworks might not be the most
appropriate context for comparing real-parameter optimisa-
tion approaches. Some authors have criticised its artificial
nature (Piotrowski 2015), and efforts are regularly invested
in designing alternatives in journal publications (Addis and
Locatelli 2007; Jamil and Yang 2013; Jamil et al. 2013;
Omidvar et al. 2015; Qu et al. 2016; Rönkkönen et al.
2011) and special sessions in conferences (Sect. 3). Besides,
given the computational bound of algorithms addressing real-
parameter optimisation in a finite representation manner,
we should not expect finding algorithms with superior gen-
eral performances for artificially designed problems. This
is a consequence of the no free lunch theorems (Wolpert
and Macready 1997). Instead, benchmarks that represent
the characteristics of problems with practical interest in the
real world, where no free lunch theorems improbably hold
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(García-Martínez et al. 2012), would be more advisable. In
any case, this argument should not be used for avoiding the
comparison with the widely accepted state-of-the-art method
for real-parameter optimisation at the time.

7 Conclusions

In this work, we have examined the research on real-
parameter optimisation since the CEC 2005 competition.We
have shown that the exponential growth in the number of pub-
lications has not necessarily contributed to the progress in the
field. A comparative analysis of selected publications with
regard to the state-of-the-art approach in 2005 has exhib-
ited that they can not attain the good results of this latter.
But more intriguing, we have observed that they were not
compared with the state-of-the-art in the respective studies,
despite it was published several years before. Instead, many
publications limit their experiments to the comparison with
some approaches of the same family, and exceptionally con-
sider methods from other communities.

We advocate that the comparison with the state-of-the-art
should always be mandatory, particularly in the case of real-
parameter optimisation. This is necessary to promote a real
progress in the field, which becomes blurred for outsiders
otherwise.

Finally, Sect. 3 has provided a snapshot of other bench-
marks proposed after the CEC 2005 competition, such as
those of the CEC or BBOB series (Auger et al. 2012; Pošic
et al. 2012; Pošic and Kubalík 2012). We consider the com-
parative analysis under these posterior scenarios for future
works.
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