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a b s t r a c t

Accurate model plays an important role in designing, assessing, and controlling photovoltaic (PV)
systems. In this work, the least-squares support vector machine (LSSVM) is adopted to model the
current–voltage (V–I) characteristic curves of different PV systems. A novel RNA genetic algorithm
(bvRNA-GA) is proposed to determine the parameters of LSSVM. The bvRNA-GA is featured by
designing the bulge loop crossover operator and the virus-induced mutation operator, they are
employed to balance the exploration and exploitation capacities. Different experiments with 10
benchmark functions are conducted to show that the search efficiency of bvRNA-GA is better than
the other four state-of-art algorithms. The outputs of bvRNA-GA optimized LSSVM models can better
agree with the real outputs of different PV systems, the modeling results demonstrate the effectiveness
of bvRNA-GA in solving real-world problems.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The photovoltaic (PV) systems as one of the greatest technolo-
ies for humans can directly convert the photons into electrical
nergy and do not produce harmful substances [1]. However,
he PV systems are sensitive to the working temperatures and
rradiation which lower the conversion efficiency of PV systems
nd limit the use of solar energy [2]. In order to better design the
tructure and enhance the performance, accurate models must be
stablished for PV systems [3]. However, it is a tricky problem
o model PV systems because they are featured with complex
onlinear characteristics and are easily influenced by outside
onditions [4].
Researchers usually adopt two ways to model complex non-

inear systems, they are the parametric modeling method and the
on-parametric modeling method. In recent years, the parametric
odeling method has been applied to model the mathematical
odels for PV systems. The mathematical models use the physical
rocesses and the related variables to represent the characteris-
ics of PV systems, and researchers have applied many different
lgorithms to extract the unknown parameters in the mathemat-
cal models. For example, the parallel swarm algorithm (PSA) and

∗ Corresponding author.
E-mail addresses: nwang126@126.com, nwang@iipc.zju.edu.cn (N. Wang),

molina@decsai.ugr.es (D. Molina), herrera@decsai.ugr.es (F. Herrera),
JU_liuxiu@outlook.com (X. Liu).
ttps://doi.org/10.1016/j.asoc.2021.108357
568-4946/© 2021 Elsevier B.V. All rights reserved.
the ant lion optimizer are respectively used in [5] and [6] to
estimate the parameters of a simple PV system which is called the
single diode model (SDM). Then, the double diode model (DDM) is
studied, and some optimization algorithms are applied to detect
the parameters for both SDM and DDM [4,7–9]. To detect the
performance of this kind of modeling method, more and more
researchers take the modeling problems of PV solar modules into
consideration [10–13]. These researches demonstrate the better
performance of the parametric modeling method. However, there
is little research about non-parametric modeling in modeling PV
systems.

Non-parametric is a kind of black-box modeling method, it
only takes the mapping relationship of the system input–output
into account and neglects the internal characteristics of PV sys-
tems. Among the existing non-parametric modeling methods,
the support vector machine (SVM) attracts wide concern from
researchers [14,15]. SVM has highly competitive performance in
solving many engineering problems, such as face recognition,
data mining, image processing, nonlinear system modeling, and
other domains [16]. However, the constrained quadric program-
ming optimization problem in SVM can cause the datasets to
be rough and to fluctuate, severely limiting the applications in
solving regression problems [17]. The least-squares SVM (LSSVM)
was proposed by Suykens and Vandewalle, and it improves the
performance of SVM in two ways [18]. Firstly, LSSVM modifies
the inequality constraints in the SVM to equality constraints. Sec-
ondly, LSSVM adopts the training error square in the cost function

https://doi.org/10.1016/j.asoc.2021.108357
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.108357&domain=pdf
mailto:nwang126@126.com
mailto:nwang@iipc.zju.edu.cn
mailto:dmolina@decsai.ugr.es
mailto:herrera@decsai.ugr.es
mailto:ZJU_liuxiu@outlook.com
https://doi.org/10.1016/j.asoc.2021.108357


X. Liu, N. Wang, D. Molina et al. Applied Soft Computing 117 (2022) 108357

i
o
e
a
p
m
h
p

f
h
t
t
t
t
t
w
d
k
d

a
G
f
f
a
m
u
t
e
o
g
L
c

s
t
=

c
q

I

I

c
f

a
2
W

2

S
i
S
P
s
s

a
f
5
i

nstead of the slack variables [19]. Therefore, it transforms the
riginal quadratic programming problem into solving a set of lin-
ar equations, which thus improves the computation speed and
ccuracy significantly [20]. Furthermore, there are fewer hyper-
arameters to be determined, which means we can acquire better
odeling performance by optimizing fewer parameters. LSSVM
as been made some attempts in complex non-linear modeling
roblems.
Rostami et al. [21] applied LSSVM to model a correlative model

or CO2 solubility in both dead and live oil systems. Zende-
boudi [22] developed the LSSVM modeling approach to estimate
he parameters of solid desiccant wheels. Bemani et al. [23] used
he LSSVM for estimation of the cetane number of biodiesel in
erms of fatty acid methyl esters composition. These works show
he effectiveness of LSSVM in dealing with engineering problems,
herefore, the LSSVM is adopted to model PV systems in this
ork. But the vital thing is that the performance of LSSVM highly
epends on the regularization parameter and the width of the
ernel function. An effective method should be investigated to
etermine the LSSVM parameters.
Recently, intelligent optimization algorithms have been

dopted to tune the parameter values for LSSVM. For example,
ao and Liu [24] optimized LSSVM parameters with hybrid fruit
ly optimization (FFO) and Particle swarm optimization (PSO)
or cancer diagnosis. Tian [25] proposed an improved firefly
lgorithm to set the LSSVM parameters, which achieves better
odeling accuracy in predicting wind speed . Wen and Cao [26]
tilized the enhanced butterfly optimization algorithm (BOA)
o determine LSSVM parameters for predicting residential CO2
missions. Wu et al. [27] used the artificial bee colony (ABC)
ptimized LSSVM to diagnose the system faults, which obtain
ood pattern recognition performance. Wu et al. [28] utilized the
SSVM for predicting aero-optic imaging deviation based on the
haotic particle swarm optimization (CPSO). Liu et al. [29] came
up with a robust reliability model with the chaos modified PSO
(CMPSO) algorithm to estimate the weighted LSSVM parameters.

Genetic algorithm (GA) proposed by professor J. Holland in
1975 imitates the biological evolution process [30]. GA is fea-
tured with good random searching ability and extensibility, it
has been widely used to determine system parameters and se-
lect features [31–36]. Although GA has outstanding advantages,
the defects of premature and low precision hinder its applica-
tions. To overcome these disadvantages, inspired by DNA com-
puting [37], Tao and Wang proposed the RNA genetic algorithm
(RNA-GA) [38]. According to the experimental results in [38],
RNA-GA owns superiority over the basic GA both in search-
ing precision and population diversity. After that, variants of
RNA-GAs are proposed by researchers [39–44]. Inspired by RNA
molecular operations the new operators are designed to enhance
the performance of other intelligent algorithms as well [45,46].

In this work, we propose a novel RNA genetic algorithm
(bvRNA-GA) that incorporates the newly designed opertors: the
bulge loop crossover operator and the virus-induced mutation op-
erator. The bvRNA-GA is tested with some benchmark functions
and the results are compared against four state-of-art algorithms.
Subsequently, bvRNA-GA is used to optimize the LSSVM pa-
rameters for modeling different PV systems (include the SDM,
the DDM, and three different PV solar modules) under various
working conditions. The main contributions of this work are
summarized as follows:

• We propose a novel RNA genetic algorithm (bvRNA-GA).
In bvRNA-GA, the bulge loop crossover operator and the
virus-induced mutation operator are designed to balance
exploration and exploitation capacities.
 W
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• The performance superiority of bvRNA-GA against four kinds
of state-of-art algorithms is performed with some bench-
mark functions.

• We model the PV systems with the bvRNA-GA based LSSVM.
This modeling method obtains higher accuracy PV system
characteristic curves.

The remainder of the paper is organized as follows: Brief
descriptions about the PV systems and the LSSVM are shown
in Section 2. In Section 3, we propose the novel RNA genetic
algorithm (bvRNA-GA) and the genetic strategies. The numerical
experiments on benchmark functions are performed in Section 4.
In Section 5, the bvRNA-GA is adopted to optimize the LSSVM for
modeling PV systems. Finally, the conclusion is given in Section 6.

2. Photovoltaic system modeling

In this section, a brief mathematical description of different
photovoltaic (PV) cell systems and the least-squares support vec-
tor machine (LSSVM) modeling approach are given below. In this
work, the researched PV systems include the single diode model
(SDM), the double diode model (DDM), and the three kinds of
photovoltaic (PV) cell solar modules.

2.1. The PV systems

2.1.1. SDM and DDM
SDM and DDM attract widely studied by researchers, their

equivalent circuits are shown in Fig. 1 [47,48].
According to Kirchhoff’s current law (KCL) the terminal current

IL of the SDM is calculated as follows [47]:

IL = Iph − Isd ·

[
exp

(
VL + Rs · IL

a · Vt

)
− 1

]
−

VL + Rs · IL
Rsh

(1)

where Iph, Isd, Rs, Rsh, and a represent the photocurrent, the diode
aturation current, the series resistance, the shunt resistance, and
he diode ideality factor, respectively. VL is the output voltage. Vt
kT /q is the thermal voltage of the diode, where the Boltzmann

onstant k = 1.3806503 × 10−23 J/K, and the electron charge
= 1.60217646 × 10−10C, T is the Kelvin temperature (K).
Accordingly, by applying the KCL to DDM the terminal current

L is obtained [48]:

L = Iph − Isd1 ·

[
exp

(
VL + Rs · IL

a1 · Vt

)
− 1

]
− Isd2 ·

[
exp

(
VL + Rs · IL

a2 · Vt

)
− 1

]
−

VL + Rs · IL
Rsh

(2)

The same as SDM, Isd1 and Isd2 are the diffusion and saturation
urrent for each diode of DDM. Where a1, a2 are the diode ideality
actors of those two diodes.

In this work, we use the LSSVM to model the I-V and P-V char-
cteristic curves for SDM and DDM under working temperatures
5 ◦C , 33 ◦C , 50 ◦C , 75 ◦C , 100 ◦C (with irradiation level 1000
/m2).

.1.2. The PV solar modules
In this work, three kinds of PV solar modules include the

75, the SM55, and the ST40 are studied, their manufacturers’
nformation sheets are respectively shown in [49–51]. Where the
75 module contains 36 series-connected multi-crystalline silicon
V cells. SM55 was established by 36 series mono-crystalline
ilicon PV cells. ST40 is composed of a monolithic structure of
eries-connected Copper Indium Diselenide (CIS) based PV cells.
We model the I-V curves of S75, SM55, ST40 both working

t different temperatures and different irradiance. Specifically,
ive kinds of working temperatures include 20 ◦C , 30 ◦C , 40 ◦C ,
0 ◦C , 60 ◦C (with irradiation level 1000 W /m2), and different
rradiations 200 W /m2, 400 W /m2, 600 W /m2, 800 W /m2, 1000
/m2 (with standard temperature 25 ◦C) are studied.
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Fig. 1. The circuit diagram of the SDM [47] (the left) and the DDM (the right) [48].
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.1.3. Sampling datasets
We sample the datasets of SDM and DDM (includes the train-

ng and testing dataset) that can be used for the LSSVM modeling
ethod according to the following steps, for the convenience of
nderstanding, taking SDM working at temperatures 25 ◦C as an
xample:
Step 1: Use MATLAB Simulink’s tool and the SDM’s mathemat-

cal models described above to build the simulation model.
Step 2: Input the model parameters of SDM (25 ◦C , 1000
/m2) obtained in [3] to the simulation model.
Step 3: Input the voltage (V), where the range of voltage is

rom −0.2 V to 0.6 V ; Sample the output current (I) and the
ampling interval is 2.6E−03 V ; Finally, the dataset with 300
airs {(Vk, Ik)|k = 1,. . . ,300} samples are obtained.
The datasets of SDM and DDM under different working condi-

ions can be obtained use step 1 to step 2.
The way to sample the datasets of PV solar modules is different

rom that of SDM and DDM. The real characteristic curves of S75,
M55, ST40 under the researched outside conditions are respec-
ively shown in their manufacturers’ information sheets [49–51],
nd we directly extracted their modeling dataset from the man-
facturers’ information datasheet in [49–51]. For each working
ondition of these PV solar modules, the dataset with 300 pairs
(Vk, Ik)|k = 1,. . . ,300} samples is obtained by directly measur-
ng the characteristic curves in the manufacturers’ information
heets.

