
Comparing Large-Scale Global Optimization
Competition winners in a real-world problem

1st Daniel Molina
Andalusian Institute of Data Science (DASCI)

and Computational Intelligence Dept.
University of Granada

Granada, Spain
dmolina@decsai.ugr.es

2nd Arthur R. Nesterenko

University of Granada
Granada, Spain

arthur18@correo.ugr.es

3rd Antonio LaTorre

Center for Computational Simulation (CCS)
Universidad Politécnica de Madrid

Madrid, Spain
a.latorre@upm.es

Abstract—The optimization of thousands of variables, Large-
Scale Global Optimization, is a research topic that is obtaining
more and more attention by its applications in engineering and
medical problems. In order to design evolutionary algorithms for
these problems, several specific competitions have been organized,
using benchmarks such as the ones proposed in CEC’2010 and
CEC’2013, trying to simulate realistic features of real-world
problems. Several algorithms have been proposed, some of them
being very competitive on these benchmarks, especially during
the last years. However, all of them were tested only on those
artificial benchmarks, so there are no guarantees that they
would obtain good performance in more realistic problems. In
this paper, we select the best algorithms in these competitions
to optimize a real-world problem, an electroencephalography
(EEG) optimization problem. The new benchmark contains noisy
problems and an increasing number of variables (up to 5000)
compared to synthetic benchmarks (limited to 1000 variables).
Results show that, although the fitness obtained by the majority
of the algorithms is the same, the processing time strongly
depends on the algorithm under consideration. The optimization
time for a fixed number of fitness evaluations varies, in the
most complex problems, from 3 hours to around 18 minutes,
being MOS-2013 the fastest algorithm. However, if we focus our
attention on the time needed to reach the best-known solution,
SHADEILS becomes the fastest algorithm (with a maximum of
three minutes). In our opinion, this should encourage researchers
to continue working in more scalable and efficient algorithms for
large-scale global optimization.

Index Terms—Large-scale global optimization, LSGO, Bench-
marking, BComp.

I. INTRODUCTION

The number of decision variables in engineering problems
has grown exponentially during the last 50 years [1], and this
trend has increased over the years. Nowadays, in certain areas,
many real-world optimization problems involve optimizing a
large number of decision variables, hundreds, if not thousands,
of continuous parameters. This type of optimization problems,
with thousands of variables, is called Large-Scale Global
Optimization (LSGO).

Evolutionary Algorithms [2] are a very popular tool in the
field of real coding optimization, in industrial and scientific
domains. However, the larger the number of variables to
optimize, the worse the behavior of these algorithms, as the
domain search increases exponentially with the dimension (the
curse of dimensionality [3]).

During the last years, several algorithms especially designed
for LSGO have been proposed [4], and evaluated on specific
benchmarks for LSGO such as [5], [6]. These benchmarks try
to simulate some of the characteristics of real-world problems,
such as, the heterogeneous contribution of problem variables
to the fitness function.

However, these algorithms have not been tested against a
different test suite, to observe if their competitiveness on syn-
thetic benchmarks can be extrapolated to real-world problems,
and the potential challenges to apply them in this scenarios.

In this paper, we are going to compare the different winners
of some recent LSGO competitions against a real-world prob-
lem, a big electroencephalography (EEG) data optimization
[7]. This is a very interesting benchmark because it is a real-
world problem, with both noisy and noiseless versions, and
with instances with different number of variables, much bigger
in its largest configuration than the other benchmarks.

This work has the following structure: In Section II, the
new benchmark is described in detail, remarking the differ-
ences with previous synthetic benchmarks. In Section III the
different algorithms under comparison are briefly described.
In Section IV, the results obtained by the different reference
algorithms are analyzed and discussed. Finally, in Section V
main conclusions and some future work are summarized.

II. BIG OPTIMIZATION BENCHMARK

Electroencephalography (EEG) is a valuable tool for re-
search and diagnosis. It is an electrophysiological monitoring
method to record electrical activity of the brain in a nonin-
vasive way, with the electrodes placed along the scalp. EEG
is most often used to diagnose epilepsy, and also to diagnose
sleep disorders.

One important drawback of EEG is the distortion due
to non-brain signals, called artifacts, tarnishing the results
obtained. A visual inspection by a human can remove the
artifacts influence over the obtained components, recomposing
the original EEG, but this manual process is very time-
consuming.

