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a b s t r a c t

Real-coded evolutionary algorithms have solved numerous real-world optimization problems. In this
work, we aim to analyze the behavior and robustness of several real-coded evolutionary algorithms
from the state of the art in a challenging real world optimization problem. This optimization problem
consists on the superimposition of 3D and 2D images of skeletal structures (i.e. bones and cavities)
based on their silhouette. This task is required for the automation of a forensic identification technique
known as comparative radiography, via the generation of the best projection of the 3D image with
respect to the 2D image. This superimposition problem was tackled in a recent proposal using an
evolutionary 3D–2D image registration method based on differential evolution. However, the results
obtained were insufficient for its use in real scenarios, due to: (1) the complexity and multi-modality
of search space, despite the reduced number of parameters to be optimized (7 in its simple version and
9 in a more complex one, proposed in this work); and (2) the high computational cost of generating
and evaluating a superimposition. Particularly, we have performed a rigorous comparative study of
six state-of-the-art real-coded evolutionary algorithms (DE, L-SHADE, CMA-ES, BIPOP-CMA-ES, CRO-SL,
and MVMO-SH) with synthetic images of three forensic anatomical structures (frontal sinuses, clavicles,
and patellae), showing that the best results are always obtained by MVMO-SH in terms of precision,
robustness and computational cost. Furthermore, we have validated the quality of the superimpositions
obtained by the evolutionary image registration method using MVMO-SH with real images of frontal
sinuses. We have performed the comparison of 50 head radiographs and 50 3D images, resulting in
2,500 cross-comparisons (50 positive and 2,450 negatives). The obtained results are promising since
the superimpositions obtained allowed us to filter out 88% of the possible candidates with 0 error rate
in a fully automatic manner, showing the high quality of the superimposition obtained.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Evolutionary algorithms (EAs) [1,2] are global optimization
echniques inspired by biological evolution for solving optimiza-
ion problems. These algorithms have been successfully applied in
any real-world optimization problems with complex optimiza-

ion functions [3] because they are able to obtain competitive
esults without requiring specific features to the problem to
ptimize, as well as they can tackle non-linear, non-differentiable,
on-convex and multi-modal functions.
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Among real-world problems, there are problems especially
challenging since they require a significant amount of compu-
tational resources and time to evaluate just a single candidate
solution. The solution procedure for these problems is called ex-
pensive optimization [4]. In these frameworks, the optimization
algorithm must provide accurate solutions with a very reduced
number of evaluations. Under these constraints the majority of
EAs are not suitable because they need a significant higher num-
ber of evaluations to obtain a competitive solution. In recent
years, numerous research works [5,6] and competitions [7,8]
have studied fast convergence EAs, which have obtained a good

trade-off between quality and computational time.
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In this work, we tackle one of these complex and computa-
tionally expensive optimization problems, required for the au-
tomation of a forensic identification technique known as com-
parative radiography (CR) [9]. It involves the superimposition of
ante-mortem (AM) radiographs and post-mortem (PM) 3D images
of an skeletal structure (i.e. bones and cavities) based on its
morphological silhouette (see Section 3 for further details). This
superimposition task can be modeled as an image registration
(IR) problem [10,11], where the best 2D projection of the PM
3D image, with respect to the AM 2D image, is searched by
iteratively optimizing the parameters of the projective transfor-
mation. The superimposition problem is complex (see Section 3
for further details). Most 3D–2D IR approaches are designed for
a controllable set-up, which is a common situation in many
medical domains [11–13]. However, these assumptions are not
suitable for CR since the AM radiograph is generally taken under
unknown conditions (neither the acquisition set up, the pose nor
the radiograph device are known in advance) as well as to the
presence of occlusions in the skeletal structures to be registered.
Therefore, the search for the optimal solution in the CR scenario
is more challenging, despite the low number of parameters to be
optimized (7 with a simple perspective transformation and 9 with
a more complex one, see Section 4.1 for further details).

In [14], we studied both different numerical optimization
methods and a simple real-coded evolutionary algorithm (RCEA),
differential evolution (DE), to tackle this complex real-parameter
IR optimization problem without any assumption about the initial
perspective projection parameters (i.e. optimization parameters).
While numerical methods’ accuracy proved to be insufficient,
DE showed a good performance, highlighting the potential of
evolutionary IR approaches [15]. However, the robustness of the
method was insufficient (due to the complexity of the search
space landscape, see Section 4.3 for further details) and com-
putationally expensive (due to the high computational cost of
generating and evaluating a particular projection, see Section 4.1
for further details). Therefore, we aim to analyze the performance
of several high performance RCEAs [2], with particular focus
on those tested in complex real-world problems as well as in
expensive optimization competitions from the IEEE Congress on
Evolutionary Computation (CEC), in order to determine the influ-
ence of the considered RCEA to improve the accuracy, robustness,
and time required to obtain a good superposition for the CR
problem.

The goal of this paper is thus two-fold. Firstly, to study the
performance, robustness and convergence speed of several state-
of-the-art EAs in the superimposition problem using synthetic
images of three skeletal structures (clavicles [16], patellae [17],
and frontal sinuses [18]). These three skeletal structures have
been utilized in the CR literature for forensic identification, as
well as in the state-of-the-art evolutionary image registration
for CR [14] allowing us a fair comparison. Secondly, to study if
the quality of the superimpositions obtained by the best RCEA
in real images of frontal sinuses is sufficient for identification
and/or sort listing using the identification methodology proposed
in [14]. With this aim, we have also proposed and validated a
new projective transformation that can reproduce the perspective
distortion of any kind of radiograph.

This paper is structured as follows. Section 2 briefly reviews
the current state of the art in evolutionary IR and RCEAs, and jus-
tifies the choice of the algorithms studied in this work. Section 3
briefly reviews the CR technique and related works. Section 4
describes the proposed IR methodology to tackle the superimpo-
sition problem (including a new projective transformation) and
the study of the complexity of the search space of the super-
imposition problem. Section 5 presents experiments and results.

Section 6 details the conclusions. T

2

2. Background and justification

The optimization problems underlying IR methods based on
the direct search of the real-coded transformation parameters are
complex. This is particularly true in real-world problems as CR,
as stated in Section 1. RCEAs [1,19] have improved the results
obtained by traditional methods in many IR problems [20–22]. In
these works several studies are performed benchmarking tradi-
tional and evolutionary IR methods. Traditional IR methods have
shown to be insufficient to tackle complex IR problems, especially
those where an initial solution close to the ground truth (GT)
one is not known, ending in non accurate local minimum. As a
consequence, the interest on evolutionary IR approaches based
on RCEAs have grown over the last two decades [15,23,24], with
575 works published until 2020.1

Among the classical RCEAs, DE [25] and Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [26] have shown a great
behavior on global numerical optimization problems. They have
performed extremely well in those tackled in the competitions
handled within the IEEE CEC [27,28], making them useful for
many real-world problems. In particular, DE is widely extended
as a result of its reduced number of parameters to fine tune [29],
its robustness, and its fast convergence. DE has demonstrated an
excellent performance on many IR problems [30,31] and specifi-
cally with the only proposal dealing with the CR problem from
an IR perspective [14]. Furthermore, several self-adaptive DE
approaches proposed in the literature yielded better results than
the classical DE in many different problems [29]. Among them,
a self-adaptive DE approach with a linear reduction of popu-
lation and an external memory of elite solutions (to enforce
diversity in the mutation) called L-SHADE [32] has shown a very
significant accuracy. L-SHADE ranked on the first positions at
the IEEE CEC2014 competition on real-parameter single objective
optimization [32]. In this competition, L-SHADE’s results outper-
formed other state-of-the-art DE variants and are comparable
to the state-of-the-art CMA-ES variants. However, some of the
recent publications [33,34] have shown that DE and its variants
face significant difficulties on non linearly separable functions
and can be outperformed by CMA-ES. The latter method has
advantageous convergence properties and performs well with
small populations, which makes it even more promising when
it comes to improve the computational time. In addition, it has
already shown a good performance in some IR problems [21].
Furthermore, several modern CMA-ES variations have yielded
better results than the classical CMA-ES in many different prob-
lems [28]. Among them, a restart CMA-ES with two interlaced
restart strategies (one with an increasing population size and
another with varying small population size) called BI-population-
CMAES (BIPOP-CMA-ES) [35,36] has showed a very significant
behavior outperforming the classic CMA-ES and other modern
CMA-ES versions in the BBOB-2009 function testbed [35,36].