.2. The least-squares support vector machine

Usually, the parameters of the support vector machine (SVM)
re determined by the quadratic programming method, while
SSVM achieves such purpose by a set of linear equations. Sup-
ose the training dataset with M samples{(xi, yi)|i = 1,2,. . . ,
}, xi∈R1×In and yi∈R1×On are respectively the input variable and
orresponding output, where In and On are dimensions (in this
ork In = 6, On = 1). The LSSVM model structure can be given
s the following equation [24]:

ˆ (x) = wTΦ(x) + b (3)

here w is the weight vector; b is the error variable; Φ(•)
epresents the nonlinear mapping function that maps the input
amples to a high dimensional feature space. Solving the follow-
ng constrained optimization problem can be used to obtain the
arameters of the linear regression function [24]:

min
w,b,ξ

J(w, ξ ) =
1
2
wTw +

1
2
γ

M∑
i=1

ξ 2
i

s.t.y i = wTΦ(xi) + b + ξi

(4)

where J(w, ξ ) is the lost function; γ is the regularization parame-
er; ξi is the deviation variable. The following Lagrangian function
s constructed to solve this optimization problem [24]:

=
1
2

∥w∥
2
+ γ

M∑
ξ 2
i −

M∑
αi{w

Tϕ(xi) + b + ξi − y i} (5)

i=1 i=1 f

3

where L denotes the multiplier of Lagrangian. According to the
Karush-Kuhn–Tucker (KKT) condition, the following equations are
obtained [24]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L/∂w = 0 ⇒ w =

M∑
i=1

αiΦ(xi)

∂L/∂b = 0 ⇒

M∑
i=1

αi = 0

∂L/∂ξi = 0 ⇒ αi = γ ξi

∂L/∂αi = 0 ⇒ wTΦ(xi) + b + ξi − y i = 0

(6)

After eliminating ω and ξ by the above equation, the optimiza-
ion problem can be transformed into a linear equation problem
hown as follows [24]:

0 IT

I Ω +
1
γ
I

⎤⎦[b
α

]
=

[
0

y

]
(7)

where α = [α1,. . . , αM ]T ; I = [1, . . . , 1]T ; �k,i = K (xk, xi) (k,
i = 1,2,. . . , M) is the kernel matrix. Therefore, the regression
model of LSSVM is described as follows [22]:

y(x) =

M∑
i=1

αiK (x, xi) + b (8)

where K (, ) is the kernel function of LSSVM. In this work, the
Radial Basis Function (RBF) is adopted in the LSSVM regression
model, which is formulated as follows [24]:

K (x, xi) = exp
(

− ∥x − xi∥2

2σ 2

)
(9)

where σ is the width of RBF which determines the sensitivity of
SSVM.
Therefore, the parameters σ and γ of LSSVM need to be

etermined. In this work, we proposed the bvRNA-GA to adjust
hese two parameters, and the bvRNA-GA based LSSVM is applied
o model different PV systems.

. The bvRNA-GA

To enhance the performance, the bulge loop crossover oper-
tor and the virus-induced mutation operator are designed in
his work. Therefore, the novel RNA-GA is named bvRNA-GA,
he bvRNA-GA and the operators are described in the following
ubsections.

.1. RNA encoding

According to the description of the RNA-GA [38], RNA-GA
dopts four integers {0, 1, 2, 3} to respectively replace those
our kinds of nucleotide bases (adenine(A), uracil(U), guanine(G),
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ytosine(C)) to form the potential solutions of a global opti-
ization problem. To the global optimization problem with D

dimensional variables, the encoding length of a potential solution
is L = D×ls, where ls is the encoding length of the single
variable. In this work, the complementary bases theory is also
introduced to perform a special operation. Complementary bases
theory is that complementary bases A ↔ U and G ↔ C can be
connected by the hydrogen bond in biological, there are many
different ring/loop structures in RNA molecules because of their
phenomenon. Therefore, the integers 0 ↔ 3 and 1 ↔ 2 are
regarded as complementary integers.

3.2. Procedure of bvRNA-GA

The procedures of bvRNA-GA are as follows, and the flowchart
is shown in Fig. 2:

Step 1: Set the parameters (N, L, G, etc.); generate the initial
population PT .

Step 2: Calculate the fitness values of PT , and sort PT ; Select N/2
individuals with better fitness values to make up the
population Pb; select N/2 individuals with worse fitness
values to make up the population Pw .

Step 3: Copy Pb, perform the bulge loop crossover operator
which is defined in Section 3.4 to Pb according to proba-
bility pbl, and perform the inner loop crossover operator
to the copied Pb according to probability pil; N new
individuals are obtained after this step and reserving
them to Pnb.

Step 4: Perform the virus-induced mutation operator to popu-
lations Pnb and Pw; One obtains 3×N/2 new individ-
uals after this step, and they are reserved to the new
population Pmt .

Step 5: Calculate the fitness values of Pmt , and sort Pmt ; Then
select N individuals with better fitness values from Pmt .

Step 6: Perform the proportional selection operator to the se-
lected N individuals in Step 5.

Step 7: More than N individuals are obtained after Step 6, but
only reserve N individuals with better fitness values, and
replace the population PT with the reserved N individu-
als.

Step 8: If achieves the maximum iteration G, output the current
best individual (the optimal solution). Else, go to Step 2.

The following subsections are going to describe the propor-
tional selection operator, the bulge loop crossover operator, the
inner loop crossover operator, and the virus-induced mutation
operator in detail.

3.3. The proportional selection

The proportional selection in Step 6 duplicates the individual
in proportion. The duplicating proportion Ni (Ni = 1, 2, 3, . . .,N)
is calculated according to the following equation.

Ni =

⏐⏐⏐⏐⏐N ·

⌊
Fi∑N
j=1 Fj

⌋⏐⏐⏐⏐⏐ (10)

where Fi = 1/f i, and fi > 0 is the fitness value of ith individual;
⌊•⌋ denotes maximal integer less than ‘•’.

The number N̂ =
∑N

i=1 Ni tells the reason why the population
size is bigger than N after the proportional selection, and only N
individuals with better fitness values are reserved.
4

3.4. The crossover operators

During the searching processes of GA, the crossover operator
is the most important approach for information communication
among individuals. The basic GA has the drawbacks of slow
convergence and low precision. To enhance the performance,
the bulge loop crossover operator and the inner loop crossover
operator are designed in this work. The bulge loop crossover
operator is inspired by the bulge loop structure of RNA molecule
double-strand structure [52] (shown in Fig. 3). The procedures of
the bulge loop crossover operator and the inner loop operator are
summarized as follows.

3.4.1. The bulge loop crossover operator
For the convenience of understanding, one takes L = 18 as an

example, and the schematic of the bulge loop crossover operator
is shown in Fig. 3. As is shown in Fig. 3(2), from left to right, the
nucleotide bases in positions [1, L/2] are defined as high bits, and
the nucleotide bases in positions [L/2 + 1, L] are defined as low
its. The procedures of the bulge loop crossover operator can be
ivided into 2 steps:
Step (a): The formation of the bulge loop structure (BLS), in Fig. 3

rom (1) to (4);
Step (b): Performing the crossover operator, in Fig. 3 from (5) to

8).
Firstly, performing the procedures of steps (a):

Step (a.1): Select an individual from Pb (Pb has been defined in
Section 3.2; Respectively select two positions from
the high bits (loc1) and the low bits (loc2) (shown in
Fig. 3(2)). loc1 and loc2 satisfy the following condition:

|loc2 − loc1| ≥ 2 (11)

Therefore, there are (L/2)2 − 1 combinations of loc1,
loc2 for a single individual. For the convenience of
descripting, one defines tt = 0.

Step (a.2): If tt < (L/2)2 − 1 and the nucleotide bases in loc1
and loc2 are the complementary base (defined in Sec-
tion 3.1), join them together to form the BLS, this
complementary base is the root base of the formed
BLS (shown in Fig. 3(3)). This individual is marked
as the bulge loop strand, then go to Step (a.4). If the
bases in loc1, loc2 is not the complementary base, tt
+ = 1 and go to Step (a.3).

Step (a.3): If tt ≥ (L/2)2 − 1, this individual cannot find com-
plementary base and is marked as normal strand, go
to Step (a.1); Otherwise, reselect loc1, loc2 (current
loc1, loc2 combination has not been selected) and go
to Step (a.2);.

Step (a.4): Replace the original bulge loop strand without form-
ing the BLS with the corresponding bulge loop strand
with BLS, shown in Fig. 3(4). Go to Step (a.1) until all
the individuals in Pb are operated.

Secondly, performing the procedures of steps (b):

Step (b.1): Randomly select two individuals (marked as I1 and
I2) from Pb (once I1 and I2 are selected, remove them
from Pb), matching I1, I2 and align at left (shown in
Fig. 3(5)).

Step (b.2): If both I1, I2 individuals are bulge loop strands (shown
in Fig. 3(5)), and the root base of each bulge loop
structure can form the allelic bases, then these two
bulge loop structures are dissociated from the root
bases and exchange with each other (shown in
Fig. 3(6)), after that, switch to Step (b.5); Else switch

to Step (b.3).
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Fig. 2. The flowchart of the bvRNA-GA.
Step (b.3): If one individual is a bulge loop strand, and the other
is a normal strand, the bulge loop will dissociate from
the root bases and move to the allelic bases, after that,
switch to Step (b.5); Else switch to Step (b.4).

Step (b.4): If both of the individuals are normal strands, they
are directly reserved to Pnb without any operation,
switch to Step (b.1); If Pb is none, stop performing the
crossover operator.

Step (b.5): Restore the encoding length of I1 and I2 by moving the
redundant bases of the longer one to the right of the
shorter one (like Fig. 3(6)); Then two new individuals
(nI1 and nI2) are obtained as Fig. 3(7).

Step (b.6): Put nI1, nI2 to Pnb, and switch to Step (b.1); If Pb is
none, stop performing the crossover operator.

.4.2. The inner loop crossover operator
The procedures of the inner loop crossover operator:

Step 1: Randomly select two individuals from the copied Pb
(once they are selected, remove them from the copied
Pb), matching these two individuals and align at the left.

Step 2: Traversal the allelic bases in the double-strands from
high bits to low bits, the first complementary base posi-
tion is defined as d1. Then, searching from the position
(d1+1) to position L to find the second complementary

base position d2.

5

Step 3: If both positions d1, d2 are found, the inner loop struc-
ture is formed, rotate the inner loop structure for 180
degrees, the selected two individuals exchange their
allelic bases between the positions d1 and d2, then two
new individuals are obtained; Reserving them to Pnb;
Else if, directly reserving these two individuals to Pnb.

Step 4: If the copied Pb is none, stop performing the crossover
operator; Else go to Step 1.

At last, after performing the bulge loop crossover operator and
the inner loop crossover operator, there are N individuals in Pnb.

3.5. The virus-induced mutation operator

The mutation operator is an important way to enhance the
population diversity of GA. In this section, the virus-induced
mutation operator is designed inspired by the genetic character-
istic of virus individuals (the infection ability and the evolution
ability) [53]. The infection ability is the capacity of the virus to
transmit self-genetic information to the host individual. The evo-
lution ability is the ability to change its self-genetic information
with the genetic information of the host individual.

The genetic material in the virus usually contains many invalid
genes, we represent these invalid bases with the symbol ‘*’, an
example of a virus individual is shown in Fig. 4(a)(1) and (b)(1).
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Fig. 3. The schematic of the bulge loop crossover operator.
he virus population (Pv) is generated in each iteration. Pnb and
w are called the host population in this section. It is nothing that,
he virus load in Pv is determined by the total individual numbers
f Pnb and Pw .
The procedures of virus-induced mutation operator are de-

cribed as follows:

Step 1: Perform Step (a.1) to Step (a.3) (described in
Section 3.4.1) to all the individuals in Pnb and Pw , and
later, the individuals are marked as bulge loop strand
and normal strand.

Step 2: Randomly generate ⌊Nt/10⌋ virus individuals to form
the virus population Pv , where Nt = 3N/2. The length
of virus individuals is L as well. When generating the
bases of virus individuals, the base in current position
Lc is the normal base or the invalid base is determined
by probability p which is calculated by the following
m

6

equation.

pm = 0.02 + 0.08 ·

(
ε
( L
2 − Lc

)
1 + exp(δ · (g −

G
2 ))

+
ε
(
Lc −

L
2 − 1

)
1 + exp(−δ · (g −

G
2 ))

)
(12)

where ε(τ ) is jump function with two values {ε(τ ) =

1|τ≥0} and {ε(τ ) = 1| τ < 0}; g is the current iteration;
δ = 60/G which decides the changing rate of pm.