In 2015, a new benchmark for the Big Data Competition
was proposed 1 [7]. This benchmark is made up of three sub-

1http://www.husseinabbass.net/BigOpt.html

978-1-7281-2153-6/19/$31.00 c�2019 IEEE 351

problems, which differ only in the number of electrodes (and,
therefore, in the number of variables to be optimized). The
three datasets: A, B, and C, have both a noisy and a noiseless
version.

To summarize, there are 6 problems, identified by the
number of electrodes and a N indicating whether it is the
noisy or the noiseless version: D4, D4N, D12, D12N, D19 and
D19N. As each signal is sampled using 256Hz, the number
of variables is 1024, 3072, and 4864 respectively, as shown in
Table I.

Dataset Number electrodes Artifacts Variables

A 4 2 1024
B 12 6 3072
C 19 6 4864

TABLE I: Subproblems from BigOpt benchmark

The objective is to apply Independent Component Analysis,
ICA, to minimize the influence of the artifacts to improve the
signals. Mathematically, it implies to calculate the signal S
that satisfies:

X = A · S +N (1)

where X is the obtained signal, N is the noise, and A is a
lineal transformation matrix.

The problem is to decompose S in S1 and S2 such that
S = S1 + S2 and X = A× S. Because S2 can be calculated
from S1, the goal is to obtain the S1 matrix that optimizes the
following two objectives:

1) Maximize the Pearson correlation, reducing f1:

f1 =
1

N2 −N

�

i

�

j �=i

Cij +
1

N

�

i

(1− Cii)
2 (2)

where

C =
covar(X,A · S1)
σ(X) · σ(A · S1)

2) Reduce the distance between S and S1:

f2 =
1

N ×M

�

i

�

j

(Sij − S1ij)
2 (3)

Given that most of the algorithms proposed for LSGO
are for only a single objective, the fitness function has been
converted into its mono-objective version, in which the actual
fitness function being optimized is a lineal combination of the
two objectives: fitness = Minimize(f1 + f2).

The data files for each of the 6 problems were generated
with synthetic sampling, and are freely available. Unfortu-
nately, the source code of the fitness function is not available:
only a description of how f1 and f2 should be calculated is
provided.

This benchmark has the following advantages:
• It simulates a real-world problem, with clear interest.

• It provides different datasets with different number of
variables, several times bigger than those used in classic
LSGO benchmarks.

• Noisy and noiseless problems are available. It is common
in real-world competitions, but not in LSGO ones.

However, it has also several important drawbacks:
• It is not a full real-world problem, because the data are

synthetically generated, not coming from real patients.
• The implementation was not publicly available, and we

had to write multiple times to authors of the benchmark.
It is very important to be sure that differences in results
are due to the algorithms, and not to implementations of
the benchmark.

• Few algorithms have reported results for this benchmark.
To the best of our knowledge, only the following three
[7], [8], [9]. Maybe the reason for these few reference
algorithms after 3 years is the absence of a publicly
available implementation, as stated before.

III. PREVIOUS WINNER ALGORITHMS IN LSGO
In this section we briefly describe the algorithms used as

reference. All of them have been selected by their good results
in previous LSGO benchmarks:

• MOS version 2011 [10], winner of the SOCO 2011
Special Issue, with a benchmark specifically designed for
this competition.

• MOS version 2013 [11], winner in the CEC’2013 com-
petition with the CEC’2013 LSGO benchmark. It was
unbeaten until the competition of the IEEE CEC’2018.

• SHADEILS [12], winner in the CEC’2018 competition
with the CEC’2013 LSGO benchmark.

• MLSHADE-SPA [13], runner-up in the CEC’2018 com-
petition, with better results than MOS version 2013.

In the following subsections, we are going to briefly de-
scribe these four algorithms.

A. Multiple Offspring Sampling (version 2011)

This was the winner of the SOCO 2011 Special Issue. It
is a hybrid algorithm that combines a differential evolution
algorithm (DE) and a LS method specially designed for
LSGO, MTS-LS1. MTS-LS1 tries to optimize each variable
independently by moving them in different directions. It uses a
step size that is adapted when no improvement is possible with
the current value. It is initialized with a large value to favor
exploration and is systematically adjusted to better search in
the proximity of an optimum.