Recently, a powerful and versatile RCEA called Coral Reef Op-
timization with substrate layers (CRO-SL) was proposed in [37].
CRO-SL is inspired on the formation and reproduction of coral
reefs. CRO-SL simulates the different phases that corals undergo
during their lives, such as reproduction, larval settlement, or fight
for a space in the reef. Furthermore, CRO-SL simulates the sub-
strate layers in coral reefs. Substrate layers affect to the growth
and development of the coral. These layers are modeled by using

1 Search performed the 2nd June 2020 using the keywords (TITLE-ABS-KEY
‘image registration’’) AND (TITLE-ABS-KEY (‘‘evolutionary algorithm’’) OR TITLE-
BS-KEY (‘‘genetic algorithm’’) OR TITLE-ABS-KEY (‘‘evolutionary algorithm’’) OR
ITLE-ABS-KEY (‘‘evolutionary’’) OR TITLE-ABS-KEY (‘‘metaheuristic’’) OR TITLE-
BS-KEY (‘‘metaheuristics’’) OR TITLE-ABS-KEY (‘‘stochastic optimization’’) OR
ITLE-ABS-KEY (‘‘stochastic search’’) OR TITLE-ABS-KEY (‘‘heuristic search’’)).
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ifferent exploration operators (e.g. DE search, Gaussian muta-
ion, etc.) on different regions of the coral reef. Their simulation
ombines very different exploration operators within the com-
etitive evolution rules of the coral reefs, providing a competitive
rid-based co-evolutionary strategy to CRO-SL in just one popula-
ion. Lastly, CRO-SL also improves the best solution using a local
earch (LS) method with a limited number of evaluations, making
t become a powerful memetic algorithm [38].

There is a lot of controversy with the proposal of new bio-
nspired algorithms [39] and their justification must be based on
heir actual performance beyond the metaphor. CRO-SL presents
high novelty since it provides an excellent exploration-exploita-
ion trade-off and robustness as results of the combination of
ll the previous mentioned features, specially for its competitive
nvironment and the incorporation of multiple search patterns.
n addition, CRO-SL usually converges quickly to high quality
olutions even in multi-modal search spaces, being suitable for
omputationally expensive optimization problems both satisfying
uality and computation time constraints. However, its perfor-
ance varies significantly depending on the CRO’s parameters
nd the different substrates included in the simulated reef. In
articular, CRO-SL has outperformed both classical and state-
f-the-art evolutionary IR methods in many 3D–3D medical IR
roblems [22], making it a really promising RCEA for CR with the
nly drawback of the complex tuning of its parameters.
The best RCEA for solving computationally expensive opti-

ization problems according to the IEEE CEC competitions is the
ean–variance mapping optimization (MVMO) optimizer [40].
VMO has ranked in top positions in expensive optimization
ompetitions, such as IEEE CEC 2013 [41], 2014 [7], 2015 [8],
016 [42], and 2018 [43], showing an excellent performance
nd robustness. MVMO is a novel single-individual RCEA that
onsiders a best solution archive, but its novelty lies within a
ew mapping function employed for mutating the offspring. This
apping function is based on the mean and variance of the best
olution archive. MVMO has been numerically compared to other
nhanced RCEAs showing a better performance in many prob-
ems, especially in terms of convergence speed. For instance, a
owerful variant called MVMO-SH (the ‘‘S’’ refers to the offspring
pproach based on single parent and multi-parent crossover, and
he ‘‘H’’ for the hybridization of MVMO with the use of LS)
mproves the global search performance of the classical MVMO.
VMO-SH considers a set of solutions (i.e. particles of a swarm)

nstead of just one, each having its own best solution archive and
apping function, and allows the exchange of information and
ynamic reduction of the swarm size.
Thus, a rigorous comparison is needed to determine the influ-

nce of the RCEA in the proposed framework to automate the CR
roblem. Motivated by the analysis of the literature, the RCEAs
o be studied in this paper are as follows: (1) DE, the RCEA used
n state-of-the-art CR method [14]; (2) L-SHADE, one of the best
elf-adaptive variants of DE; (3) CMA-ES, a classic RCEA that has
utperformed DE in many problems; (4) BIPOP-CMAES, one of
he best modern variation of CMA-ES; (5) CRO-SL, a powerful
CEA that is the state-of-the-art method in 3D–3D IR problems
ut is complex to fine tune; and (6) MVMO-SH, a novel RCEA
hat has obtained groundbreaking results in many prestigious
ompetitions such as those held within IEEE CEC, especially in
ostly optimization problems.

. Comparative radiography basics and related works

CR consists of the comparison of skeletal structures (i.e. bones
nd cavities) in AM and PM radiographs to determinate the
dentity of a deceased (see Fig. 1). Depending on the number
f available skeletal structures and their uniqueness, CR can be
3

utilized either for positive identification or candidate short list-
ing [44]. In the CR technique, we distinguished three consecutive
tasks [14]:

1. Process the PM material (cleaning, stabilizing the skeletal
remains, and scanning the ‘‘clean’’ bone with a laser range
scanner or performing computed tomography (CT) scan)
and ask the corresponding authorities for AM data of all
the candidates. Image enhancement and/or segmentation.

2. Produce a PM radiograph that simulates the scope and
projection of each of the AM radiographs.

3. Based on the superimpositions achieved, the identification
decision is made by comparing the consistencies and in-
consistencies in the bone or cavity morphology, together
with other elements such as the quality of the AM radio-
graph, the visibility of bone or cavity, etc. Notice that the
use of computers in this stage aims to support the final
identification decision that will always be made by the
forensic anthropologist.

Traditionally, the analyst manually performs the superimpo-
sition through a trial and error process, based only on its skills
and experience. Thus, CR is time consuming and its results are
subjective, hardly reproducible and suffer from errors related to
the analyst’s fatigue reducing the applicability of the CR tech-
nique. All these factors reduce the utility of the CR method and
thus (semi) automatic methods to assist forensic experts in their
identification endeavour are required.

The superimposition process can be automatized using a 3D–
2D image registration (IR) approach [10,45]. Particularly, only IR
methods based on features, such as segmentations of silhouettes,
are fitting for CR, since intensities can significantly vary between
the AM and PM images [46,47]. IR methods are based on an
optimization process that searches for the best match between
the silhouette of a skeletal structure in a AM radiograph and a 2D
projection of the 3D PM skeletal structure (either obtained via the
segmentation of a PM Computed Tomography (CT) or digitized
with a 3D scanner). Most 3D–2D IR approaches are designed
for a controllable set-up, which is a common situation in many
medical domains. They can assume an initial pose nearby the GT
and that the parameters associated with perspective distortions
are known (i.e. an error of around 20 mm in translation and
20◦ in rotation in [11], a maximum target registration error [48]
of 16 mm in [12], etc.). Feldman et al. [49] proposed a 3D–
2D IR method based on silhouettes without any initialization
assumptions by using free-form curves and surfaces, but still
assuming the perspective distortions’ parameters. However, the
AM radiograph was taken in an uncontrollable set-up, where pose
and radiograph device are unknown, and therefore none of these
assumptions are appropriate for CR.

These drawbacks have been overcome by IR methods based
on RCEAs, a.k.a. evolutionary IR methods, in several IR prob-
lems [15,23,24]. RCEAs are global optimization techniques with a
robust performance, that enables them to tackle complex medical
IR problems. In particular, in [14] Gómez et al. proposed the
first evolutionary 3D–2D IR approach to automatize the super-
imposition process to compare the silhouette of any bone or
cavity without any assumption on the initialization or the main
parameters related to the perspective distortions in radiographs
(i.e. the source to image distance, a.k.a. SID). The approach makes
use of DE [25], a modification of the DICE metric [50] that consid-
ers occlusion regions (which are hard to segment regions either
because of the fuzzy borders of the bone or occlusions caused by
other overlapped structures), and a simple perspective transfor-
mation with 7 parameters: 3 translations; 3 rotations; and the
SID. This method was tested with frontal sinuses, clavicles and
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Fig. 1. The usual procedure utilized by forensic experts for CR-based identification is the following: (1) a biological profile (sex, age, stature, etc.) is obtained based
n the PM remains of the deceased; (2) the candidates that do not match the biological profile are discarded; (3) all the possible AM records and medical images of
he candidates are gathered and pre-processed; (4) the PM remains are superimposed and compared to the AM data through skeletal comparison techniques; and
5) an identification decision is taken based on the results.
ource: Extended version of our previous figure published in [14].
atellae obtaining a promising performance. However, it showed
he following drawbacks: (1) the robustness of the DE algorithm,
specially with clavicles and patellae, that in some runs leaded
o bad superimpositions due to the stochastic nature of DE and
he highly multimodal search space tackled (see [14] and Sec-
ion 4.3 for further details of the landscape analysis); (2) the
arge amount of time required to obtain a superimposition with
E (1800 s on average). This high run time is motivated by the
igh computational cost required by each evaluation (on average,
t takes 0.25 s to obtain projection of 1290 × 1050 pixels in a
tandard computer), uncovering the computationally expensive
ptimization nature of the CR problem as well as the high number
f evaluations required by the optimizer to converge; and (3)
one of the projective projections considered reproduced the
erspective distortion of radiographs where the x-ray generator
as not perpendicular to the image receptor (e.g. in the Water’s
rojection of radiographs of frontal sinuses [9], see Fig. 3).