Step 3: Randomly select a virus individual from Pv to infect the
host individual select from the host population (shown
in Fig. 4(a)(1) and Fig. 4(b)(1)). If the host individual is a
normal strand (like Fig. 4(a)(2)), go to Step 4; If host in-
dividual is the bulge loop strand (shown in Fig. 4(b)(2)),
go to Step 5.
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Fig. 4. The schematic operation of the virus-induced mutation operator.
Step 4: All the allelic bases (only the valid bases of virus indi-
vidual can form allelic bases with the host individual) in
the host individual are replaced by the valid bases of the
virus, the infected process is shown in Fig. 4(a)(2), and
the new individual is obtained after being infected and is
shown in Fig. 4(a)(3), then reserving the new individual
to population Pmt , go to Step 8.

Step 5: There are two kinds of operation cases for bulge loop
strand host individuals. Case 1: If the root bases of the
bulge loop structure are infected by the valid bases of
virus individual (shown in Fig. 4(b)(2)), go to Step 6;
Case 2: If the host individual is the bulge loop strand,
but the root bases are not infected or not completely
infected by the valid bases of the virus, go to Step 7.

Step 6: Firstly, The bulge loop structure dropping, the left base
sequence is shown in Fig. 4(b)(3) (other bases in host
individual are not influenced by valid bases of virus
individual); Secondly, to restore the length of the host
individual, a random sequence is generated (shown in
Fig. 4(b)(4)); Finally, the new individual is obtained af-
ter connecting the left base sequence with the random
sequence (shown in Fig. 4(b)(5)), then reserving the new
individual to population Pmt , go to Step 8.

Step 7: All the allelic bases in the host individual are replaced by
the valid bases of the virus; The new host individual is
obtained by opening the bulge loop structure, reserving
the new individual to population Pmt , go to Step 8.

Step 8: When infecting the host individual, the valid bases and
invalid bases of the virus individual is also changed
according to probability. In other word, the valid bases
may be changed into invalid bases or other different
bases, and the invalid bases may be changed into a kind
of valid bases; The changing probability for virus bases
at the current location Lc is pr = 0.5·pm.

Step 9: Put the changed virus individual to Pv , go to Step 3;
If all the host individuals have been operated, stop the
mutation operator.

4. Experimental data results and discussions

To assess the performance of the bvRNA-GA, benchmark func-

ion tests are carried out in this section. The experimental results

7

of bvRNA-GA are compared with RNA-GA [38], Evolution Strat-
egy with Covariance Matrix Adaptation (CMA-ES) [54], Success-
History based Adaptive Differential Evolution incorporates Linear
Population Size Reduction (L-SHADE) [55], Coyote Optimization
Algorithm (COA) [56] to verify its searching capacity.

4.1. Benchmark functions and parameter setting

10 benchmark functions are used in this work, the detailed
of these functions is shown in Table 1, where there are 5 typical
benchmark functions (F1–F5) and 5 IEEE Congress on Evolution-
ary Computation (CEC)’ 2014 benchmark functions (F6–F10) [57].
Among these functions, F1, F3 to F5, F6, F7 are unimodal prob-
lems, that is, there is only one global optimal value in the search-
ing boundaries, they can better test the exploration capacity of
the optimization algorithms. Especially, F6 and F7 are obtained by
rotating typical benchmark functions which increase the search-
ing difficulty. F2, F4, F8–F10 are multimodal functions, they have
a global optimal value and a lot of local minimum. To obtain more
credible experimental results, all the five algorithms are working
in the same hardware and software, and the parameters of the
RNA-GA [38], CMA-ES [54], L-SHADE [55], COA [56] are listed in
Table 2, they are directly extracted from their original references.
50 times independently running are done on dimensions (D) 2,
10, and 30 for all the benchmark functions. The only termination
criterion is to achieve the maximum iteration G = 500 · D.
The hardware and software environment used in this work is
described as follows:

• Hardware Intel Core i5-7th CPU with frequency 2.5 GHz,
8 GB memory.

• Software: MATLAB 2017b working on the Windows 10 64-
bit Professional operating system.

4.2. Discussion on the impacts of the improvement strategies

In this section, the performance of the crossover operators
and the mutation operator is investigated. CRNA-GA is bvRNA-GA
without using the virus-induced mutation operator. MRNA-GA is
bvRNA-GA without using the bulge-loop crossover operator and
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able 1
detailed description of the benchmark functions.
Typical benchmark functions

ID Function detail Bounds Optimum

F1 The Rosenbrock’s f1(x) =

D−1∑
i=1

[
(xi − 1)2 + 100

(
xi+1 − x2i

)2]
[−5, 5] 0

F2 The Levy’s f2(x) = sin2(πw1) +

D∑
i=1

(wi − 1)2
[
1 + 10 sin2 (πwi + 1)

]
+ (wd − 1)2

[
1 + sin2(2πwd)

]
, where wi = 1 +

xi − 1
4

[−10, 10] 0

F3 The Rotated Hyber-Ellipsoid f3(x) =

D∑
i=1

i∑
j=1

x2j [−65.36, 65.36] 0

F4 The Sum of different powers f4(x) =

D∑
i=1

|xi|i+1 [−1, 1] 0

F5 The Sum Squares f5(x) =

D∑
i=1

ix2i [−5.12, 5.12] 0

IEEE CEC’ 2014 benchmark functions [57]

ID Function detail Bounds Optimum

F6 The Rotated High Conditioned Elliptic Function in IEEE CEC’2014 dataset [−100, 100] 100
F7 The Rotated Discus Function in IEEE CEC’2014 dataset [−100, 100] 300
F8 The Shifted and Rotated Ackley’s Function in IEEE CEC’2014 dataset [−100, 100] 500
F9 The Shifted and Rotated Katsuura Function in IEEE CEC’2014 dataset [−100, 100] 1200
F10 The Shifted and Rotated Expanded Scaffer’s Function in IEEE CEC’2014 dataset [−100, 100] 1600
Table 2
Parameter setting of the referred algorithms.
Algorithm N G Encoding length Other parameters

bvRNA-GA 100

500·D

L = 20·D pbl = 0.5, pil = 0.5
RNA-GA 100 L = 20·D pc = 0.5, pt = 1, a1 = 0.02, b1 = 0.2, g0 = G/2, aa = 20/G
CMA-ES 100 None σF = 0.5, µ = 5, λ = 10
L-SHADE 100 None rN

init
= 18, rarc = 2.6, p = 0.11, H = 6

COA 100 None Np = 20, Nc = 5
Table 3
Comparison of the optimal result of bvRNA-GA, CRNA-GA, MRNA-GA, and RNA-GA on F1–F10 (D = 10).
No. bvRNA-GA CRNA-GA MRNA-GA RNA-GA Rank

Mean SD Mean SD Mean SD Mean SD

F1 2.8600E−01 9.6589E−02 6.9464E+00 1.4092E+01 1.1127E+01 5.9792E+01 2.3775E+01 6.1851E+01 1/2/3/4
F2 4.3190E−09 2.0672E−17 6.0809E−03 8.4847E−05 2.2609E−02 8.9706E−04 3.8819E−03 1.0686E−05 1/3/4/2
F3 6.5115E−08 3.2246E−14 2.4033E−04 6.4765E−07 3.8627E+00 2.0723E+00 1.6899E+02 2.5887E+03 1/2/3/4
F4 9.0953E−13 1.1737E−32 1.5191E−08 3.0011E−15 9.8622E−10 4.1131E−18 6.7789E−06 7.7015E−12 1/2/3/4
F5 3.8489E−09 1.2555E−16 2.1922E−05 7.1773E−09 4.6460E−02 3.6463E−04 4.6454E−01 1.3483E−02 1/2/3/4
F6 3.0436E+05 7.4994E+10 7.0755E+06 3.3064E+13 2.4597E+05 4.4127E+10 6.1935E+05 2.4699E+11 2/4/1/3
F7 1.5614E+03 1.1430E+06 8.3391E+03 2.0623E+07 1.6543E+03 9.4070E+05 6.2080E+03 9.0555E+06 1/4/2/3
F8 5.1371E+02 4.9723E+01 5.2013E+02 3.0737E−03 5.1191E+02 3.1298E+01 5.1505E+02 1.9424E+01 2/4/1/3
F9 1.2000E+03 6.1955E−06 1.2005E+03 4.2425E−02 1.2002E+03 2.3709E−03 1.2002E+03 2.1394E−03 1/4/2/2
F10 1.6022E+03 9.1261E−02 1.6028E+03 1.3250E−01 1.6018E+03 1.0919E−01 1.6027E+03 1.4909E−02 2/4/1/3
the inner loop crossover operator. The working conditions and
parameter setting of bvRNA-GA, CRNA-GA, MRNA-GA, RNA-GA
stay the same with Section 4.1. The mean values (Mean) and
standard deviation values (SD) on 10-dimensional benchmark
functions are provided in Table 3.

First, according to Table 3, bvRNA-GA wins all the other varia-
ions in 7 of the 10 functions, so each component of the proposal
bulge-loop crossover operator, inner loop crossover operator,
irus-induced mutation operator) is useful to improve the results.
he CRNA-GA wins both MRNA-GA and RNA-GA on F1 to F5,
owever, MRNA-GA owns superior performance than CRNA-GA
nd RNA-GA on F6 to F10. From the above results, one can
onclude that CRNA-GA with better local searching (exploration)
bility, because it has good performance in solving easy problems
ike F1 to F5. But MRNA-GA achieves better results on much more
omplex problems like F6 to F10 for its good global searching
exploitation) capacity.
8

4.3. Discussion and comparison of the numerical results

Based on the parameters set and the conclusion in Sections 4.1
and 4.2, this section compared three evaluation indexes of
bvRNA-GA (include the mean (Mean) value, the median (Median)
value, and the standard deviation (SD) value) for the 10 bench-
mark functions with the results of RNA-GA, CMA-ES, L-SHADE,
COA. The statistical results on 2-dimensional, 10-dimensional,
30-dimensional are respectively shown in Tables 4–6. The rank
results are according to the mean values.

It can be seen from the experimental results in Table 4 that
bvRNA-GA obtains the best results in 9 of 10 benchmark functions
except for F6. In particular, the results for Mean, Median, SD of
bvRNA-GA on F1–F5 are significantly superior to RNA-GA, CMA-
ES, COA, L-SHADE. bvRNA-GA and RNA-GA find the best solution
for F8, F9, F10, CMA-ES in the same searching performance with
bvRNA-GA on F9, and L-SHADE also find the best solution for F10.
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omparison of the numerical results by bvRNA-GA, RNA-GA, CMA-ES, COA, and L-SHADE for the 10 benchmark functions on 2-dimensional.
Function Index bvRNA-GA RNA-GA CMA-ES COA L-SHADE Rank

F1
Mean 1.2781E−11 1.8811E−03 2.9621E−03 1.7408E−01 6.3857E−03

1/2/3/5/4Median 1.7077E−15 5.4786E−07 4.2356E−04 1.4247E−01 1.6911E−03
SD 2.7105E−21 6.6965E−05 4.7948E−05 2.6258E−02 6.3873E−05

F2
Mean 6.5528E−14 1.3111E−06 3.9488E−01 3.9613E−01 4.2710E−01

1/2/3/4/5Median 3.1739E−15 1.5034E−08 4.2677E−01 4.0419E−01 4.2711E−01
SD 2.1937E−26 2.9911E−11 5.9597E−03 7.2037E−04 1.2639E−09

F3
Mean 4.6849E−11 7.3972E−08 4.1930E−08 1.6649E+00 4.1388E−04

1/3/2/5/4Median 1.0601E−20 4.3326E−08 7.8633E−09 1.3776E+00 3.0274E−04
SD 4.3895E−20 1.2416E−14 5.4476E−15 2.0780E+00 2.3616E−07

F4
Mean 8.9849E−16 5.1300E−09 1.7028E−05 5.2704E−03 1.6251E−05

1/2/4/5/3Median 9.0949E−16 3.4152E−09 1.1752E−05 4.2163E−03 9.3181E−06
SD 2.6723E−33 4.4486E−17 3.4300E−10 1.5124E−05 2.7654E−10