The most characteristic element of MOS is the division of
the allocated budget of fitness evaluations in several steps and
the use of a participation function and a quality measure to
decide the budget, in terms of fitness evaluations, that each of
its composing techniques is allowed to use at each step. The
quality measure evaluates how well a particular subcomponent
is performing and then the participation function adjusts the
budgets accordingly. This behavior is common to the 2013
version. However, the individual components used in each case
differ.

352

If we analyze the two components being used in MOS-2011,
it is interesting to note how one of the two techniques is a
classic algorithm in its most basic configuration (DE), which
has not been specifically designed for LSGO. However, its
combination with a powerful local search (MTS-LS1) yields
excellent reports, still not beaten for this benchmark.

Details on the implementation and the parameters of the
algorithm can be obtained from [10].

B. Multiple Offspring Sampling (version 2013)

In the CEC’2013 competition a new CEC’2013 benchmark
was proposed. In that year, a new version of MOS was
proposed, obtaining the best results for the following five
years. This version maintains the general dynamic framework
described for MOS-2011. However, the individual components
used by the algorithm are different. In this case, a simple
Genetic Algorithm and two local searches, an evolution of
MTS-LS1 called MTS-LS1-Red and the classic Solis-Wets
method, are used. Regarding the improved MTS-LS1 algo-
rithm (MTS-LS1-Red), its main difference is that it stores
the improvements in the objective value associated to each
variable of the problem, focusing the search more on those
components than on others (remember that the original MTS-
LS1 searched all the components) with the same effort.

In [11] all the details about the algorithm are provided and
results are compared with a number of state-of-the-art LSGO
algorithms.

C. SHADE with Iterative Local Search

SHADE with Iterative Local Search (SHADE-ILS) is an
algorithm that iterative applies a well-known DE variant,
SHADE, in combination with a LS component: a step of the
SHADE algorithm of MaxDE evaluations, is followed by one
of the LS method of the same duration.

The main characteristics of SHADE-ILS are:
• SHADE is an advanced DE with self-adaptation of the

DE parameters. Additionally, during mutation it uses an
archive of previous solutions (to increase diversity) and
it is guided by the p best solutions (to exploit best
solutions).

• At each iteration of the LS method, the algorithm chooses
one of the following available techniques: the MTS-LS1
(used also by MOS-2011), and the classic L-BFGS-B [14]
that uses an approximation of the gradient to improve the
search.

• The selection of the LS is carried out considering the
relative improvement ratio during its last application.

More details on the design of the algorithm, its configuration
and a comparative with other state-of-the-art LSGO methods
can be found in [12].

D. L-SHADE Memetic framework with semi-parameter adap-
tation

LSHADE-SPA Memetic Framework with semi-parameter
adaptation (MLSHADE-SPA) is a hybridization framework be-
tween population-based algorithms and local search methods.

The Cooperative Coevolution framework (CC) manages a total
of four techniques:

• Three DE algorithms used for exploration purposes:
LSHADE-SPA (Semi-parameter adaptation SHADE with
linear-population reduction), EADE (DE with random
triplex-vector mutation operator) and ANDE (another DE
with random convex triplex-vector mutation operator).

• A modified version of the MTS algorithm (MMTS),
which selects the starting explotation point from the input
population after the exploration process.

The main difference with MOS is the use of the CC
framework, by which the algorithm randomly divides the set
of variables in several groups, and each group is optimized
by each of the optimization components. In addition to that,
the population during the application of the components can
increase. In that case, only the best solutions are kept into the
population (to maintain stable the population size). You can
check all the details of the algorithm and its parameters in
[13].

IV. EXPERIMENTAL SECTION

This section describes the experimental setup, with details
of the parameters values of the different algorithms under
consideration, a description of the system used to carry out
the experiments and of the experimental procedure followed.
Moreover, a comparison and analysis of the results observed
is also provided.

Regarding the implementation of the different algorithms,
we have used the original implementations as provided by
their authors, with minimum changes to include the fitness
function of the BigOpt benchmark. Furthermore, the source
code of the test suite was also obtained from its authors. This
was very important to us to avoid, as discussed before, the
risk of any possible error in the implementation of the fitness
function that could alter the results.

As the source code of all the algorithms was retrieved from
their original authors, several programming languages have
been used:

• Both versions of MOS (MOS-2011 and MOS-2013) were
implemented in C++.

• SHADEILS was implemented in Python3, using the
Numpy library for getting better performance.