. Evolutionary image registration for comparative radiogra-
hy

The methodology proposed in this paper is based on [14] and
epicted in Fig. 2. As said, the method proposed in [14] is the only
xisting method for the automation of the superimposition of 3D
nd 2D images for CR. This 3D–2D silhouette-based IR method is
omposed of the five following components:

1. A 3D image and a 2D image of a skeletal structure to be
superimposed. The 3D image is a PM 3D surface model of
the skeletal structure acquired using a 3D surface scanner
or obtained by segmenting a CT. Meanwhile, the 2D image
is the segmented silhouette of the skeletal structure in the
AM radiograph together with its occlusion region (i.e. the
region where the segmentation expert cannot distinguish
among the target structure and other skeletal structures,
organs and/or background).

2. A projective transformation [51], which produces 2D pro-
jections of the 3D image.

3. The expert knowledge that constrains the projective trans-
formation’s parameters. Radiographs are taken with the
body in a known position (posteroanterior, anteroposte-
rior, or lateral) following the radiographs acquisition pro-
tocols [52] with a certain margin of error (see Table 1).

4. A similarity metric, a.k.a. fitness function, that measures
the similarity between the AM silhouette and a 2D projec-
tion. Both in the state-of-the-art work for CR [14] and in
this work, the similarity metric utilized is the Masked DICE

metric [14], which combines the DICE metric [50] with a

4

occlusion region (see Eq. (1)). Masked DICE computes the
overlap of the two silhouettes in the whole image except in
the occlusion region where the information is not reliable.

Masked DICE =
2 · |(A \ M) ∩ (B \ M)|

|A \ M| + |B \ M|
(1)

where A and B are sets of pixels of an object silhouette
(i.e. the AM segmented skeletal structure and a PM pro-
jection of the 3D skeletal structure), and M is the occlusion
region (of the AM radiograph).

5. An optimizer, which searches for the best projective trans-
formation in terms of the similarity metric. The optimizer
starts with a set of perspective transformations, randomly
generated within the ranges of Table 1, that are itera-
tively improved. Notice that the optimizer cannot rely on
an accurate initialization on the perspective transforma-
tion parameters since the radiograph was taken in an un-
controllable set-up and not all the forensic experts and
practitioners have skills on IR.

The five former components are further detailed in [14]. The
main contribution of the current work is in the proposal of a new
projective transformation and the analysis of the optimizers (the
second and fifth components, respectively) that will be detailed
in the following subsections.

4.1. Projective transformation

The projective transformation [51] behind a radiograph image
is, in most of the cases, a simple perspective transformation
obtained using a pinhole camera model [53]. A simple perspective
transformation considers 6 extrinsic parameters (3 translation
and 3 rotations) and 1 intrinsic parameter (focal distance; as-
suming that the rest of intrinsic parameters of a complete per-
spective transformation are known: the principal point is located
in the center of the image, pixels’ aspect ratio is square, and no
skewness). Particularly, in a radiograph, the focal distance is rep-
resented by the source to image receptor distance (SID) [53] (see
Fig. 2). SID is also assumed as known in most works [11] since
they are designed for a controllable set-up but that is not the case
for the CR problem. Although the perspective distortion can be
small in many radiographs because of the large distance between
the x-ray generator and receptor (as in chest radiographs), its
consideration has shown to be crucial in the IR endeavour. This
has been shown in [14], where better results were obtained
using the perspective transformation than the orthographic trans-
formation, despite the more challenging optimization problem

involved.



O. Gómez, O. Ibáñez, A. Valsecchi et al. Applied Soft Computing Journal 97 (2020) 106793

o
t
o
x
S

p
n

r
r
p
d
v
a
a
p
i
s
c
t
o
b

Fig. 2. Scheme of the proposal of 3D–2D IR for CR. Three main interconnected blocks are represented: (Right) the projective transformation to obtain a projection
f the 3D model with 9 parameters: translation (tx , ty , and tz ), rotation (rx , ry , and rz ), and perspective distortions (SID, cx , and cy); (Top left) The similarity metrics
hat compares the PM projection (colored in blue) and the AM segmentation (colored in red) considering an occlusion region (colored in gray); (Bottom left) the
ptimization process to estimate the 9 parameters of the registration transformation that are only weakly limited by the context and expert knowledge from the
-ray acquisition protocol.
ource: Extended version of our previous figure published in [14].
Fig. 3. (Left) Diagram of a frontal sinus radiograph with a posteroanterior view, where the ray between x-ray generator and the center of the image receptor is
erpendicular. (Right) Diagram of a frontal sinus radiograph with a Water’s view, where the ray between x-ray generator and the center of the image receptor is
ot perpendicular.
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However, radiographs acquired with procedures where the
ay that joins the x-ray generator and the center of the image
eceptor is not perpendicular cannot be modeled with a simple
erspective transformation. That is the case of frontal sinuses ra-
iographs taken in one of the acquisition protocols of the Water’s
iew (see Fig. 3 for a graphical example). In these radiographs, the
cquisition protocols [52] establish that the x-ray bean is angled
t β to the center of the receptor (see Fig. 3). It causes that the
rincipal point of the image is not located at the center of the
mages (as can be seen in Fig. 3) and can be located even out-
ide the image limits. Thus, to model these radiographs, a more
omplex perspective transformation, that also models changes in
he principal points is needed (resulting in 9 parameters to be
ptimized). The movement of the principal point in an axis can
e calculated according to the following equation:

ci = SID ·
sin(90 − βi) (2)
sin(βi) i

5

where ci is the principal point displacement in the axis i, and βi

s the angle of the ray that joins the center of the image receptor
nd x-ray generator in the axis i.
Furthermore, even radiographs taken in conventional views as

he posterioanterior can be affected by this distortion (although
ith a minor effect), due to the small alignment errors between
he image receptor and x-ray generator and the modeling of
hanges in the principal point can also be beneficial for them.
To sum up, two projective transformations are considered

n this contribution, aiming to improve the performance of the
utomatic CR-method: the simple perspective projection with 7
arameters (tx, ty, tz , rx, ry, rz , and SID) from [14] and a new more
omplex perspective projection with 9 parameters (tx, ty, tz , rx,
y, rz , SID, βx, and βy). The two transformations will be referred
rom now on as P7 and P9, respectively. Their parameters’ range
s stated in Section 5.1.
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.2. Real-coded evolutionary algorithms for the image registration
ptimizer

This subsection is devoted to the description of the six RCEAs
o be benchmarked on the CR problem in the current contri-
ution. All the RCEAs are designed for the optimization of the
eal coded parameters of the P7 and P9 transformations, de-
ined in Section 4.1, using the Masked DICE metric, introduced in
ection 4, as fitness function. The candidate solutions of the dif-
erent RCEAs are randomly initialized within the ranges showed
n Table 1 since a closer one would be unrealistic as stated in
ection 1.

.2.1. Differential evolution
DE [25] is a variant of an evolution strategy [54]. It begins

ith a random initialization of a population of n candidate solu-
ions. Afterward, DE searches for better solutions by combining
he candidate solutions’ parameters using a crossover operator
long a limited number of generations. The crossover operator
ombines the parameters of three random candidate solutions
rom the previous generation (detailed equations can be reviewed
n [25]). Lastly, DE also has an elitism mechanism which main-
ains the best candidate solution so far into the next generation.
n summary, DE has the following parameters: the population size
, the differential weight F , and the crossover probability Pc .

4.2.2. L-SHADE
L-SHADE is a self-adaptive DE approach proposed by Tanabe

et al. in 2014 [32] based on a previous adaptive DE optimizer
called SHADE [55]. Its main addition was a linear reduction of
the population size (which it is initially set to pinit ) thought the
generations. L-SHADE maintains the automatic adjust of the dif-
ferential weight F and crossover probability Pc parameters in each
generation of SHADE. To this end, it keeps a historical memory
with H entries for both F and Pc . Furthermore, it also conserves its
mutation strategy, to-pbest/1, where the greediness is adjustable
using a parameter pb, and the use of an external archive for
maintaining diversity, its size equal to pinit plus rarc . The goal
is to adjust the optimizer behavior during the first generation
to promote the search space exploration and subsequently to
reinforce its exploitation. To sum up, the parameters to be tuned
for L-SHADE are: pinit , H , pb, and rarc . Their recommended ranges
are reported in [32].