F5
Mean 4.2849E−23 5.3000E−10 2.2624E−10 5.9996E−06 4.7773E−10

1/4/2/5/3Median 2.1685E−23 2.2256E−10 7.7633E−12 9.5133E−07 8.4933E−12
SD 3.6971E−45 1.1424E−18 5.9799E−19 2.1750E−10 2.2417E−18

F6
Mean 3.5178E+02 3.5668E+02 1.1081E+02 5.3952E+03 1.0540E+02

3/4/2/5/1Median 3.2225E+02 2.8550E+02 1.0354E+02 4.4796E+03 1.0175E+02
SD 5.0784E+04 7.7155E+04 2.2270E+02 4.1183E+07 1.2371E+02

F7
Mean 3.2567E+02 7.7280E+02 1.2170E+03 1.0407E+04 3.5085E+02

1/3/4/5/2Median 3.1770E+02 5.7058E+02 1.1829E+03 5.7336E+03 3.0523E+02
SD 6.7547E+02 2.4418E+05 3.7617E+05 1.6976E+08 1.5981E+04

F8
Mean 5.0019E+02 5.0051E+02 5.2000E+02 5.0953E+02 5.0027E+02

1/3/4/5/2Median 5.0000E+02 5.0000E+02 5.2000E+02 5.1005E+02 5.0015E+02
SD 8.9968E−01 3.3356E−01 3.1913E−04 1.2665E+01 8.2912E−02

F9
Mean 1.2000E+03 1.2000E+03 1.2000E+03 1.2007E+03 1.2008E+03

1/1/1/4/5Median 1.2000E+03 1.2000E+03 1.2000E+03 1.2007E+03 1.2008E+03
SD 1.3448E−03 3.5506E−06 2.5781E−05 1.8863E−01 1.1058E−01

F10
Mean 1.6000E+03 1.6000E+03 1.6010E+03 1.6001E+03 1.6000E+03

1/1/5/4/1Median 1.6000E+03 1.6000E+03 1.6010E+03 1.6001E+03 1.6000E+03
SD 3.5595E−05 7.5531E−05 1.6009E−21 8.2462E−03 3.4260E−06
Table 5
Comparison of the numerical results by bvRNA-GA, RNA-GA, CMA-ES, COA and L-SHADE for the 10 benchmark functions on 10-dimensional.
Function Index bvRNA-GA RNA-GA CMA-ES COA L-SHADE Rank

F1
Mean 2.8600E−01 2.3775E+01 5.8776E+00 6.6564E+02 3.7415E+00

1/4/4/5/2Median 9.0280E−02 2.3980E+01 5.9033E+00 5.9250E+02 3.8361E+00
SD 9.6589E−02 6.1851E+01 2.7933E−01 1.6803E+05 1.6319E+00

F2
Mean 4.3190E−09 3.8819E−03 2.5801E−01 3.1078E+00 4.1207E−01

1/2/3/5/4Median 2.4359E−09 3.8581E−03 2.1577E−01 3.1608E+00 4.2711E−01
SD 2.0672E−17 1.0686E−05 7.5132E−03 8.6125E−01 2.5344E−03

F3
Mean 6.5115E−08 1.6899E+02 1.1848E−05 2.2807E+03 2.5858E−06

1/4/3/5/2Median 1.2732E−09 1.7559E+02 8.2695E−06 2.3685E+03 3.7032E−07
SD 3.2246E−14 2.5887E+03 1.0400E−10 1.0263E+06 1.9924E−11

F4
Mean 9.0952E−13 6.7789E−06 1.1296E−05 1.6093E−02 1.2569E−12

1/3/4/5/2Median 9.0949E−13 6.5299E−06 9.1952E−06 1.5196E−02 1.6779E−13
SD 1.1737E−32 7.7015E−12 5.1728E−11 9.8316E−05 8.4103E−24

F5
Mean 3.8489E−09 4.6454E−01 6.7018E−06 8.5483E+00 4.2107E−09

1/4/3/5/2Median 1.4416E−10 4.3248E−01 5.3768E−06 8.5069E+00 1.1569E−09
SD 1.2555E−16 1.3483E−02 2.3101E−11 1.1259E+01 3.5871E−17

F6
Mean 3.0436E+05 6.1935E+05 4.5431E+04 8.1980E+06 3.9784E+03

3/4/2/5/1Median 1.6899E+05 4.8417E+05 3.2032E+04 7.3301E+06 5.9173E+02
SD 7.4994E+10 2.4699E+11 2.5602E+09 2.7981E+13 6.3631E+07

F7
Mean 1.5614E+03 6.2080E+03 3.8890E+03 1.6654E+04 3.0008E+02

2/4/3/5/1Median 1.1960E+03 5.6136E+03 3.5827E+03 1.6851E+04 3.0004E+02
SD 1.1430E+06 9.0555E+06 3.2945E+06 2.9980E+07 1.4714E−02

F8
Mean 5.1371E+02 5.1505E+02 5.2015E+02 5.2042E+02 5.2026E+02

1/2/3/5/4Median 5.1877E+02 5.1377E+02 5.2010E+02 5.2042E+02 5.2020E+02
SD 4.9723E+01 1.9424E+01 3.9240E−02 7.1961E−03 2.9823E−02

F9
Mean 1.2000E+03 1.2002E+03 1.2000E+03 1.2010E+03 1.2007E+03

1/3/1/5/4Median 1.2000E+03 1.2002E+03 1.2000E+03 1.2011E+03 1.2005E+03
SD 6.1955E−06 2.1394E−03 6.7833E−03 3.8244E−02 1.7777E−01

F10
Mean 1.6022E+03 1.6027E+03 1.6044E+03 1.6038E+03 1.6029E+03

1/2/5/4/3Median 1.6023E+03 1.6027E+03 1.6044E+03 1.6038E+03 1.6029E+03
SD 9.1261E−02 1.4909E−02 4.9194E−04 2.7474E−02 1.1862E−01
According to Table 5, the search precision of bvRNA-GA in
olving 10-dimensional problems is lower than before. But re-
9

main good performance than the other 4 algorithms, except los-
ing the competition with L-SHADE on F6 and F7. From Table 6,
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able 6
omparison of the numerical results by bvRNA-GA, RNA-GA, CMA-ES, COA and L-SHADE on the 10 benchmark functions when 30-dimensional.
Function Index bvRNA-GA RNA-GA CMA-ES COA L-SHADE Rank

F1
Mean 2.2115E+01 3.4739E+03 2.5557E+01 4.3025E+03 2.6163E+01

1/4/2/5/3Median 2.8413E+01 3.4854E+03 2.5516E+01 4.4054E+03 2.2733E+01
SD 1.5846E+02 6.8767E+04 1.7447E−01 2.3636E+06 1.5274E+02

F2
Mean 4.6512E−06 1.1893E+01 2.2634E−01 2.0917E+01 5.1303E−01

1/5/2/4/3Median 3.1099E−06 1.1824E+01 2.1578E−01 2.1048E+01 5.0713E−01
SD 2.9186E−11 1.6033E+00 2.2332E−03 1.8935E+01 5.9458E−02

F3
Mean 4.6512E−06 1.9197E+04 2.4761E−06 2.7107E+04 8.6349E−06

2/4/1/5/3Median 3.1099E−06 1.9321E+04 1.5095E−06 2.7077E+04 5.4539E−06
SD 2.9186E−11 3.8211E+06 8.1656E−12 5.6916E+07 8.7813E−11

F4
Mean 1.2882E−10 4.9137E−05 1.2037E−04 4.5965E−03 4.0816E−10

1/3/4/5/2Median 2.0539E−11 4.7263E−05 1.1421E−04 3.9359E−03 7.0980E−12
SD 7.2327E−20 1.3031E−10 5.4479E−09 1.1713E−05 2.4327E−18

F5
Mean 3.3114E−08 9.1680E+01 3.1518E−06 1.6620E+02 4.3350E−08

1/4/3/5/2Median 3.0050E−08 9.2197E+01 1.4244E−06 1.6599E+02 2.8919E−09
SD 3.6204E−16 1.0825E+02 1.1060E−11 1.0735E+03 1.1114E−14

F6
Mean 1.1381E+06 8.1698E+07 1.8407E+06 8.3476E+07 8.6282E+05

2/4/3/5/1Median 1.1701E+06 8.1548E+07 1.7653E+06 8.2667E+07 7.7592E+05
SD 2.1700E+11 1.3461E+14 3.0246E+11 5.8439E+14 3.1004E+11

F7
Mean 9.5264E+03 2.4843E+04 2.1028E+04 5.0752E+04 3.3813E+02

2/3/4/5/1Median 8.9577E+03 2.5301E+04 2.1146E+04 4.9105E+04 3.1481E+02
SD 3.4700E+07 2.0981E+07 1.8915E+07 1.6825E+08 2.1838E+03

F8
Mean 5.2006E+02 5.2085E+02 5.2059E+02 5.2072E+02 5.2044E+02

1/5/3/4/2Median 5.2010E+02 5.2084E+02 5.2002E+02 5.2074E+02 5.2040E+02
SD 1.3071E−01 2.3545E−03 4.4754E−01 1.2973E−02 2.3095E−02

F9
Mean 1.2000E+03 1.2012E+03 1.2000E+03 1.2011E+03 1.2005E+03

1/5/1/4/3Median 1.2000E+03 1.2012E+03 1.2000E+03 1.2011E+03 1.2005E+03
SD 1.1999E−05 1.5349E−02 6.5395E−06 4.3896E−02 1.0794E−02

F10
Mean 1.6095E+03 1.6117E+03 1.6130E+03 1.6128E+03 1.6108E+03

1/3/5/4/2Median 1.6093E+03 1.6117E+03 1.6130E+03 1.6128E+03 1.6108E+03
SD 5.5659E−01 4.3817E−02 4.8814E−04 6.4953E−02 1.2872E−01
a
a
c
t
t
s
s

p
n
c

5

e
o
r
i
i
i
G
m
o
p
o
(
p
T
m

as the number of dimensions increases to 30, bvRNA-GA gains
very competitive results on benchmark functions F1 to F5, F9,
F10. Especially, the results for F2 to F5, F9, F10 are much closer
to the optimum values of these benchmark functions. The results
of bvRNA-GA on 2, 10, and 30-dimensional better verify the good
searching capacity.

4.4. Analysis about the Wilconxon’s Rank-Sum test and convergence

Statistical comparison is the crucial way to test the reliability
f the intelligent algorithms [58,59], in this work, Wilconxon’s
ank-Sum test [60] is performed to verify the superiority and
ignificance of the bvRNA-GA. The experimental results obtained
n Section 4.3 are adopted to compute the p-value at a 5% sig-
nificance level of bvRNA-GA versus RNA-GA, CMA-ES, COA, and
L-SHADE, respectively. The p-value results are collected in Ta-
ble 7, p-value < 0.05 (marked with ‘+’) means the bvRNA-GA
as the statistically significant performance to the compared
lgorithms. If p-value > 0.05 (marked with ‘−’) denotes bvRNA-
A shows worse performance against the compared algorithms.
f p-value = 0.05 means bvRNA-GA has similar performance to
he compared algorithms.

From Table 7, it can be seen that all p-value of bvRNA-GA
s. RNA-GA and bvRNA-GA vs. COA are <0.05. The p-value of
vRNA-GA vs. CMA-ES are <0.05 except F2 (on 2-dimensional),
2, F6 (on 10-dimensional), F1, F2, F3, F9 (on 30-dimensional).
he p-value of bvRNA-GA vs. L-SHADE are <0.05 except F6, F7
on 2-dimensional), F4, F6, F7 (on 10-dimensional), F1, F4, F5, F6,
7 (on 30-dimensional).

.5. Analysis about the convergence

The average convergence curve of bvRNA-GA, RNA-GA, COA,
-SHADE for the 10 benchmark functions on 10-dimensional
 m

10
re plotted in Fig. 5 (CMA-ES is not included because it is not
population-based algorithm). Furthermore, some convergence
urves are zoomed in to make their convergence trend easier
o see. Fig. 5 demonstrates that bvRNA-GA converges faster to
he best solution than other referred algorithms at the early
tage with higher accuracy. Additionally, bvRNA-GA remains good
earching performance at the middle and last stages.
The results as above indicate that the bvRNA-GA is very com-

etitive to other algorithms, it also verifies the efficiency for the
ewly designed bulge loop crossover operator, the inner loop
rossover operator, and the virus-induced mutation operator.