• MLSHADE-SPA was implemented in Matlab.
All the experiments were run using the same hardware

configuration, to allow fair comparisons of running times. In
particular, experiments were run on a cluster with nodes with
the following configuration: Intel Core i7 930 processors at
2.8Ghz; Ubuntu 18.04 LTS Operating System and 24GB of
RAM. The C++ Compiler was gcc 7.3.0.; Python interpreter
was 3.6.4 and MATLAB version was 9.4 (R2018a). Each al-
gorithm was run sequentially (neither MPI or other parallelism
technique was used), the different nodes were used to run in
parallel over the different problems.

Each algorithm was run for 1, 000, 000 fitness evaluations
for each problem, 10 times, and the average results were
obtained.

353

Finally, for the parameter of the different algorithms we
used the recommended values by their authors, as shown in
Tables II-V. We decided to keep these values because it is
usually the followed criterion in a real-world problem. The
idea is to test each algorithm as it was proposed by their
authors on a new problem, without any parameter tuning.

Parameter Value Parameter Value

Population size 15 Step size 35715
DE F 0.5 DE CR 0.5

TABLE II: Parameter values for MOS-2011

Context Parameter Value Parameter Value

Population size 400 Crossover PCX 0.9
Global Prob mutation 0.01 Minimum 20%

Step size 3600 Selection Tournament

Solis Wets adjustSuccess 4 adjustFailed 0.75
maxSuccess 5 maxFailed 4

delta 2.4

MTS-LS-Red adjustFailed 2 adjustMin 10
moveLeft 0.25 moveRight 0.5

searchProb 90% minProb 2.5%

TABLE III: Parameter values for MOS-2013

Parameter Value Parameter Value

Population size 100 FreqLS 10
FEDE 25000 FELS 25000

Threshold 1% Times without imp. 3
MTS initial step 20

TABLE IV: Parameter values for SHADEILS

Parameter Value Parameter Value

Initial popsize 250 Minimum popsize 20
Memory size 5 Evals CC 50
Ratio Pbest 0.1

TABLE V: Parameter values for MLSHADE-SPA

We are going to start our analysis by comparing the fitness
obtained by each of the algorithms used in this studio, plus an
additional one, MAGA [9], an algorithm specially designed for
that benchmark that obtained the best results. Table VI shows
the average fitness for each of the compared algorithms, and
also for the reference one.

From Table VI, we can obtain the following conclusions:
• The results obtained by the different algorithms are sur-

prisingly similar. Only MOS-2011 achieves worse results
than MAGA, the previous reference algorithm. All the
other algorithms obtain very similar results (probably,
observed differences are due to the number of significant
digits used by each implementation).

• It can be observed that the noise in the datasets has
very little influence on the results. Moreover, for several

problems, the noisy version is easier to optimize than the
noiseless one).

• Considering the different problems, the D4 problem
(1024 variables) may seem the simpler one to solve a pri-
ori. However, what really happens is that less information
is available - a smaller amount of mixed signals - of which
the algorithm needs to identify the correlation between
the signals and separate the artifacts from them. Also, it
is the least representative of a real environment, because
in real situations it is common to find more electrodes.
In the D12 problem (3072 variables) algorithms achieve
the best results because, even if it has more variables
to optimize, there is more information available to do
it. D19 is the problem with the highest difficulty due
to the highest domain search, and thus it was expected
to get worse results than with D12, but it still can be
optimized better than D4. To summarize this point, even
when dimensionality implies more complex landscapes,
in real-world problems, sometimes a certain number of
variables could be required to obtain enough information
to be optimized.

• Even if the algorithms compared in this studio (except
for the case of MAGA) have been designed for 1000
dimensions benchmark, they have shown a very robust
behavior for a much larger benchmark, reaching the best
results for the 3000 variables problems.

Our next analysis will consider algorithmic complexity, in
terms of running time. We are going to analyse how the run-
time of each algorithm depends on the number of variables (D4
implies 1000 variables, a similar problem size to those used
in the CEC’2013 benchmark, but D12 already implies 3000
variables, and D19 4800 variables, much larger problems), by
using only one computer/node (with the same configuration
for all the algorithms, to allow a fair comparison).