4.2.3. CMA-ES
CMA-ES [26] has been largely considered as the state of the

art in RCEAs and has outperformed DE and its variants in many
optimization problems, as stated in Section 2. CMA-ES is based on
updating the covariance matrix of the multivariate normal distri-
bution along the algorithm’s generations to focus the exploration
on the most promising regions. Afterward, CMA-ES performs the
following two steps in each generation: (1) λ candidate solutions
are generated according to the multi-variable normal distribu-
tion, the covariance matrix, and the step size σ ; and (2) the
distribution center and the covariance matrix are updated based
on the µ best candidate solutions and σ is updated based on
the improvement achieved (detailed equations can be reviewed
in [26]).

CMA-ES only requires to set three parameters µ, λ (number
of best solutions considered to update the distribution center
and number of individuals of the population, respectively), and
initial step size σ . Their default value in function of the number of
variables n according to the authors is: λ = 4+⌊3 ln(n)⌋ and µ =

λ/2. However, some works have shown that a higher value for λ

and a modification of the value of µ can lead to make CMA-ES
more robust and/or exploitative on multimodal problems [21].
6

4.2.4. BIPOP-CMA-ES
BIPOP-CMA-ES [35,36] is a restart CMA-ES with two interlaced

restart strategies, that modifies the values of the number of can-
didate solutions λ and the number of best solutions utilized for
updating the covariance matrix µ in each restart. The first restart
strategy consists of increasing the population size λ by a factor of
2. Meanwhile, the second restart strategy involves decreasing the
population size λ based on the previous and the default values
of λ (detailed equations can be reviewed in [35]). In both restart
strategies, the new value of µ is obtained by halving the new
value of λ. Performing the first or second restart strategy depends
on which restart strategy’s budget value is smaller. Nevertheless,
the first and last restarts always utilize the first’s strategy. Lastly,
the maximum number of restarts that can be performed is nine.
To sum up, BIPOP-CMA-ES requires to set the three same param-
eters than CMA-ES (λ, µ, and the step size σ ). The only difference
is that the values of λ and µ given to BIPOP-CMA-ES are only their
initial values since they are adapted in each restart.

4.2.5. CRO-SL
CRO-SL [22] is based on natural processes occurring in coral

reefs. The coral reef R is represented as a bi-dimensional grid
of p positions (population size), where each position stands for
solutions to the current optimization problem. At the beginning,
p0 positions (given as a percentage of the total population) are
randomly initialized with candidate solutions to the problem
tackled while the rest are empty, reserved to allow other corals
to grow. For each generation, the following stages will be applied
to the coral reef sequentially (these stages are further detailed
in [22]): (1) Broadcast spawning: it consists of generating new
larvae from a pair of candidate solutions using a crossover op-
erator; (2) Brooding: new larva are generated via a mutation
mechanism that is applied to a fraction of corals 1 - Fb; (3)
Larvae setting: each larvae will try to set in a random position
of the coral reef, they will only set if it the location is free or the
larvae has a better fitness value than the solution occupying that
position; (4) Depredation: a fraction (Fd) of the corals with the
worst fitness are removed from the population with very small
probability (Pd).

CRO-SL is an extension of the basic algorithm that also sim-
ulates the substrate layers in coral reefs. It divides equally the
coral reef R into several substrate’s layers, and the crossover
operator in step 2 will vary depending in which layer the larvae
falls. The choice of the operators (or substrate layers) to be used
has a significant effect in the optimizer’s behavior. In particu-
lar, the operators (or substrate layers) considered for IR in [22]
are: Harmony search, DE, Gaussian mutation, Cauchy mutation,
Simulated Binary Crossover (SBX), and Blend Crossover(BLX)-α.
urthermore, CRO-SL (as stated in Section 2) also has a LS to
mprove the larvae with the Bound Optimization BY Quadratic
pproximation (BOBYQA) optimizer [56] using a maximum of nLS

evaluations.
To sum up, the parameters to be tuned for CRO-SL are as

follows: reef size p, number of coral reef positions initialized p0,
number of generations g , number of LS evaluations nLS , depreca-
tion fraction Fd, deprecation probability Pd, asexual reproduction
proportion Fa, mutation fraction Fb, mutation probability, the
et of substrate layers utilized, and the parameters from the
perators (e.g. F for DE and δ for harmony search).

4.2.6. MVMO-SH
MVMO-SH [41] begins with a initialization stage where the p

particles (candidate solutions) of the swarm are randomly gener-
ated. The particles are normalized to the range [0, 1], which is a
necessary condition to the latter mutation via mapping function
(a key element in MVMO) and are only de-normalized for their
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itness evaluation. Afterward, the following steps are performed
or each generation (these are detailed in depth in [41]): (1) LS
ptimization of the particles with a probability pLS ; (2) If a particle
ounds a better solution in terms of fitness than those in its
olution archive, the new solution is added to the particle’s solu-
ion archive (notice that if the archive has reached its maximum
ize As the worst solution is removed); (3) Particles are sorted
nd divided into two groups according to their fitness value, the
P best ones are classified as ‘‘good particles’’ and the rest as
‘bad particles’’ (GP is adapted along the process taking values
etween the 20% and 70% of p). The good particles are modified
ia a custom single parent crossover operation based on local
est [7] and bad particles via a custom multi-parent crossover
peration based on a subset of good particles [7]; (4) the particles
re mutated using a mapping function. This mapping function
s based on the mean and variance of each particle’s solution
rchive and a scaling factor fs that modulates the function’s shape.
he scaling factor usually begins with a small value fstart and
rogressively increases until reaching its maximum value fend to
rogressively increase the algorithm’s accuracy.
To sum up, the parameters to be tuned are: number of parti-

les p (the recommended value is 15 ∗ number_variables; if the
umber of particles chosen is equal to 1, MVMO-SH will perform
s the standard MVMO), LS probability pLS , archive size As, scaling
actor start (fstart ) and end values (fend), initial value of the shape of
ll the variables at the beginning of the optimization dr (values
round 1–5 are suitable to guarantee good initial performance.
n practice, it is usually set to 1), and parent selection method
random, neighbor group selection in single step or block steps,
r sequential selection of the first variable and the rest randomly).

.3. Problem landscape complexity

Apart from the high computation requirements of CR, the
umerical optimization problem underlying the superimposition
rocess is complex. This can be confirmed by studying the fitness’
andscape of the CR problem by using the fitness-distance corre-
ation [57] (see Eq. (3) for the distance function) with synthetic
ata of a clavicle, a patella, and a frontal sinus (see Section 5.1).

Dist =

∑n
i=1 |

ti−mini
maxi−mini

−
GTi−mini
maxi−mini

|

n
(3)

where n is the number of parameters, ti is the ith parameter of a
egistration transformation t , GTi is the ith parameter of the GT
transformation GT , mini is the minimum possible value of the ith
parameter, and maxi is the maximum possible value of the ith
parameter.

However, the fitness landscape varies significantly with each
CR identification problem, due to factors such as the singularity
and discriminatory power of each skeletal structure, the seg-
mentation of the AM and PM images, the occlusions present
within these images, the projective transformation utilized, etc.
Nevertheless, the complexity of the CR problem can be uncov-
ered by studying its simplest scenario, i.e. synthetic data without
occlusions or segmentation errors. To analyze the simplest opti-
mization scenario, a sample of 200,000 random transformations
near to the GT transformation have been generated and evaluated
for each skeletal structure (clavicles, patellae and frontal sinuses)
and perspective transformation (P7 and P9), as shown in Fig. 4.
Fig. 4 shows many bad superimpositions with a small distance to
the GT transformation, as well as good superimpositions with a
big distance to the GT transformation. It hints the multimodality
of the search space. Furthermore, the fitness distance correlation
according to the Pearson’s correlation coefficient [58] is 0.47
for P7 and 0.42 for P9, both weakly correlated confirming the
complexity and multimodality of the search space even in its

simplest scenario. a

7

5. Experiments

The experimental study is divided into three parts. The first
experiment is devoted to fine tune the different RCEAs to find
their best configuration in terms of accuracy and robustness.
For this experiment, only simulated CR problems (positive cases,
i.e. the AM and PM data belong to the same person) of frontal
sinuses are considered, since these are of great forensic interest
and result in the most complex optimization scenario (as it has
to model both posterioanterior and Water’s views). Furthermore,
it is computationally unaffordable (because of its high computa-
tional cost) to perform this experimentation also with clavicles
and patellae. Meanwhile, the second experiment is devoted to
compare the best configuration of each RCEA with simulated
CR problems of frontal sinuses, clavicles, and patellae with P7
and P9 in order to find the best RCEA in terms of accuracy and
robustness. Finally, the third experiment is devoted to studying
the identification capability of the proposed IR framework using
P9 and the best resulting RCEA, in turn MVMO-SH, in real images
of frontal sinuses.