. The modeling results of PV systems

PV systems are very important modules for converting light
nergy into electrical energy. However, the conversion efficiency
f PV systems is easily influenced by the complex outside envi-
onment, such as ambient temperature, solar radiance. Therefore,
t is important to research more accurate and efficient model-
ng solutions for PV systems. In this section, the LSSVM model-
ng approach is applied to model PV systems, and the bvRNA-
A, RNA-GA, CMA-ES, LSHADE, and COA are utilized to opti-
ize the hyper-parameters of LSSVM. The modeling performance
f the bvRNA-GA optimized LSSVM (bvRNA-GA-lSSVM) is com-
ared with RNA-GA optimized LSSVM (RNA-GA-LSSVM), CMA-ES
ptimized LSSVM (CMA-ES-LSSVM), L-SHADE optimized LSSVM
LSHADE-LSSVM), and COA optimized LSSVM (COA-LSSVM). The
arameters of the five algorithms are consistent with those in
able 2, except that the population size is N = 40, and the
aximum iteration number G = 50. Furthermore, the modeling

ethods will independently run 20 times on each PV system.
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Table 7
Test results of algorithms using Wilconxon’s Rank-Sum test.
bvRNA-GA vs.

D No. RNA-GA
(p-value (+/ = /−))

CMA-ES
(p-value (+/ = /−))

COA
(p-value (+/ = /−))

L-SHADE
(p-value (+/ = /−))

2

F1 1.38E−10 + 7.25E−12 + 7.25E−12 + 7.25E−12 +

F2 7.25E−12 + 1.00E+00 − 7.25E−12 + 7.25E−12 +

F3 7.25E−12 + 5.08E−11 + 7.25E−12 + 7.25E−12 +

F4 7.25E−12 + 7.25E−12 + 7.25E−12 + 7.25E−12 +

F5 7.25E−12 + 7.25E−12 + 7.25E−12 + 7.25E−12 +

F6 4.52E−01 + 1.00E+00 − 4.62E−07 + 1.00E+00 −

F7 2.06E−06 + 1.45E−11 + 7.25E−12 + 9.09E−01 −

F8 3.17E−02 + 7.25E−12 + 7.25E−12 + 1.52E−02 +

F9 2.79E−02 + 4.74E−03 + 1.45E−11 + 7.25E−12 +

F10 2.22E−01 + 7.25E−12 + 7.25E−12 + 7.25E−12 +

Number of (+/ = /−) 10/0/0 8/0/2 10/0/0 8/0/2

10

F1 7.25E−12 + 7.25E−12 + 7.25E−12 + 7.25E−12 +

F2 7.25E−12 + 1.00E+00 − 7.25E−12 + 7.25E−12 +

F3 7.25E−12 + 7.25E−12 + 7.25E−12 + 5.63E−07 +

F4 7.25E−12 + 7.25E−12 + 7.25E−12 + 9.97E−01 −

F5 7.25E−12 + 7.25E−12 + 7.25E−12 + 9.05E−03 +

F6 1.05E−02 + 1.00E+00 − 7.25E−12 + 1.00E+00 −

F7 6.64E−09 + 1.07E−05 + 7.25E−12 + 1.00E+00 −

F8 1.32E−01 − 6.84E−07 + 7.25E−12 + 7.25E−12 +

F9 7.25E−12 + 7.04E−10 + 7.25E−12 + 7.25E−12 +

F10 2.04E−07 + 7.25E−12 + 7.25E−12 + 2.54E−08 +

Number of (+/ = /−) 9/0/1 8/0/2 10/0/0 7/0/3

30

F1 7.25E−12 + 9.97E−01 − 7.25E−12 + 9.74E−01 −

F2 7.25E−12 + 1.00E+00 − 7.25E−12 + 7.25E−12 +

F3 7.25E−12 + 9.97E−01 − 7.25E−12 + 2.56E−01 +

F4 7.25E−12 + 7.25E−12 + 7.25E−12 + 9.64E−01 −

F5 7.25E−12 + 7.25E−12 + 7.25E−12 + 9.99E−01 −

F6 7.25E−12 + 8.83E−05 + 7.25E−12 + 9.75E−01 −

F7 3.69E−09 + 2.51E−07 + 7.25E−12 + 1.00E+00 −

F8 7.25E−12 + 1.63E−02 + 1.97E−09 + 6.80E−05 +

F9 7.25E−12 + 1.00E+00 − 7.25E−12 + 7.25E−12 +

F10 7.25E−12 + 7.25E−12 + 7.25E−12 + 6.71E−08 +

Number of (+/ = /−) 10/0/0 6/0/4 10/0/0 5/0/5
5.1. The evaluation indicator

Researchers usually apply a certain evaluation indicator to
valuate the performance of the obtained models [61,62]. In this
ork, we adopt three different evaluation indicators to assess
he performance of bvRNA-GA-LSSVM, RNA-GA-LSSVM, CMA-ES-
SSVM, L-SHADE-LSSVM, and COA-LSSVM for modeling PV sys-
ems. Three kinds of evaluation indicators include the root mean
quare error (RMSE), the mean absolute error (MAE), and the
-Square (R2) are selected. Where RMSE was chosen as the eval-
ation criteria during the training process of the LSSVM model to
elp to optimize hyper-parameters during the training process.
AE and R2 are applied to verify the performance of the obtained

LSSVM model, because they can directly show the error deviation
and fitting degree between the real output and the model output
of LSSVM, respectively. They are respectively calculated according
to the following equations:

RMSE(I,Y ) =

√ 1
M

•

M∑
i=1

(I i − Y i) (13)

MAE(I,Y ) =
1
M

•

M∑
i=1

|I i − Y i| (14)⎧⎨⎩R2(I,Y ) = max
(
0, 1 −

MSE(I,Y )
Var(I)

)
MSE(I,Y ) = RMSE(I,Y )2

(15)

where I is the real output of PV systems; Y represents the LSSVM
model output; M is the dataset length; Var(•) is the standard
deviation function.
11
5.2. Implementing the PV system modeling procedures

The modeling framework of bvRNA-GA optimized LSSVM for
modeling PV systems is shown in Fig. 6. To facilitate the descrip-
tion of the LSSVM modeling procedure for the PV system, we take
bvRNA-GA-LSSVM modeling of SDM (25 ◦C , 1000 W /m2) as an
example. The procedures about how to pre-process the dataset,
initialize LSSVM and bvRNA-GA, modeling implementation and
model validation are described as follows:

Step 1: Sample dataset. According to the described sampling
method in Section 2.1.1, we sample the dataset of SDM
(working at 25 ◦C , 1000 W /m2) with 400 pairs {(Vk,
Ik)|k = 1,. . . ,300} samples. Where 300 pairs samples are
randomly selected as the training dataset (M = 200),
and the rest 100 pairs samples are taken as the test-
ing dataset to verify the effectiveness of the obtained
LSSVM model.

Step 2: Initialize the parameters of bvRNA-GA and set the
LSSVMmodel structure, where the topological structure
of LSSVM has six inputs and one output. The form of one
of the row in the training dataset Θ (with size M×6)
before normalization and in output Y (with size M×1)
after anti-normalization are respectively described as
follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Yi =

[
Î
]
i

Θi = [V (t − 1) , V (t − 2) , V (t − 3) ,

I (t) , I (t − 1) , I (t − 2)]
(16)
i = 1, 2, . . . ,M
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Fig. 5. The average evolution curves of bvRNA-GA, RNA-GA, COA and L-SHADE for the 10 benchmark functions on 10-dimensional.
Fig. 6. The framework of bvRNA-GA optimized LSSVM for modeling PV systems.
12
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Fig. 7. I-V and P-V curves comparison between the real output of SDM and bvRNA-GA-LSSVM model output when the temperature is 33 ◦C .
where Î represents the LSSVM model output, t is the
sampling interval.

Step 3: Normalize the input training datasetΘ according to the
following equation:
⌢

Θ =
Θ − ϖ

δ
(17)

where
⌢

Θ is the normalized training dataset in same
size with Θ . ϖ and δ are respectively the mean value
vector and standard deviation vector of Θ , and they all
have length 6.

Step 4: Implement bvRNA-GA to optimize the hyper-
parameters (σ and γ ) of the LSSVM, according to the
modeling framework in Fig. 6.

Step 4.1: Randomly generate N individuals which form the ini-
tial population of bvRNA-GA. Each individual in the
population represents the potential solution of hyper-
parameters σ and γ .

Step 4.2: In order to obtain the corresponding RMSE value for
each individual, one successively inputs each individual
to LSSVM and uses the normalized training dataset
(

⌢

ΘM×6) to train LSSVM. After that, one obtains the
LSSVM output and easily gets the RMSE value by using
Eq. (13).

Step 4.3: Implement the optimization procedure of bvRNA-GA to
perform the bulge loop crossover operator, the inner
loop crossover operator, the virus-induced mutation
operator, and the proportional selection orderly in the
population.

Step 4.4: If achieve the maximum iteration, output the best indi-
vidual which is the obtained optimal solution of hyper-
parameters σ and γ ; Otherwise, switch to Step 4.1.

Step 5: Validation. The model output is acquired after inputting
the testing dataset to LSSVM (with the optimal hyper-
parameters). Using RMSE, MAE to calculate the error
between model output and the real output of SDM, and
applying R2 to evaluate the fitting performance of the
obtained LSSVM model.

One can easily obtain the modeling results for different PV
systems by changing the dataset in step 1 to different PV systems’
datasets and performing step 1 to step 5.

The modeling results of RNA-GA-LSSVM, CMA-ES-LSSVM,
L-SHADE-LSSVM, COA-LSSVM are acquired through the above
modeling procedure except that replace bvRNA-GA with the
corresponding optimization algorithm.

Based on the above parameter setting and the described mod-
eling procedures, the modeling results of different modeling
13
methods for the PV systems (SDM, DDM, S75, SM55, S40) are
obtained. Therefore, we make a comparison about the perfor-
mance of bvRNA-GA-LSSVM against the RNA-GA-LSSVM, CMA-
ES-LSSVM, L-SHADE-LSSVM, COA-LSSVM in the following sec-
tions.

5.3. Modeling results of SDM and DDM

The modeling results of SDM and DDM at different working
temperatures are collected in Tables 8 and 9, where the Mean is
the mean values, SD is the standard deviation values of RMSE,
MAE, R2, the best results are bolded.

In terms of the RMSE results in Table 8, the results reveal the
superiority of bvRNA-GA-LSSVM in modeling SDM with different
working temperatures compared with the other four algorithms.
Moreover, bvRNA-GA-LSSVM gains the first rank on 33 ◦C , 50 ◦C ,
75 ◦C . LSHADE-LSSVM gets the best results on 25 ◦C , and COA-
LSSVM wins bvRNA-GA-LSSVM on 100 ◦C . According to Table 9,
bvRNA-GA-LSSVM achieves higher precision on the RMSE and
MAE, which means that bvRNA-GA-LSSVM has more successful
modeling performance than the other methods. Although it is
concluded that better modeling results are respectively obtained
by COA-LSSVM for DDM when the temperature is 75 ◦C . The R2

results in Table 8, Table 9 for both SDM and DDM are close to 1.0
which proves the good fitting performance of the LSSVM obtained
by bvRNA-GA.