Table VII presents the time for a single run of each
algorithm. It can be seen that, whereas almost no differences
were reported in fitness values, processing time shows big
differences among the algorithms, with running times ranging
from more than 3 hours for the slowest algorithm, MLSHADE-
SPA, to the 18 minutes of the fastest one, MOS-CEC2013
(these times correspond to the D19 problems). Figure 1
graphically depicts these differences in computing time for the
algorithms under consideration. It is obvious that MLSHADE-
SPA is less scalable than the other algorithms, whereas MOS-
2013 seems to be the fastest method. SHADEILS is slower
than MOS-based algorithms, but these differences decrease
as dimensionality increases, obtaining, for problem D19, very
similar running times to those of MOS-2011.

In order to highlight these time differences, Table VIII
shows the relative time of each algorithm to the slowest one.
The following conclusions can be obtained:

• MLSHADE-SPA is clearly the algorithm with worst
execution time. In the smallest problem, it already takes
twice the time of the next algorithm, and these differences
increase with dimensionality.

354

Problem MOS-2011 MOS-2013 SHADE-ILS MLSHADE-SPA MAGA*

D4 0.06103 0.06103 0.06103 0.06103 0.0610
D4N 0.05897 0.05897 0.05897 0.05897 0.0590

D12 0.00198 0.00194 0.00194 0.00194 0.0019
D12N 0.00188 0.00183 0.00183 0.00183 0.0018

D19 0.0894 0.00251 0.00252 0.00252 0.0025
D19N 0.0918 0.00256 0.00256 0.00256 0.0026

TABLE VI: Average fitness for each algorithm and problem

Algorithm D4 D4N D12 D12N D19 D19N

MOS-2011 98 98 660 661 1582 1578
MOS-2013 111 111 519 518 1202 1083

SHADEILS 256 257 811 804 1604 1580
MLSHADE-SPA 474 469 3825 3831 10637 10096

TABLE VII: Average time, in seconds, after 10 runs

Algorithm D4 D4N D12 D12N D19 D19N

MOS-2011 19 19 16 16 13 13
MOS-2013 20 20 13 12 10 10

SHADEILS 51 49 20 20 14 14
MLSHADE-SPA 100 100 100 100 100 100

TABLE VIII: Relative time to the slowest algorithm

• MOS-2013 not only improves the results of MOS-2011,
but is also faster. For dimension 1000 it is slighly slower,
but in more complex problems it uses less time than
MOS-2011, and the difference increases with dimension
(for D19, MOS-2013 uses 25% less time).

• SHADEILS is the second slowest algorithm. However,
in higher dimensions, the differences decrease, taking a
very similar time to solve D19 to that of MOS-2011
(and obtains better results). Thus, it is a rather scalable
algorithm.

These results have a strong relationship with the program-
ming language/technology used for the implementation of the
different algorithms: MOS is programmed in C++, one of the
fastest existing programming languages. MLSHADE-SPA is
coded in Matlab, and it is expected to take more time than a
C++ implementation. Finally, SHADEILS is implemented in
Python and, even if it uses the well-known, and optimized,
Numpy library, we could expect it to be slighly slower than
Matlab, and several times slower than a C++ implementation.
However, in this case, as SHADEILS is more scalable, it is
a very competitive algorithm (with similar times to those of
MOS-2011).

In the previous paragraphs we have compared the running
time of the algorithms with a fixed number of evaluation. How-
ever, in real-world problems, the important time is sometimes
the required one to obtain a competitive solution. In order to
study that, we have tested the number of evaluations required
to achieve the current best known solution for each algorithm.

Table IX shows the results for the time required for each
algorithm to achieve the best known solutions (in MOS-
2011, they were not always obtained). The data in the table

(a) All considered algorithms

(b) Fastest algorithms, to highlight time differences

Fig. 1: Running time for each algorithm and problem

Algorithm D4 D4N D12 D12N D19 D19N

MOS-2011 14.8 14.4 591.4 624.3 - -
MOS-2013 7.3 7.4 146.2 145.4 434.9 381.5
SHADEILS 1.4 1.2 120.2 116.5 187.9 184.2
MLSHADE-SPA 132.0 129.2 1565.0 1592.1 4591.4 4162.9

TABLE IX: Time, in seconds, required to achieve the best
solution (optimum) for each algorithm and problem

corresponds to the average time for 10 runs. Moreover, Table
X shows the ratio against the total time used to obtain them.