The same stop criteria is established for all the RCEAs to
allow a fair comparison in terms of computational resources. The
optimization process ends when at least one of the following
three conditions holds: (1) the maximum number of evaluations
is reached. This value is set to 50,000 evaluations (it includes the
evaluations performed by the LS methods); (2) the optimization
process has got stuck. It is considered that the optimization
process has stagnated when it has performed 10,000 evaluations
without improving the fitness of the best solution; and (3) the op-
timization process has achieved a good solution/superimposition.
A solution is considered of good quality when it shows an error
lower than 0.001 in terms of fitness.

All the experiments (I, II and III) have been performed on
the high performance computing server Alhambra from the Uni-
versity of Granada composed of 1808 cores Fujitsu PRIMERGY
CX250/ RX350/RX500 nodes running Red Hat Enterprise 6.4, al-
though on average only 50 cores were available for this exper-
imentation. Furthermore, several preliminary experiments were
performed in the supercomputing center of Galicia (CESGA). It is
important to remark the large computational cost of the experi-
mentation following a rigorous experimental design of a compu-
tationally expensive optimization problem as CR. Overall, around
1314 computation hours (55 days) were required to perform
Experiments I, II and III when the 50 cores were available un-
interruptedly. Notice that the reported computational time is for
the entire experimentation and it would require a significantly
smaller computational time for its use in real forensic scenarios.
For instance, the comparison of a 3D surface model against a
radiograph only requires 1000 s (0.27 computational hours in one
core) and the comparison of a 3D module against a set of 50 radio-
graphs of possible candidates requires 50,000 s (14 computational
hours in one core). Nevertheless, each superimposition can easily
run in parallel reducing significantly the required time for all the
comparisons.

5.1. Simulated data set

The dataset employed in Experiments I and II is formed by
900 simulated CR problems, 3002 for each skeletal structure to

2 According to the sample estimation equation presented in [59] (n = (4 ·
2

· σ 2)/(W 2), where n is the required sample, z the z-score value, σ the
xpected standard deviation, and W the margin of error), a sample size of
00 is sufficient to guarantee an error lower than ±0.03 (W = 0.06) in the
ean with a confidence level of 99% (z-score Z = 2.4) and expected standard
eviation of 0.2. The value of σ was estimated in a preliminary extermination
nd, latter, confirmed in our experimental study, see Table 4. Furthermore, it
ives a good trade-off between the computational cost of the experimentation
nd the number of CR scenarios captured in the sample.
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Fig. 4. Scatter plots of DICE metric of a transformation versus its distance to the ground truth transformation according to bone/cavity, and projective transformation.
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be studied. Each of simulated CR problems is composed of a 3D
surface model and a random 2D perspective projection of the
3D model with occlusions using the projective transformations
P7 and P9. The random parameters, that generated the 2D per-
spective projection of a simulated CR problem, composed the
GT transformation, i.e. the transformation parameters that our
ethod aims to find. Furthermore, we have also generated a
econd 2D perspective projection using the GT transformation but
ithout considering occlusions. The GT transformation and the
T projection without occlusions allow us to objectively measure
he quality of the superimpositions archived.

In [14], the optimizers showed a different behavior depending
n the singularity of the skeletal structure and occlusions, among
ther factors. Thus, we have composed a simulated dataset that
aptures the diversity of the CR problem to guarantee that the
volutionary image registration method performs properly in as
any different scenarios as possible. We utilized 300 problems
er skeletal structure since this value gives a good trade-off be-
ween diversity and computational cost of the experimentation.

The dataset has been generated using 30 3D surface models
10 of each skeletal structure studied in this work, i.e. 10 frontal
inuses, 10 clavicles, 10 patellae) obtained as in [14]. Particularly,
rontal sinueses’ models were obtained by manually segmenting
Ts (provided by the Hospital de Castilla la Mancha, Spain) using
D Slicer 4.5.0-1 [60]. Meanwhile, clavicles and patellae’ models
ere obtained by scanning bones (from the bone collection of the
hysical Anthropology Lab at the University of Granada) using
laser range scanner (Artec SpiderTM 3D scanner). All these 3D
odels were placed in their respective most frequent positions in
radiograph [52] (a frontal position for frontal sinus and clavicle’s
odels, and a lateral one for patella’s models). For each 3D sur-

ace model, 10 perspective projections (5 with P7 and 5 with P9)
ere randomly generated within the ranges showed in Table 1
these ranges have been set based on international acquisition
rotocols [52] and are detailed in [14] with the exception of the
ew parameters βx and βy. Notice that these parameters are set
o 0 with the P7 transformation). The parameters βx and βy have
een added to model small alignment errors in the posterioran-
erior view for clavicles and patellae, and model posterioranterior
ndWater’s views for frontal sinuses (as stated in Section 4). With
rontal sinuses, the parameter βy has a larger range to allow the
ptimizer to adapt automatically to both posterioranterior and
ater’s views. In addition, the rotation range has been increased

o [−40, 40] to study the robustness of the RCEA to a greater
uncertainty on the initial pose of the 3D model. These projections
are generated with a resolution of 2 pixels per mm, resulting
8

in images of 480 × 600 pixels for frontal sinuses and patellae,
nd 860 × 700 pixels for clavicles. Lastly, in order to model the

occlusions present in real radiographs, two additional projections
were generated with occlusion on the skeletal structure of 20%
and 40% for each of the previous projective projections. The
occlusion ranges are greater than in [14] to test the RCEAs in a
more complex optimization scenario.

5.2. Real dataset

The dataset employed in Experiment III was provided by the
Hospital de Castilla-La Mancha, Spain, and is composed of 50 CTs
and 50 radiographs where the frontal sinuses are visible. The
data were segmented by two forensic anthropology MSc students
from the Physical Anthropology lab (PAL) of the University of
Granada. All CTs were segmented by the forensic student A (An-
drea Cerezo Vallecillo), and all radiographs were segmented by
forensic students B (José Manuel Pérez Jiménez).

.3. Performance metrics

Two GT metrics are employed to objectively measure the
uality of the superimpositions archived by RCEAs: GT DICE [50]
nd the mean reprojection distance error (mRPD) [48]. The GT
ICE metric measures the overlap between the GT projection’s
ilhouette (equal to the simulated AM projection but without
ny occlusion) and the 2D projection’s silhouette archived by
he RCEA. However, the GT DICE metric and the fitness function
i.e. Masked DICE, see Section 4) are highly correlated (e.g. they
re equal in cases without occlusions) and thus, to avoid any
ossible bias, the mRPD metric is also employed. mRPD is an
tandardized metric for the evaluation of 3D–2D IR methods by
omputing the retroprojection error between the transformation
btained by the RCEA and the GT transformation (see [14] for
urther details of the utilization of mRPD in the CR problem).
otice that these metrics can be employed only in simulated CR
roblems since in real CR problems the GT projection and the GT
ransformation are unknown.

.4. Experiment I: Fine tuning of the evolutionary algorithms for the
R problem

.4.1. Experimental set up
This experimentation involves the application of six differ-

nt RCEAs (DE, L-SHADE, CMA-ES, BIPOP-CMA-ES, CRO-SL, and
VMO-SH) and two kinds of projective transformations (P7 and
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Table 1
Range of the parameters of the projective transformations for each skeletal structure according to international acquisition
protocols [52] and expert knowledge.
Parameter Bone/Cavity

Frontal sinuses Patellae Clavicles

Image receptor dimension (mm) 240 × 300 240 × 300 430 × 350
tx (mm) [−125, 125] [−125, 125] [−210, 210]
ty (mm) [−150, 150] [−150, 150] [−175, 175]
tz (mm) [900 − 200, 900 + 200] [900 − 200, 900 + 200] [900 − 200, 1700 + 200]
rx , ry , and rz (degrees) [−40◦ , 40◦] [−40◦ , 40◦] [−40◦ , 40◦]
SID (mm) [1000 − 100, 1000 + 100] [1000 − 100, 1000 + 100] [1800 − 100, 1800 + 100]
βx (degrees) [−10◦ , 10◦] [−10◦ , 10◦] [−10◦ , 10◦]
βy (degrees) [−50◦ , 10◦] [−10◦ , 10◦] [−10◦ , 10◦]
Table 2
Summary of all the parameters of the different RCEAs and their studied values in Experimentation I.
Fixed parameters

General par. Number of evaluations: 50,000

DE p = 100 F = 0.5 Pc = 0.5

L-SHADE rarc = 2a None

CMA-ES None

BIPOP-CMA-ES None

CRO-SL p0 = 0.4b nLS = 50c F = 0.5

Substrates = (Harmony search, DE, Cauchy Mutationd , SBX, and BLX-α)

MVMO-SH fstart =1 dr = 1 GP = 5 pLS = 0.015

Parent selection strategy = sequential selection of the 1st variable, and the rest randomlye

Parameters to fine tune N◦ conf.