To directly show the difference between the bvRNA-
GA-LSSVM and the real output of SDM, DDM, the best-obtained
model outputs are plotted in Figs. 7 to 10. Because the 33 ◦C is the
standard working temperature of SDM and DDM, therefore, we
draw the I-V curves and P-V curves in Figs. 7 and 8, separately.
The power (W ) values are obtained by multiplying the voltage
with the current of the bvRNA-GA-LSSVM model output. As can
be seen from Figs. 7 and 8, the I-V and P-V characteristic curves
obtained by bvRNA-GA-LSSVM display little fluctuation than that
of the real output of SDM and DDM. The bvRNA-GA-LSSVM model
output almost matches all the points with the real output demon-
strates the good mapping capacity of the bvRNA-GA optimized
LSSVM. Figs. 9 and 10 further prove the good performance of the
proposed modeling method, the bvRNA-GA-LSSVM model output
can also better agree with the real output of SDM and DDM for

◦ ◦ ◦ ◦
other temperatures (25 C , 50 C , 75 C , 100 C).
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Fig. 8. I-V and P-V curves comparison between the real output of DDM and bvRNA-GA-LSSVM model output when the temperature is 33 ◦C .
Fig. 9. I-V curves comparison between the real output of SDM and bvRNA-GA-LSSVM model output when the temperature is 25 ◦C, 50
◦

C, 75
◦

C, 100
◦

C, respectively.
able 8
he modeling results comparison of different modeling approaches for SDM at various temperatures.
Algorithm bvRNA-GA-LSSVM RNA-GA-LSSVM CMA-ES-LSSVM LSHADE-LSSVM COA-LSSVM Rank

Indicator RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

25 ◦C Mean 4.26E−04 1.35E−04 1.00E+00 4.26E−04 1.35E−04 9.97E−01 7.08E−02 5.75E−02 8.69E−01 4.23E−04 1.34E−04 1.00E+00 4.25E−04 1.35E−04 1.00E+00 3/3/5/1/2SD 8.46E−29 3.01E−28 4.61E−32 3.97E−17 3.55E−18 9.55E−21 4.74E−04 3.18E−04 6.45E−03 1.64E−10 3.60E−12 3.77E−14 1.89E−11 1.24E−12 4.40E−15

33 ◦C Mean 4.07E−04 1.31E−04 1.00E+00 8.07E−04 2.31E−04 9.99E−01 6.35E−02 5.20E−02 8.95E−01 4.20E−04 1.34E−04 9.90E−01 4.08E−04 1.32E−04 9.91E−01 1/4/5/3/2SD 6.58E−29 5.87E−29 1.49E−32 3.51E−17 7.62E−18 7.74E−21 3.94E−04 2.69E−04 7.08E−03 8.30E−11 1.29E−11 1.94E−14 1.92E−12 2.81E−13 4.28E−16

50 ◦C Mean 3.87E−04 1.44E−04 1.00E+00 3.84E−03 1.48E−03 9.98E−01 3.53E−02 2.92E−02 9.68E−01 3.94E−04 1.32E−04 1.00E+00 3.87E−04 1.43E−04 1.00E+00 1/4/5/3/1SD 7.12E−14 2.37E−11 1.47E−17 3.77E−14 2.41E−11 8.11E−18 2.77E−04 1.97E−04 1.18E−03 6.22E−11 9.15E−11 1.34E−14 7.26E−13 2.82E−11 1.43E−16

75 ◦C Mean 2.88E−04 1.77E−04 1.00E+00 8.77E−03 3.73E−03 1.00E+00 1.02E−02 7.80E−03 9.98E−01 3.07E−04 1.72E−04 1.00E+00 2.89E−04 1.76E−04 1.00E+00 1/4/5/3/2SD 9.52E−30 2.55E−29 5.84E−33 9.29E−17 2.53E−17 1.02E−20 1.54E−05 1.29E−05 3.53E−06 3.29E−10 7.12E−11 4.60E−14 1.97E−11 1.36E−11 2.28E−15

100 ◦C Mean 2.82E−04 2.11E−04 1.00E+00 2.84E−04 2.16E−04 1.00E+00 7.54E−03 4.97E−03 9.99E−01 2.87E−04 1.97E−04 9.99E−01 2.81E−04 2.02E−04 1.00E+00 2/3/5/4/1SD 1.26E−11 1.22E−10 1.32E−15 8.90E−18 4.69E−15 1.00E−21 4.37E−06 3.10E−06 5.24E−07 6.65E−11 5.66E−10 7.46E−15 1.39E−11 2.31E−10 1.46E−15
Table 9
The modeling results comparison of different modeling approaches for DDM at various temperatures.
Algorithm bvRNA-GA-LSSVM RNA-GA-LSSVM CMA-ES-LSSVM LSHADE-LSSVM COA-LSSVM Rank

Indicator RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

25 ◦C Mean 4.20E−04 1.34E−04 1.00E+00 1.99E−03 3.36E−03 1.00E+00 6.50E−02 5.30E−02 8.98E−01 4.26E−04 1.34E−04 1.00E+00 4.24E−04 1.34E−04 1.00E+00 1/4/5/3/2SD 2.88E−26 3.43E−28 6.68E−30 1.02E−16 1.30E−17 2.39E−20 1.93E−04 1.31E−04 2.39E−03 4.79E−11 4.24E−12 1.15E−14 8.79E−12 1.46E−14 2.09E−15

33 ◦C Mean 3.95E−04 1.27E−04 1.00E+00 9.56E−04 2.71E−04 9.97E−01 5.22E−02 4.29E−02 9.36E−01 4.17E−04 1.32E−04 1.00E+00 3.97E−04 1.27E−04 1.00E+00 1/4/5/3/2SD 2.30E−26 5.89E−27 4.76E−30 4.13E−17 9.66E−18 8.59E−21 2.05E−04 1.41E−04 1.22E−03 1.26E−10 5.83E−12 2.88E−14 4.88E−11 9.14E−13 1.09E−14

50 ◦C Mean 3.69E−04 1.45E−04 1.00E+00 3.87E−04 1.97E−04 9.98E−01 2.92E−02 2.42E−02 9.76E−01 3.91E−04 1.36E−04 9.99E−01 3.80E−04 1.44E−04 1.00E+00 1/3/5/4/2SD 6.46E−25 5.48E−26 1.23E−28 3.19E−17 4.03E−18 6.08E−21 2.64E−04 1.88E−04 1.51E−03 3.81E−11 1.18E−10 7.88E−15 8.62E−12 2.54E−11 1.68E−15

75 ◦C Mean 2.78E−04 1.81E−04 1.00E+00 2.88E−04 1.86E−04 9.98E−01 1.04E−02 7.85E−03 9.98E−01 2.96E−04 1.76E−04 1.00E+00 2.80E−04 1.79E−04 9.99E−01 2/3/5/4/1SD 1.27E−27 3.70E−28 1.62E−31 2.08E−17 2.17E−18 2.12E−21 1.73E−05 1.42E−05 4.40E−06 1.72E−10 7.47E−11 2.14E−14 7.76E−11 4.14E−11 8.98E−15

100 ◦C Mean 2.81E−04 2.06E−04 1.00E+00 2.83E−04 2.14E−04 9.99E−01 6.82E−03 4.26E−03 9.99E−01 2.86E−04 2.05E−04 1.00E+00 2.81E−04 2.02E−04 1.00E+00 1/3/5/4/1SD 1.83E−11 1.75E−10 1.91E−15 3.82E−12 3.65E−11 4.00E−16 1.83E−06 8.52E−07 1.60E−07 5.63E−11 2.40E−10 6.28E−15 1.44E−11 2.10E−10 1.50E−15
14
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Fig. 10. I-V and P-V curves comparison between the real output of DDM and bvRNA-GA-LSSVM model output when the temperature is 25 ◦C, 50
◦

C, 75
◦

C,
respectively.
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Fig. 11. I-V curves comparison between the real output and bvRNA-GA-LSSVM
model output under different irradiance for ST40 module.

5.4. Modeling results of PV solar modules under different working
irradiation

To further test the practicability of the proposed modeling
method, bvRNA-GA-LSSVM, RNA-GA-LSSVM, CMA-ES-LSSVM, L-
SHADE-LSSVM, COA-LSSVM are employed to model the charac-
teristic curves for three different PV solar modules (ST40, SM55,
S75). In this work, they work under five kinds of irradiations
(1000 W /m2, 800 W /m2, 600 W /m2, 400 W /m2, 200 W /m2) with
temperature is 25 ◦C are studied. In the same way, all the mod-
eling methods run 20 times for every working condition of each
PV solar module, and the Mean, SD values of RMSE, MAE, R2 are
hown in Tables 10 to 12. The I-V curves of ST40, SM55, S75 are
espectively obtained by inputting the test dataset to LSSVM with
orresponding optimal hyper-parameters, and the characteristic
urves under different working irradiations are shown in Figs. 11–
3. In terms of the performance indicators comparison results
n Table 10, the RMSE, MAE values of the bvRNA-GA-LSSVM are
maller than the other modeling methods, except that the RNA-
A-LSSVM and COA-LSSVM are respectively achieving the same
recision on 200 W /m2 and 1000 W /m2 for ST40. The obtained
haracteristic curves of the ST40 by the bvRNA-GA-LSSVM model
re plotted in Fig. 11, it is observable that bvRNA-GA-LSSVM
roduces accurate curves in all irradiation conditions.
 a

15
Fig. 12. I-V curves comparison between the real output and bvRNA-GA-LSSVM
model output under different irradiance for SM55 module.

Fig. 13. I-V curves comparison between the real output and bvRNA-GA-LSSVM
model output under different irradiance for S75 module.

Table 11 shows the comparison results for SM55 under differ-
ent working irradiations. bvRNA-GA-LSSVM ranks first on 1000
W /m2, 800 W /m2, 600 W /m2, 400 W /m2, 200 W /m2. The SD
alues for RMSE, MAE, R2 proves the stability of the bvRNA-GA in
uning the hyper-parameters of LSSVM. Otherwise, COA-LSSVM
lso gets the best performance when irradiation is 800 W /m2
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able 10
he modeling results comparison of different modeling approaches for ST40 under various working irradiations.
Algorithm bvRNA-GA-LSSVM RNA-GA-LSSVM CMA-ES-LSSVM LSHADE-LSSVM COA-LSSVM Rank

Indicator RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

1000
W /m2

Mean 2.13E−02 9.72E−03 1.00E+00 2.96E−02 9.78E−03 1.00E+00 1.50E+00 1.16E+00 9.30E−01 2.14E−02 9.97E−03 1.00E+00 2.13E−02 9.89E−03 1.00E+00 1/4/5/3/1SD 5.83E−14 2.66E−11 7.76E−20 1.37E−14 1.27E−11 2.00E−20 1.78E−01 1.15E−01 1.94E−03 1.46E−08 5.57E−08 1.52E−14 1.26E−09 1.96E−08 1.33E−15

800
W /m2

Mean 2.13E−02 9.64E−03 1.00E+00 2.15E−02 9.67E−03 1.00E+00 1.31E+00 1.01E+00 9.46E−01 2.15E−02 1.01E−02 1.00E+00 2.14E−02 9.84E−03 1.00E+00 1/3/5/3/2SD 1.96E−15 5.18E−14 2.18E−21 1.02E−15 2.40E−12 7.66E−22 1.58E−01 9.92E−02 1.44E−03 6.56E−09 6.03E−08 7.34E−15 7.68E−09 7.68E−08 8.53E−15

600
W /m2

Mean 8.20E−03 6.61E−03 1.00E+00 8.21E−03 6.61E−03 1.00E+00 1.18E+00 9.24E−01 9.53E−01 8.54E−03 6.92E−03 1.00E+00 8.37E−03 6.76E−03 9.76E−01 1/2/5/4/3SD 3.05E−14 6.18E−12 5.30E−21 3.91E−14 1.68E−11 7.32E−21 1.81E−01 1.11E−01 1.24E−03 5.97E−08 9.50E−08 1.13E−14 1.20E−07 1.22E−07 2.36E−14

400
W /m2

Mean 2.15E−02 9.44E−03 1.00E+00 2.16E−02 9.67E−03 9.76E−01 7.92E−01 6.18E−01 9.76E−01 2.17E−02 9.85E−03 9.99E−01 2.17E−02 9.87E−03 1.00E+00 1/2/5/3/3SD 2.75E−14 4.41E−12 3.85E−20 2.54E−14 2.62E−13 3.35E−20 1.26E−01 8.80E−02 5.96E−04 9.98E−09 7.37E−08 1.32E−14 2.53E−08 2.48E−07 3.43E−14

200
W /m2

Mean 4.65E−02 1.58E−02 1.00E+00 4.65E−02 1.58E−02 1.00E+00 4.13E−01 2.80E−01 9.94E−01 4.67E−02 1.66E−02 1.00E+00 4.67E−02 1.65E−02 1.00E+00 1/1/5/2/2SD 2.31E−11 2.94E−09 2.24E−16 4.16E−14 5.79E−11 3.38E−19 6.27E−03 3.53E−03 5.03E−06 6.42E−09 2.06E−07 5.09E−14 2.23E−08 6.88E−07 1.86E−13
Table 11
The modeling results comparison of different modeling approaches for SM55 under various working irradiations.
Algorithm bvRNA-GA-LSSVM RNA-GA-LSSVM CMA-ES-LSSVM LSHADE-LSSVM COA-LSSVM Rank

Indicator RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

1000
W /m2

Mean 1.18E−02 8.60E−03 1.00E+00 1.19E−02 8.68E−03 1.00E+00 2.23E+00 1.82E+00 8.22E−01 1.30E−02 9.43E−03 1.00E+00 1.19E−02 8.63E−03 1.00E+00 1/2/5/4/2SD 1.97E−29 7.26E−28 0.00E+00 1.21E−12 9.46E−13 4.11E−19 1.93E−01 1.21E−01 9.13E−03 2.49E−07 1.07E−07 1.03E−13 1.00E−08 1.06E−08 3.53E−15