DE None. DE’s parameters were already fine tuned in [14]) 1

L-SHADE pinit = (15, 20, 25) pb = (0.05, 0.1, 0.15) H = (2, 5, 10) 27

CMA-ES λ&µ = (100 & 15, 40 & 15, df & dg). σ = (0.01, 0.1, 0.3) 9

BIPOP-CMA-ES λ&µ = (100 & 15, 40 & 15, df & dg). σ = (0.01, 0.1, 0.3) 9

CRO-SL p = (25, 50, 100) δ = (0.1, 0.25, 0.4) 9

MVMO-SH p = (1, 25, dh) As = (5, 10, 25) fend = (1.5, 2.5) 12

aOther values (1, 3) were also studied in a preliminary experimentation with worst performance results.
bOther values (0.15, 0.65) were also studied in a preliminary experimentation with worst performance results.
cOther values (0, 100) were also studied in a preliminary experimentation with worst performance results.
dThe Gaussian Mut. was studied as alternative to the Cauchy Mut. in preliminary experiments with worst results.
eThe rest of selection strategies were tested in preliminary experiments with worst performance results.
fd = default value calculated according to the following equation: λ = 4 + ⌊3 ln(n)⌋. Thus, it is equal to 9 and 10 for P7
and P9, respectively.
gd = default value calculated according to the following equation: µ = λ/2. Thus, it is equal to 4 and 5 for P7 and P9,
respectively.
hd = default value calculated according to the following equation: 15*number_variables. Thus, it is equal to 105 and 135
for P7 and P9, respectively.
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9) for each of the 300 CR cases of frontal sinuses to achieve our
oal of determining the influence of the evolutionary optimizer
sed by the automatic CR method. As mentioned above, this
xperiment is meant to fine tune the six RCEAs. While there
re unsupervised methods for parameter tuning [61], they tend
o evaluate a very large number of parameter configurations,
aking them infeasible for an expensive optimization problem
s CR (since each configuration should be tested over the 300
R problems to compare them rigorously). Therefore, we have
tilized a grid search where the parameter values are chosen
ased on the recommendations present on the RCEA’s original
aper and on expert knowledge about its behavior. Taking these
onsiderations into account, the parameter grid shown in Table 2
as designed. Lastly, in order to allow for a fair comparison, every
CEA will have the same computational resources with maximum
umber of 50,000 evaluations.
In summary, a total of 67 parameter configurations were con-

idered, resulting in 20,100 executions. For each of these exe-
utions, 10 independent runs were performed to study the ro-
ustness of the RCEAs for solving the CR problem due to their
tochastic component. Thus, 201,000 runs (i.e. superimpositions)
9

ere performed. Each superposition takes 1000 s on average,
esulting in an experimentation of around 55,833 computation
ours (2326 computation days) that performed on the 50 avail-
ble cores of Alhambra required ‘‘only’’ around 1100 computation
ours (45 computation days).

.4.2. Results
Fig. 5 shows the results obtained by the different RCEAs and

heir configurations according to the GT DICE metric. The perfor-
ance varies significantly depending on the RCEA and projective

ransformation in terms of mean and standard deviation values.
etter results are always obtained with P7 proving that P9 is
ignificantly more complex as stated in Section 3, which is con-
irmed by the Wilcoxon’s test [62] obtaining a p-value lower than
1 · 10−15 with both metrics. CMA-ES is an exception obtaining
better results with P9 but its results are still significantly worse
than those provided by the other RCEAs with both P7 and P9.
Nevertheless, P9 holds a greater forensic interest since it allows
to model radiographical scenarios that P7 cannot model.

Studying the influence of the different parameters, it can be
observed large differences for each RCEA, especially with respect
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Table 3
Summary of the results according to projective transformation, skeletal structure type, and RCEA optimizer (Experiment II).
Bone Opt. Proj. Tran. Masked DICE GT DICE mRPD

Mean Sd Mean Sd Mean Sd

Frontal Sinus

CMA-ES P7 0.414 0.140 0.446 0.130 8.736 4.767
P9 0.272 0.067 0.307 0.078 46.306 36.856

BIPOP-CMA-ES P7 0.011 0.054 0.015 0.061 0.595 1.998
P9 0.016 0.044 0.029 0.070 15.453 28.762

CRO-SL P7 0.073 0.069 0.111 0.100 2.458 2.930
P9 0.198 0.075 0.249 0.084 44.723 35.268

DE P7 0.008 0.034 0.015 0.048 0.307 1.396
P9 0.048 0.040 0.076 0.066 29.024 31.458

L-SHADE P7 0.079 0.085 0.113 0.110 2.553 3.213
P9 0.147 0.071 0.202 0.091 49.439 31.324

MVMO-SH P7 0.001 0.009 0.002 0.009 0.047 0.369
P9 0.011 0.020 0.021 0.042 14.778 29.968

Clavicle

CMA-ES P7 0.542 0.130 0.564 0.140 22.695 16.785
P9 0.519 0.139 0.537 0.149 32.044 17.304

BIPOP-CMA-ES P7 0.089 0.186 0.109 0.220 7.063 17.111
P9 0.132 0.220 0.155 0.246 30.573 29.887

CRO-SL P7 0.107 0.134 0.149 0.178 10.092 18.339
P9 0.133 0.122 0.176 0.153 27.121 16.946

DE P7 0.005 0.021 0.010 0.036 0.461 3.116
P9 0.028 0.053 0.046 0.077 23.024 15.253

L-SHADE P7 0.105 0.142 0.129 0.159 7.396 15.648
P9 0.111 0.149 0.136 0.164 33.862 20.716

MVMO-SH P7 0.001 0.000 0.002 0.002 0.065 0.051
P9 0.004 0.004 0.009 0.009 19.383 14.008

Patella

CMA-ES P7 0.273 0.117 0.330 0.116 15.318 15.878
P9 0.268 0.136 0.326 0.122 22.001 15.865

BIPOP-CMA-ES P7 0.016 0.024 0.045 0.063 9.486 19.605
P9 0.019 0.028 0.053 0.072 22.163 25.054

CRO-SL P7 0.043 0.033 0.096 0.070 12.395 19.434
P9 0.080 0.054 0.152 0.092 22.558 19.350

DE P7 0.014 0.022 0.045 0.057 7.057 16.320
P9 0.025 0.026 0.073 0.073 21.411 20.970

L-SHADE P7 0.096 0.083 0.143 0.089 14.228 23.969
P9 0.146 0.144 0.184 0.134 28.048 23.771

MVMO-SH P7 0.003 0.010 0.009 0.026 2.650 13.130
P9 0.006 0.011 0.026 0.044 17.151 18.216
to their sensibility to the parameter choice. L-SHADE presents
the more robust behavior since the results are similar for the
different parameter values for each one of the problems. On the
contrary, CMA-ES gives very different results in P7 depending on
the parameter values used (in P9 there are very similar). More
in detail, the most influential parameter in CMA-ES seems to
be sigma, σ , obtaining better results with higher σ values. In
IPOP-CMA-ES this tendency is increased, corroborating that σ
arameter is clearly more influential in both problems. By setting
n appropriate σ value, BIPOP-CMA-ES obtains for both problems

better results than the majority of the remaining RCEAs but DE
and MVMO-SH. MVMO-SH is very sensitive to the number of par-
ticles, p. In P7, results are clearly different with p = 1 and p = 25,
obtaining two performance levels based on that parameter value.
For P9, results show three very different performance levels, for p
= 1, p = 25, and p = d. In both problems, the results provided by
MVMO-SH with p = 1 are worse than the other RCEAs but with
p = 25 it outperforms the majority of algorithms, and with p =

, MVMO-SH achieves the best results overall.
In terms of accuracy and robustness of the best configuration

f each RCEA, the worst RCEA (i.e. the sixth position) is CMA-ES
best configuration: λ = 100, µ = 25, and σ = 0.3). It is followed
y L-SHADE (pinit = 25, pb = 0.15, H = 2, and rarc = 2) and

CRO-SL (p = 100, and δ = 0.25) in the fifth and fourth positions,

respectively, closely tied. Neither CMA-ES, L-SHADE nor CRO-SL

10
can obtain better results than DE, the state-of-the-art RCEA for
CR [14], either with P7 and P9. BIPOP-CMA-ES (λ = 100, µ = 25,
and σ = 0.3) and DE are also closely tied (taking the third and
second positions). Finally, the best RCEA in terms of average and
standard deviation values, and confirmed by the Wilcoxon’s test
with p-values lower than 1 · 10−7 in the comparison with all the
other RCEAs, is MVMO-SH (p = d, As = 4, and Fend = 2.5).