800
W /m2

Mean 1.24E−02 1.08E−02 1.00E+00 1.29E−02 1.09E−02 1.00E+00 1.96E+00 1.59E+00 8.48E−01 1.26E−02 1.10E−02 1.00E+00 1.24E−02 1.08E−02 1.00E+00 1/4/5/3/1SD 7.60E−14 1.29E−11 2.30E−20 4.96E−15 2.30E−12 2.07E−21 4.10E−01 2.91E−01 1.31E−02 4.83E−08 6.33E−08 1.99E−14 9.26E−11 2.63E−09 3.75E−17

600
W /m2

Mean 1.02E−02 8.30E−03 1.00E+00 1.18E−02 8.34E−03 1.00E+00 1.83E+00 1.53E+00 8.78E−01 1.04E−02 8.60E−03 1.00E+00 1.02E−02 8.38E−03 1.00E+00 1/4/5/3/1SD 2.41E−14 6.22E−12 5.87E−21 2.09E−14 3.44E−12 5.31E−21 1.76E−01 1.12E−01 5.33E−03 4.15E−08 4.66E−08 1.20E−14 1.06E−08 1.93E−08 2.98E−15

400
W /m2

Mean 2.93E−02 1.15E−02 1.00E+00 2.96E−02 1.51E−02 1.00E+00 2.03E+00 1.66E+00 8.35E−01 2.94E−02 1.18E−02 1.00E+00 2.97E−02 1.16E−02 1.00E+00 1/3/5/2/4SD 1.18E−16 9.05E−13 3.44E−22 2.78E−16 9.02E−13 7.93E−22 2.88E−01 1.75E−01 8.55E−03 6.65E−09 6.65E−08 1.65E−14 1.00E−08 1.35E−07 2.45E−14

200
W /m2

Mean 8.29E−03 7.37E−03 1.00E+00 8.29E−03 7.37E−03 1.00E+00 4.48E−01 3.37E−01 9.93E−01 9.25E−03 8.10E−03 1.00E+00 8.88E−03 7.81E−03 1.00E+00 1/1/5/4/3SD 9.71E−14 1.43E−11 1.94E−20 7.62E−13 1.74E−11 1.65E−19 2.31E−02 1.66E−02 2.12E−05 3.09E−07 1.66E−07 8.58E−14 3.94E−07 2.48E−07 1.09E−13
Table 12
The modeling results comparison of different modeling approaches for S75 under various working irradiations.
Algorithm bvRNA-GA-LSSVM RNA-GA-LSSVM CMA-ES-LSSVM LSHADE-LSSVM COA-LSSVM Rank

Indicator RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

1000
W /m2

Mean 4.96E−02 1.85E−02 1.00E+00 8.96E−02 4.85E−02 9.98E−01 1.71E+00 1.39E+00 8.75E−01 4.96E−02 1.88E−02 1.00E+00 4.96E−02 1.86E−02 9.98E−01 1/4/5/1/1SD 3.82E−15 2.17E−11 2.51E−21 1.13E−16 4.36E−13 6.23E−22 4.28E−01 2.97E−01 2.01E−02 2.63E−09 4.13E−08 1.64E−14 8.45E−10 4.95E−08 5.97E−15

800
W /m2

Mean 3.03E−02 1.54E−02 1.00E+00 3.27E−02 1.54E−02 9.98E−01 1.70E+00 1.36E+00 8.93E−01 3.03E−02 1.55E−02 1.00E+00 3.03E−02 1.55E−02 1.00E+00 1/4/5/1/1SD 1.46E−14 1.68E−11 6.58E−20 1.38E−16 9.54E−13 8.19E−22 2.03E−01 1.41E−01 3.93E−03 3.93E−09 1.93E−08 9.30E−15 8.26E−10 2.24E−08 2.08E−15

600
W /m2

Mean 6.94E−02 2.50E−02 1.00E+00 6.98E−02 2.75E−02 1.00E+00 1.46E+00 1.20E+00 9.12E−01 6.99E−02 2.53E−02 9.98E−01 6.98E−02 2.53E−02 1.00E+00 1/2/5/4/2SD 1.73E−16 9.01E−13 1.13E−20 2.52E−16 1.41E−12 2.36E−20 3.29E−01 2.30E−01 6.74E−03 9.92E−10 6.93E−08 1.60E−14 1.03E−09 1.02E−07 1.75E−14

400
W /m2

Mean 8.07E−02 3.24E−02 1.00E+00 8.63E−02 3.84E−02 1.00E+00 9.79E−01 8.00E−01 9.60E−01 8.07E−02 3.28E−02 1.00E+00 8.07E−02 3.28E−02 9.98E−01 1/4/5/1/1SD 2.93E−14 2.21E−12 7.36E−19 1.32E−16 6.92E−13 2.19E−20 1.99E−01 1.49E−01 1.76E−03 1.51E−09 1.22E−07 3.84E−14 2.05E−09 1.83E−07 5.32E−14

200
W /m2

Mean 1.06E−01 4.19E−02 1.00E+00 1.61E−01 4.19E−02 9.98E−01 5.27E−01 3.77E−01 9.90E−01 1.68E−01 4.24E−02 1.00E+00 1.66E−01 4.23E−02 1.00E+00 1/2/5/4/3SD 5.27E−13 2.17E−13 9.41E−19 1.95E−15 2.64E−13 2.05E−19 3.31E−02 2.50E−02 7.18E−05 1.16E−09 1.07E−07 5.77E−14 1.42E−09 1.46E−07 7.94E−14
Table 13
The modeling results comparison of different modeling approaches for ST40 under different temperatures.
Algorithm bvRNA-GA-LSSVM RNA-GA-LSSVM CMA-ES-LSSVM LSHADE-LSSVM COA-LSSVM Rank

Indicator RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

20 ◦C Mean 4.15E−01 1.73E−01 9.96E−01 5.53E−01 1.79E−01 9.91E−01 2.10E+00 1.55E+00 8.76E−01 4.67E−01 1.73E−01 9.90E−01 4.56E−01 1.77E−01 9.95E−01 1/4/5/3/2SD 4.04E−29 4.06E−25 1.18E−30 1.70E−15 1.38E−13 1.34E−18 2.18E−02 2.01E−02 4.16E−04 5.49E−09 3.39E−07 4.09E−12 3.99E−10 3.17E−08 3.20E−13

30 ◦C Mean 2.95E−01 1.14E−01 9.98E−01 2.98E−01 1.14E−01 9.97E−01 1.77E+00 1.30E+00 9.08E−01 2.95E−01 1.15E−01 9.91E−01 2.98E−01 1.86E−01 9.92E−01 1/3/5/1/3SD 4.85E−29 6.40E−25 1.40E−31 6.50E−16 2.24E−13 4.33E−19 4.90E−02 3.76E−02 5.58E−04 1.44E−09 2.95E−07 5.78E−13 7.96E−11 2.50E−08 5.09E−14

40 ◦C Mean 1.39E−01 6.36E−02 1.00E+00 1.40E−01 6.36E−02 9.99E−01 1.59E+00 1.14E+00 9.22E−01 1.40E−01 6.46E−02 9.99E−01 1.40E−01 6.36E−02 9.99E−01 1/2/5/2/2SD 1.00E−29 2.59E−25 8.43E−33 1.77E−14 1.67E−13 9.59E−19 3.24E−02 2.73E−02 4.40E−04 6.14E−08 7.75E−07 3.57E−12 2.18E−12 4.95E−11 1.34E−16

50 ◦C Mean 7.56E−02 3.14E−02 1.00E+00 7.70E−02 3.49E−02 1.00E+00 1.39E+00 1.02E+00 9.34E−01 7.56E−02 3.16E−02 1.00E+00 7.56E−02 3.17E−02 1.00E+00 1/4/5/1/1SD 1.44E−17 2.17E−14 7.07E−22 1.90E−17 5.62E−13 1.53E−20 5.67E−02 3.62E−02 7.12E−04 2.66E−10 1.89E−08 5.69E−15 7.19E−10 3.56E−08 1.56E−14

60 ◦C Mean 3.63E−02 1.61E−02 1.00E+00 3.64E−02 1.66E−02 1.00E+00 1.28E+00 9.07E−01 9.42E−01 3.64E−02 1.63E−02 1.00E+00 3.63E−02 1.62E−02 1.00E+00 1//3/5/3/1SD 3.59E−14 6.58E−13 1.83E−19 6.06E−17 8.99E−14 5.07E−22 3.47E−02 2.13E−02 3.66E−04 4.27E−09 3.89E−08 2.09E−14 7.53E−10 1.05E−08 3.79E−15
and 600 W /m2, respectively. The comparison between real output
of SM55 and bvRNA-GA-LSSVM model output in Fig. 12 further
demonstrate the superiority of the proposed modeling approach.

From Table 12, the Mean values for RMSE and MAE of bvRNA-
GA-LSSVM are smaller than the other algorithms, the R2 evalua-
tion indicator is close to 1 also indicate the good fitting
capacity on modeling S75. The ranking order of bvRNA-GA-LSSVM
is always the first, while LSHADE-LSSVM and COA-LSSVM have
similar performance to bvRNA-GA-LSSVM when irradiation is
1000 W /m2, 800 W /m2, 400 W /m2. It is shown in Fig. 13 that the
I-V curves output by bvRNA-GA optimized LSSVM can better fit
the real output of S75 under five different working irradiations.

In conclusion, we can observe that LSSVM tuned by bvRNA-GA
obtains the best results for modeling PV solar modules at different
working irradiations.
16
5.5. Modeling results of PV solar modules under different working
temperatures

In this section, the performance of bvRNA-GA-LSSVM on mod-
eling ST40, SM55, S75 under five kinds of working temperatures
(20 ◦C, 30 ◦C, 40 ◦C, 50 ◦C, 60 ◦C when irradiation level is
1000 W /m2) are discussed. The RMSE, MAE, R2 values are shown
in Tables 13 to 15. In the same way, the I-V curves output
by the studied PV solar modules and by bvRNA-GA-LSSVM are
respectively shown in Figs. 14–16.

According to the results in Table 13, the results of bvRNA-
GA-LSSVM remain its superiority on modeling ST40 under dif-
ferent working temperatures. LSHADE-LSSVM and COA-LSSVM
respectively reach the same accuracy with the proposed modeling
method for ST40 at 30 ◦C, 50 ◦C, 60 ◦C, however, the SD values
are worse than bvRNA-GA-LSSVM. Fig. 14 shows that the output
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able 14
he modeling results comparison of different modeling approaches for SM55 under different temperatures.
Algorithm bvRNA-GA-LSSVM RNA-GA-LSSVM CMA-ES-LSSVM LSHADE-LSSVM COA-LSSVM Rank

Indicator RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

20 ◦C Mean 4.22E−01 1.70E−01 9.97E−01 4.25E−01 1.71E−01 9.95E−01 3.55E+00 2.76E+00 4.50E−01 4.25E−01 1.72E−01 9.95E−01 4.25E−01 1.71E−01 9.95E−01 1/2/5/2/2SD 4.52E−28 3.73E−24 6.70E−30 3.02E−14 1.38E−13 1.69E−17 1.20E−02 2.42E−02 4.68E−03 7.77E−08 3.21E−07 4.32E−11 3.41E−08 2.64E−07 2.25E−11

30 ◦C Mean 1.81E−01 7.00E−02 9.99E−01 1.83E−01 7.19E−02 9.79E−01 2.48E+00 1.94E+00 7.57E−01 1.81E−01 7.22E−02 9.89E−01 1.84E−01 7.19E−02 9.89E−01 1/3/5/1/4SD 4.72E−29 6.93E−25 5.90E−32 9.46E−16 2.05E−14 1.10E−19 1.21E−01 8.62E−02 7.53E−03 4.54E−09 1.51E−07 3.32E−13 7.44E−10 1.00E−08 8.77E−14

40 ◦C Mean 1.58E−01 5.60E−02 9.99E−01 1.59E−01 5.68E−02 9.99E−01 2.25E+00 1.74E+00 8.03E−01 1.58E−01 5.61E−02 9.99E−01 1.58E−01 5.60E−02 9.99E−01 1/4/5/1/1SD 1.03E−28 4.86E−25 5.06E−32 6.39E−16 2.80E−14 5.52E−20 8.06E−02 5.68E−02 3.73E−03 2.91E−10 1.53E−08 2.01E−14 5.16E−11 2.83E−10 1.96E−15