MVMO-SH has greatly improved the state-of-the-art results
both in terms of accuracy and robustness with P7 [14]. MVMO-
SH has also successfully solved a more complex version of the CR
problem based on the projective transformation P9, that allows
to model both posterioanterior and Water’s views, as well as,
being robust to occlusions up to the 40% of their silhouettes and
rotation ranges of up to 80◦ ([−40◦, 40◦]) in the three axis.

5.5. Experiment II: Comparison of the RCEAs over all the CR problems

5.5.1. Experimental set up
This experimentation involves the application of the best

configuration of the six different RCEAs (DE, L-SHADE, CMA-ES,
BIPOP-CMA-ES, CRO-SL, and MVMO-SH) from Experiment I to
all the 900 CR cases (300 frontal sinuses, 300 clavicles, and 300
patellae) using the two kinds of projective transformations (P7
and P9). The best configuration of the parameters in Table 2 are

as follows:
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Fig. 5. Boxplot of the minimum errors according to projective transformation, and optimizer for the GT DICE metric (Experiment I). Notice that good superimpositions
obtain a Masked DICE value close to 0, while bad ones are close to 1.
• DE: p = 100, F = 0.5, and Pc = 0.5 (fine tuned in [14]).
• L-SHADE: pinit = 25, pb = 0.15, H = 2, and rarc = 2.
• CMA-ES: λ = 100, µ = 25, and σ = 0.3.
• BIPOP-CMA-ES: λ = 100, µ = 25, and σ = 0.3.
• CRO-SL: p = 100, and δ = 0.25.
• MVMO-SH: p = d, As = 4, and Fend = 2.5.
11
In summary, the six RCEAs are applied to the 900 CR cases
resulting in 3000 executions. As in the first experiment, 10 inde-
pendent runs are performed to avoid any possible bias caused
by the stochastic component of the RCEA, resulting in 30,000
runs/superimpositions and around 200 computation hours (8
days) when performed using the 50 cores.
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able 4
ummary of the Masked DICE metric results according to projective transforma-
ion, and RCEA optimizer at 5000, 10,000 and 50,000 evaluations (Experiment
I).
Opt. N. Ev. P7 P9

Mean Sd Mean Sd

CMA-ES
5000 0.429 0.168 0.418 0.163
10,000 0.422 0.169 0.391 0.167
50,000 0.410 0.169 0.351 0.169

BIPOP-CMA-ES
5000 0.174 0.180 0.221 0.200
10,000 0.079 0.159 0.109 0.186
50,000 0.053 0.137 0.075 0.167

CRO-SL
5000 0.087 0.098 0.168 0.120
10,000 0.078 0.094 0.146 0.109
50,000 0.072 0.092 0.134 0.102

DE
5000 0.096 0.061 0.152 0.080
10,000 0.036 0.036 0.078 0.052
50,000 0.009 0.027 0.034 0.042

L-SHADE
5000 0.094 0.109 0.142 0.130
10,000 0.093 0.108 0.135 0.128
50,000 0.093 0.108 0.135 0.128

MVMO-SH
5000 0.241 0.138 0.338 0.171
10,000 0.157 0.096 0.269 0.145
50,000 0.001 0.007 0.006 0.013

5.5.2. Results
Table 3 shows the results obtained by the different RCEAs

ccording to Masked DICE, GT DICE, and mRPD metrics. In view
f those results, the impact of the considered skeletal structure
n the RCEA’s performance depicted in [14] has been reduced
ut not eliminated. When a P7 transformation is considered,
he best results are still obtained with frontal sinuses, followed
y clavicles and patellae. This is probably due to the frontal
inus’ silhouettes are more singular than those from clavicles
nd patellae. In fact, frontal sinuses are usually employed for
dentification [18], while clavicles and patellae are mainly em-
loyed for short listing [16,17]. However, when P9 is considered,
lavicles achieve the best results since the optimization problem
o solve with frontal sinuses is more complex (notice that βy has
range of 50◦ compared with the 20◦ of clavicles and patellae).
evertheless, frontal sinuses are able to obtain significant results
ith a mean error of 0.02 (i.e. an error of only the 2% of the pixels
f the silhouette) and 14 mm according to GT DICE and mRPD
etrics, respectively. They also show a low standard deviation of
.009 and 29 mm for GT DICE and mRPD metrics, respectively. As
n P7, patellae had the last position due to their lower singularity.

In this experiment, MVMO is again the best RCEA for CR in
erms of average and standard deviation values, as confirmed
y the Wilcoxon’s test [62] obtaining a p-value equal or lower
han 2 · 10−16 in the comparison with the other RCEAs con-
idering the two metrics and the three bones. The rest of the
ptimizers are ranked as follows: the second best is DE, the state-
f-the-art optimizer for CR; the third best is BIPOP-CMA-ES, that
lso outperforms to DE in some particular scenarios (e.g. with
atellae and P9); followed by L-SHADE and CRO-SL with no
ignificant differences between them (-value of 0.166 according
o the Wilcoxon’s test [62]); and the worst results are obtained
y CMA-ES.
Table 4 shows the mean and standard deviation, according to

he Masked DICE metric, of each RCEA and projective transfor-
ation after 5,000, 10,000 and 50,000 evaluations. Meanwhile,
ig. 6 reports the average time required by the RCEAs to reach
stop condition and the average results obtained according to

he GT DICE metric. In view of the results collected in Table 4,
he convergence speed of MVMO-SH is lower than that of the
ther RCEAs, needing almost all the 50,000 evaluations to obtain
12
ignificant results in terms of accuracy and robustness. On the
ontrary, the other RCEAs have a similar performance with 10,000
nd 50,000 evaluations, and the only one showing acceptable
esults with only 10,000 evaluations is DE. However, after the
0,000 evaluations limit, the best RCEA in terms of time is also
VMO-SH (as can also be seen in Fig. 6). In that figure, we can
lso observe that every algorithm but CMA-ES, and sometimes DE,
oes do not stop due to the maximum number of evaluations
ondition, but to the premature convergence (worse case) or
ood superimposition (best case) stop conditions. CRO-SL and L-
HADE stops more than 90% of times for premature convergence,
hile BIPOP-CMA-ES stops for good superimposition more than
alf of times. The main stopping condition of MVMO-SH is the
ood superposition (especially in problem P7, in which almost all
uns stop for that good condition). The most frequent stopping
ondition reached by MVMO-SH is the good superimposition in
2% of all executions, while the converged condition arises in 7%,
nd the maximum number of evaluation condition only in 1% of
uns (see Fig. 7). Thus, MVMO-SH has obtained an improvement
n accuracy, robustness, and convergence, as well as run time
see Table 5), in the solution of the CR problem. In general, every
CEA (but CMA-ES for P7 and P9 and DE for P9) is not limited
y the maximum number of evaluations and thus no further
mprovements are to be expected with further run times.

.6. Experiment III: Testing the identification capability of our 3D-2D
R-based CR framework with frontal sinuses

.6.1. Experimental set up
This experimentation is aimed to evaluate the identification

apability of the proposed 3D–2D IR-based CR framework using
rontal sinuses and the best RCEA configuration (MVMO-SH with
= d, As = 4, Fend = 2.5, and P9). To this end, we confront 50 man-

ually segmented radiographs against 50 manually segmented CTs,
resulting in a total of 2500 CR problems (50 positive and 2450
negative cases). Since previous experiments have already shown
the robustness of MVMO-SH, and due to the large computational
cost of employing again 10 repetitions, a single run is performed.
Each of the 2500 runs takes on average 1000 s, resulting in 695 h
of computation (or 29 computation days) that, performed on the
50 available cores of computing server Alhambra, required only
around 14 computation hours.

5.6.2. Results
High quality superimpositions have been obtained without

any initial pose (see Fig. 8) and regardless if the identification
case is positive or negative, as desired. Notice that, the IR al-
gorithm must provide the best possible superimposition of the
two skeletal structures. The final identification decision is taken
later over that superimposition by comparing the consistency in
the bone or cavity morphology. In the reliability study, positive
and negative cases have shown important differences in terms of
fitness according to the Masked DICE Metric (see Fig. 9). However,
this metric alone is not sufficient to precisely distinguish between
positive and negative cases.

Therefore, the results are reported using CMC curves to study
the identification capabilities of the proposal, as done in [14]. A
CMC curve measures the probability that the correct match for
a identification case is present in a candidate list of the r best
matches, where r denotes the position in the rank. For example,
rank 5 identification accuracy denotes the probability that the
correct match is one of the subjects in a list of the top 5 matches.
The results of the reliability study are significant (see Fig. 10).
The positive case ranks in the first position in 88% of the cross-
comparisons (out of 50 candidates, 2% of the total sample), and a
confidence level of 100% of success is reached when the first six
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a

Fig. 6. (Top) Boxplots of the time required to perform a superimposition according to projective transformation and RCEA optimizer. (Bottom) Relation between the
verage time (seconds) and the GT DICE metric according to projective transformation and RCEA optimizer (Experiment II).
Table 5
Summary of the computational time, in seconds, according to skeletal structure, projective transformation, and RCEA
optimizer (Experiment II).
Opt. Proj. Tran. Frontal sinuses Clavicles Patellae

Mean Sd Mean Sd Mean Sd

BIPOP-CMAES P7 497 285 586 311 435 260
BIPOP-CMAES P9 912 478 951 450 460 221
CMA-ES P7 1321 592 1243 565 818 333
CMA-ES P9 1080 439 1080 500 709 217
CRO-SL P7 1127 598 1232 578 624 282
CRO-SL P9 1014 513 1135 506 542 232
DE P7 1665 913 1515 652 814 369
DE P9 2730 1035 2073 586 919 306
L-SHADE P7 278 149 408 176 214 90
L-SHADE P9 405 172 489 166 228 80
MVMO-SH P7 1056 396 1211 354 722 234
MVMO-SH P9 1487 548 1720 498 858 232
positions are considered. Notice that these results are obtained

with the simplest decision-making method based only on the

registration error. Therefore, a more complex decision-making

method based on multiple forensic criteria and metrics, as the

one depicted in [63] for the craniofacial identification technique,

can further improve the identification capabilities of the proposal.
13
6. Conclusions and future developments

6.1. Regarding the 3D-2D comparative radiography problem

In this work, we have tackled the superimposition problem
within the CR task using an evolutionary 3D–2D IR approach
based on the silhouette of the skeletal structure without any



O. Gómez, O. Ibáñez, A. Valsecchi et al. Applied Soft Computing Journal 97 (2020) 106793

o

Fig. 7. Boxplots of stop condition (defined in Section 5) reached by the optimization process according to skeletal structure, projective transformation and RCEA
ptimizer (Experiment II).
Fig. 8. (Left) An example of a positive case, radiograph A compared against CT A; (Right) Example of negative cases, radiograph A compared against CTs A, B and C .
Fig. 9. Boxplots of the minimum error of positive and negative cases according
to the Masked DICE metric (Experiment III).
14
initialization of perspective projection parameters (i.e. the ini-
tial parameters are randomly chosen within the range of the
parameters of the projective transformations for each skeletal
structure according to international acquisition protocols [52]). It
considers a completely realistic scenario and thus a more com-
plex version of the CR problem than the one studied in [14]
using a new perspective transformation that also models per-
spective distortions related to angled radiographs. Our aim was
to analyze the influence of the RCEA optimizer estimating the
registration transformation parameters in the CR solution. To this
end, six different state-of-the-art RCEAs (DE, L-SHADE, CMA-ES,
BIPOP-CMA-ES, CRO-SL, and MVMO-SH) have been fine-tuned
and studied to deal with this challenging and computationally
expensive optimization scenario.

In summary, after a detailed analysis of the results obtained
by the different RCEAs, we can conclude that the underlying op-
timization problem within CR is really complex for reasons such
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Fig. 10. CMC curve of the comparison of 50 radiographs against 50 CTs (Experiment III).
as the strong correlation among the parameters, their order of
magnitude, and the high computational cost. We also confirmed
that there is a strong influence of the kind of RCEA considered
in a complex problem like CR. Advanced RCEAs such as CMA-
ES, L-SHADE, and CRO-SL have not been able to obtain accurate
results despite their good behavior in other real-world optimiza-
tion problems. Nonetheless, promising results have been obtained
with MVMO-SH overcoming BIPOP-CMA-ES and the state-of-the-
art RCEA for CR, DE. The fine-tuned MVMO-SH (with the following
optimizer’s ‘‘hyper’’ parameters: p = d, As = 4, and Fend = 2.5)
allowed us to obtain accurate superimpositions with an average
error of 0.001 and 0.006 according to the Masked DICE metric for
P7 and P9, respectively, in all the studied bones/cavities (frontal
sinuses, clavicles, and patellae). Despite of its stochastic nature,
it also showed a robust behavior with a low standard deviation
(frontal sinuses, 0.009 for P7 and 0.042 for P9; clavicles 0.002
with P7 and 0.009 with P9; and patellae, 0.026 for P7 and 0.044
for P9) according to GT DICE metric. The results in terms of the
mRPD metric with P7 were lower than 1 mm for frontal sinuses
and clavicles, and lower than 3 mm for patellae, but were around
15 mm when P9 was considered. Furthermore, by using MVMO-
SH, the strong dependency on the kind of bone or cavity was
greatly reduced, obtaining accurate results with every bone under
study. The main drawback is the computation time required to
obtain the superimpositions, that despite having been reduced is
still high. Notice that all RCEAs were fine-tuned only with the
synthetic CR images of frontal sinuses. Nonetheless, the 3D–2D
IR method obtains robust and high quality results with the syn-
thetic CR images of the two other skeletal structures under study
(clavicles and patellae), hinting that the proposed automatic 3D–
2D IR method with the fine-tuned RCEAs could have a similar
performance with other skeletal structures. However, this 3D–
2D IR method was designed based on the specific characteristics
of the CR superimposition problem and thus cannot be directly
used in other 3D–2D IR problems without an specific adaption.
Nevertheless, even if our results cannot be directly extrapolated
to other IR problems, the importance of performing rigorous
optimization comparative studies of EAs as a crucial part of the
design and development of new evolutionary IR methods must
be highlighted and can serve as a guideline for future research in
the area, especially to that dealing with real-world problems.

Lastly, we have validated the evolutionary IR method using
the best RCEA, MVMO-SH, for solving real CR problems of frontal
sinuses. We have compared 50 skull radiographs against 50 skull
CTs, where the frontal sinuses were segmented by forensic an-

thropology master students at the Physical Anthropology lab
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(PAL) of the University of Granada. The positive case ranks in
the first position in 88% of the cross-comparisons (out of 50
candidates, 2% of the total sample), and a confidence level of 100%
of success is reached when the first six positions are considered.
Thus, if we compare 50 AM radiographs of possible candidates
against the PM 3D image, our proposal with a very preliminary
version of the decision making stage, based only on the value of
the Masked DICE metric, is able to filter out 88% of the possible
candidates with 0 error rate in a fully automatic manner.

Future research is planned to reduce the run time required by
studying evolutionary multiresolution IR approaches, surrogate
assisted approaches [64], and computation on GPUs. We also
plan to study the identification potential of different bones and
cavities (both separately and combined) for the CR task [65]
through a collaboration with the Israel National Center of Forensic
Medicine and the Hebrew University of Jerusalem. Lastly, we plan
to develop and validate a hierarchical decision support system
that will analyze frontal sinuses superimpositions using multiple
criteria (morphological, intensities, etc.), each of them measured
using multiple metrics.

6.2. Regarding the soft computing field

Theoretical benchmarks are usually utilized as a means to vali-
date and compare RCEAs. However, these optimization problems
are often not able to reflect the full complexity of a real-world
optimization problem. In this work, we have performed a rig-
orous comparative study of several state-of-the-art RCEAs (DE,
L-SHADE, CMA-ES, BIPOP-CMA-ES, CRO-SL, and MVMO-SH) in a
complex real-world optimization problem, 3D–2D superimposi-
tion for CR. The underlying optimization task is computationally
expensive, limiting the maximum number of evaluations that can
be performed by the optimizer to satisfy the time constrains of
the real-world problem. Furthermore, it also establishes certain
limitations on the experimental study, since the computational
resources and time are limited.

We think that the methodology employed in this paper can
be utilized as a guideline for tackling other computationally ex-
pensive real-world optimization problems. As a brief summary,
the guidelines that have been most relevant to this work are: the
utilization of syntactic data with GT solutions for finetuning the
RCEAs, the selection of a dataset that represents as many different
real scenarios as possible, the study of the stop criteria, the
analysis of the convergence of the RCEAs with different number
of evaluations, and the validation of the results with real data not

utilized in the selection of the best RCEA and its configuration.
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In addition, we have been able to conclude that some of the
RCEAs which showed to be competitive in some of the competi-
tions developed, did not provide a good performance when ap-
plied on a real-world complex problem. On the opposite, MVMO-
SH showed up as the best performing optimizer when provided
with a sufficient number of evaluations to converge (50,000),
confirming its good results in these competitions. We should say
that for a lower number of evaluations (5000 and 10,000) the
basic DE was the most competitive method, showing that classical
RCEAs are still promising in complex real-world problems. It
would be interesting to analyze if this behavior could also happen
in other kinds of real-world optimization problems.
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