50 ◦C Mean 5.06E−02 2.20E−02 1.00E+00 5.62E−02 2.20E−02 1.00E+00 2.19E+00 1.63E+00 8.01E−01 5.09E−02 2.23E−02 1.00E+00 6.00E−02 2.29E−02 1.00E+00 1/3/5/2/4SD 1.13E−27 2.63E−25 9.34E−32 1.42E−14 2.30E−14 1.30E−19 1.08E−01 6.85E−02 4.75E−03 2.28E−08 5.76E−08 2.10E−13 2.54E−09 8.41E−09 2.38E−14

60 ◦C Mean 1.97E−02 1.04E−02 1.00E+00 2.00E−02 1.42E−02 9.99E−01 2.19E+00 1.60E+00 7.97E−01 2.00E−02 1.07E−02 1.00E+00 1.97E−02 1.04E−02 9.99E−01 1/3/5/3/1SD 3.24E−27 1.57E−25 1.75E−32 1.72E−14 1.19E−14 2.62E−20 2.58E−02 1.96E−02 1.57E−03 4.06E−08 2.08E−08 6.39E−14 2.43E−09 1.75E−09 3.74E−15
Table 15
The modeling results comparison of different modeling approaches for S75 under different temperatures.
Algorithm bvRNA-GA-LSSVM RNA-GA-LSSVM CMA-ES-LSSVM LSHADE-LSSVM COA-LSSVM Rank

Indicator RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

20 ◦C Mean 1.12E+00 2.90E−01 9.67E−01 1.24E+00 8.95E−01 9.68E−01 3.71E+00 2.87E+00 4.07E−01 1.13E+00 2.92E−01 9.67E−01 1.12E+00 2.90E−01 9.68E−01 1/4/5/3/1SD 7.69E−27 4.33E−25 6.45E−28 1.73E−12 1.87E−12 6.23E−15 1.43E−02 2.10E−02 6.44E−03 5.18E−06 1.90E−06 1.87E−08 2.64E−06 1.48E−06 9.49E−09

30 ◦C Mean 8.89E−02 4.11E−02 1.00E+00 1.09E−01 4.61E−02 1.00E+00 3.17E+00 2.47E+00 5.82E−01 8.98E−02 4.12E−02 1.00E+00 8.91E−02 4.12E−02 1.00E+00 1/4/5/3/2SD 5.08E−24 7.61E−24 1.09E−28 1.67E−14 1.92E−14 3.53E−19 5.99E−02 5.91E−02 9.96E−03 3.67E−08 2.64E−08 7.81E−13 7.35E−08 6.12E−08 1.57E−12

40 ◦C Mean 1.07E−01 3.61E−02 1.00E+00 1.68E−01 3.61E−02 9.76E−01 2.76E+00 2.09E+00 6.97E−01 1.07E−01 3.65E−02 1.00E+00 1.07E−01 3.61E−02 1.00E+00 1/4/5/1/1SD 7.95E−29 8.69E−25 1.62E−32 3.92E−15 3.36E−14 1.36E−19 7.80E−02 6.33E−02 6.41E−03 1.32E−08 4.39E−08 4.37E−13 2.03E−34 4.40E−13 3.69E−14

50 ◦C Mean 7.69E−02 2.40E−02 1.00E+00 7.69E−02 2.40E−02 1.00E+00 2.59E+00 1.94E+00 7.24E−01 7.71E−02 2.44E−02 1.00E+00 7.69E−02 2.41E−02 1.00E+00 1/1/5/4/1SD 1.30E−27 2.22E−24 4.74E−32 1.27E−14 7.42E−14 2.54E−19 9.29E−02 5.93E−02 6.03E−03 1.80E−08 8.26E−08 3.58E−13 2.25E−08 1.54E−08 4.24E−13

60 ◦C Mean 1.12E−02 6.47E−03 1.00E+00 1.64E−02 6.76E−03 9.76E−01 2.28E+00 1.72E+00 7.74E−01 1.16E−02 6.72E−03 1.00E+00 1.13E−02 6.59E−03 1.00E+00 1/4/5/3/2SD 3.41E−26 1.81E−24 2.21E−32 2.49E−14 6.82E−15 1.07E−20 1.92E−01 1.24E−01 1.11E−02 6.40E−08 2.58E−08 2.95E−14 1.68E−07 1.12E−07 8.07E−14
of bvRNA-GA-LSSVM agrees well with the real out of ST40 in all
studied working temperatures.

The results in Table 14 illustrate that bvRNA-GA-LSSVM wins
ther modeling algorithms in both accuracy and stability for
odeling SM55 under different working temperatures. LSHADE-
SSVM gets the same precision with bvRNA-GA-LSSVM when
he temperature is 30 ◦C, 40 ◦C. COA-LSSVM obtains the same
erformance as bvRNA-GA-LSSVM on 40 ◦C and 60 ◦C. Fig. 15
ndicates that bvRNA-GA-LSSVM model can better reflect the
ctual characteristic of SM55 under various outside temperature
onditions.
From Table 15, the RMSE, MAE values indicate the good mod-

ling accuracy and stability of bvRNA-GA-LSSVM on modeling
75. The I-V curves comparison between the real output and
vRNA-GA-LSSVM model output Fig. 16 also demonstrates the
alidity of bvRNA-GA-LSSVM modeling method.
According to the description above, bvRNA-GA-LSSVM can

rovide reliable modeling results for ST40, SM55, S75 modules
nder various working temperatures.

.6. Convergence and performance analysis

To intuitively show the performance of bvRNA-GA, RNA-GA,
-SHADE, COA for optimizing the parameters of LSSVM, the com-
utational time are collected in Tables 16 and 17, and the total
verage convergence curves (TTACs) are shown in Fig. 17 (in the
raining process). It worth mentioned here, the working envi-
onment (software and hardware) is the same as in Section 4.1.
he computation time is adopted to evaluate how long does the
ptimization process take to run, the time in Tables 16 and 17
re the average time that bvRNA-GA, RNA-GA, CMA-ES, L-SHADE,
OA spend to getting the optimal hyper-parameters for LSSVM
the cost CPU time by step 4.1 to step 4.4 in Section 5.2). Because
MA-ES is not a population-based algorithm, we cannot plot the
onvergence curves in Fig. 17. Otherwise, the TTAC means that
e directly add up the evolution curves in different conditions
temperature or irradiation) of the same PV system. The TTAC
an effectively reflect the convergence speed and the modeling

ccuracy of the modeling methods for each PV system.

17
Fig. 14. I-V curves comparison between the real output and bvRNA-GA-LSSVM
model output under different temperatures for ST40 module.

From Table 16, CMA-ES-LSSVM and LSHADE-LSSVM are faster
than the other three algorithms for modeling SDM and DDM.
bvRNA-GA-LSSVM, RNA-GA-LSSVM take extra time to perform
decoding operations and special searching operations, therefore,
the running time is larger. However, comparing with RNA-GA-
LSSVM on modeling SDM, DDM, and COA-LSSVM on modeling
DDM, bvRNA-GA-LSSVM costs less time than them. In terms of
Table 17, the efficiency of bvRNA-GA is increasing to some de-
grees, and the consumption of time is closer with CMA-ES-LSSVM
and LSHADE-LSSVM.

According to Fig. 17, all the referred modeling approaches
can converge to similar accuracy, but bvRNA-GA obtained better
parameters for LSSVM at the early stage. We can also conclude
that bvRNA-GA-LSSVM can obtain good modeling convergence for
every working condition of each PV system because the TTACs
of bvRNA-GA-LSSVM converge significantly faster than another
modeling method. The results in Fig. 17 also indicate that the
bvRNA-GA can obtain better parameters for LSSVM even if one
reduces the iteration times.
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able 16
verage computational time (s) over by different algorithms for modeling SDM, DDM at various temperatures.
Model SDM DDM

Temperature (◦C) 25 33 50 75 100 25 33 50 75 100

bvRNA-GA-LSSVM 115.23 113.53 113.69 114.60 114.08 111.63 111.33 110.52 110.18 109.93
RNA-GA-LSSVM 166.45 163.50 164.23 165.73 169.53 167.83 168.15 166.31 165.92 168.01
CMA-ES-LSSVM 81.54 82.27 85.77 85.58 85.27 86.52 89.14 83.82 84.15 87.42
LSHADE-LSSVM 87.26 82.53 82.16 81.72 81.44 82.49 82.49 82.54 81.81 81.71
COA-LSSVM 92.35 90.83 91.08 95.23 120.36 121.97 122.81 122.31 122.66 132.75
Table 17
Average computational time (s) by different algorithms for modeling ST40, SM55, S75 modules at various temperatures and irradiations.
Irradiation (W /m2) Temperature (◦C) 1000 800 600 400 200 20 30 40 50 60

bvRNA-GA-LSSVM

ST40

78.92 80.63 75.33 73.52 69.53 82.77 77.24 73.37 73.44 64.69
RNA-GA-LSSVM 112.02 110.34 112.89 107.94 100.33 116.78 117.47 111.30 99.50 98.78
CMA-ES-LSSVM 67.53 55.79 69.84 53.34 60.86 88.34 55.37 56.51 43.91 66.63
LSHADE-LSSVM 56.22 76.97 62.75 44.85 41.40 70.10 60.75 46.12 58.79 48.66
COA-LSSVM 108.51 111.52 77.19 82.32 79.68 99.14 76.16 93.28 62.00 96.36

bvRNA-GA-LSSVM

SM55

80.36 85.53 82.83 81.14 72.85 90.79 82.86 77.76 75.69 75.63
RNA-GA-LSSVM 121.06 118.05 126.20 121.22 113.03 126.98 128.70 113.65 118.29 111.94
CMA-ES-LSSVM 77.30 86.74 81.34 66.46 63.36 63.04 82.91 79.57 75.74 69.05
LSHADE-LSSVM 62.91 84.22 52.89 57.82 69.88 69.08 76.16 53.53 58.74 49.85
COA-LSSVM 137.68 126.35 98.68 82.77 80.82 84.44 95.55 76.27 81.80 77.56

bvRNA-GA-LSSVM

S75

74.08 73.77 72.21 69.94 68.26 97.67 91.02 89.29 86.50 80.56
RNA-GA-LSSVM 100.37 101.88 101.66 96.94 97.43 149.74 137.74 131.58 119.71 115.68
CMA-ES-LSSVM 72.01 64.14 48.77 68.97 50.66 98.12 67.09 59.46 76.75 77.78
LSHADE-LSSVM 58.51 47.28 46.27 50.86 44.82 77.17 60.33 74.52 63.99 68.85
COA-LSSVM 73.99 79.51 87.46 93.33 75.33 102.55 130.24 89.75 130.06 88.22
Fig. 15. I-V curves comparison between the real output and bvRNA-GA-LSSVM
model output under different temperatures for SM55 module.

The obtained modeling results and the discussion in the above
sections demonstrate that the bvRNA-GA can better determine
the LSSVM’s parameters. The bvRNA-GA-LSSVM can modeling
different PV systems with high accuracy.

6. Conclusion

In this work, LSSVM modeling method is utilized to model the
characteristic curves for PV systems. To determine the values of
kernel parameter and relative weight for LSSVM, a novel RNA-GA
(bvRNA-GA) is proposed. In bvRNA-GA, the bulge loop crossover
operator, the inner loop crossover operator, and the virus-induced
mutation operator are designed to balance the exploration and
exploitation capacities. To verify the searching performance of
the bvRNA-GA, four state-of-art algorithms (RNA-GA, CMA-ES,
18
Fig. 16. I-V curves comparison between the real output and bvRNA-GA-LSSVM
model output under different temperatures for S75 module.

L-SHADE, COA) are used to make the comparison. Different ex-
periments with 10 benchmark functions have been conducted to
compare the five mentioned optimization algorithms. According
to the results, bvRNA-GA has the advantage in solving low di-
mensional problems and remains good convergence and global
searching capacity when increasing the dimensions of the prob-
lems. In the modeling part, the results of bvRNA-GA optimized
LSSVM obtain high-quality characteristic models for SDM, DDM,
three different kinds of PV solar modules under various working
conditions. The modeling results denote the effectiveness of the
proposed modeling method in modeling complex non-linear sys-
tems. In the future, we will focus on reducing the influence of
low searching efficiency caused by RNA encoding. Furthermore,
we will attempt to develop multi-object bvRNA-GA to solve more
real problems.
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Fig. 17. Total average convergence curves of bvRNA-GA-LSSVM, RNA-GA-LSSVM, L-SHADE-LSSVM, COA-LSSVM for different PV systems.
19
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