From the results presented in the previous tables, it can be
observed that:

• First, the maximum number of evaluations was excessive
for the majority of the algorithms (with the exception
of MOS-2011). Several algorithms reached their best

355

Algorithm D4 D4N D12 D12N D19 D19N

MOS-2011 15.10 14.69 89.61 94.45 - -
MOS-2013 6.58 6.67 28.17 28.07 36.18 35.23
SHADEILS 0.53 0.47 14.82 14.49 11.71 11.66
MLSHADE-SPA 27.84 27.50 40.91 41.55 43.16 41.22

TABLE X: Ratio of time in which each algorithm achieved
the best known solution

solutions in a small fraction of the overall time (35%
in MOS-2013, and 11% in SHADEILS).

• MLSHADE-SPA was the slowest algorithm. Not only it
took more time for a fixed number of evaluations, but also
it required more time to achieve the optima. For lower
dimensions, it needs more than 25% of the overall time,
and for higher dimensions, it requires more than 40% of
the total time (for D19 that means around 70 minutes,
more than ten times more than the rest of algorithms).

• MOS-2011 not always found the optima and, when it
does, it takes more time than MOS-2013 (twice as much
time for D4, and 4 times more in D12). Additionally, in
D12 it needs the 95% of the overall time to reach them.

• MOS-2013 is able to obtain the best solutions in only
35% of the total time, in only 6 minutes instead of the
aforementioned 18 minutes.

• In the case of SHADEILS, although it consumes more
time than MOS-2013 for the same number of evaluations,
it is able to achieve the optima in a smaller fraction of
them (with only an 11% of the time it was able to solve
all the problems). SHADEILS needed only 3 minutes to
solve D19, whereas MOS-2013 needs 6 minutes.

To summarize, while the majority of the algorithms were
able to achieve the same fitness for the problems in the new
benchmark, there is a lot of difference in the computing time
required, as can be seen in Figure 1. Furthermore, the required
time to obtain the best known solution for several of them was
only a small fraction of time. MOS-2013 and SHADEILS were
clearly the most competitive algorithms. MOS-2013 runs faster
than SHADEILS with the same number of evaluations (18
minutes vs 25 minutes), but SHADEILS was able to achieve
the best known solutions in less time (3 minutes vs 6 minutes).
Also, SHADEILS presents a very scalable behavior when the
number of variables increases.

V. CONCLUSIONS

In this paper, we have compared the best algorithms in
previous LSGO competitions, that used artificial benchmarks
such as the ones proposed in CEC’2010 and CEC’2013, with
a more realistic problem. The idea was to test if competitive
algorithms using an artificial benchmark could achieve good
results in this new problem without modifications.

The selected problem was an electrophysiological (EEG)
problem, in which the function to optimize is a decompo-
sition of the measured signals to reduce the distortions due
to non-brain signals. The size of the instances depend on
the number of electrodes used, ranging from 1000 variables

(the same as in artificial problems) to 3100 and close to
5000 variables. Thus, this work can also be seen as a study
of the scalability of the selected algorithms. The compared
algorithms were MOS, in versions proposed in 2011 and 2013,
and the algorithms that surpassed MOS-2013 in the CEC’2018
competition, MLSHADE-SPA and SHADEILS.

The experimental results have shown that, while the major-
ity of the algorithms obtained a very similar fitness, there were
a lot of differences in the required time to run each of them
on the higher dimensionality problems (maintaining the same
number of evaluations). The slowest algorithm took 3 hours to
execute for the largest problem, whereas the fastest one, MOS-
2013, took 18 minutes for the same problem size. These results
are due to the efficiency of algorithms, and the technology
used in their implementation. Measuring the time required to
obtain the best known solutions, it was observed that several
algorithms could achieve them with a small ratio of the overall
optimization time (35% in MOS-2013, 11% in SHADEILS).
From that perspective, the resulting fastest algorithm was
SHADEILS, because it was able to get the optima in only
3 minutes, whereas MOS-2013 required twice as much time:
6 minutes. This shows that the efficiency of algorithms was
much more influential than the technology/language used to
implement them.

To conclude, experimental results show that the scalability
of algorithms is an important factor that should be better
studied in the LSGO competitions. In real-world optimiza-
tion problems, processing time is determinant to decide if
a problem is feasible, and thus the algorithms in LSGO
should continue improving performance (not only the fitness)
to improve their application to real-world LSGO problems.

As a future work, we are going to implement the promising
SHADEILS in a compiled language, to obtain even more
performance, and also to make it easier to use in real-world
problems. Finally, we will study parallel versions of these
LSGO algorithms, to decrease the required time for this kind
of problems and to be able to tackle even larger ones.

ACKNOWLEDGMENTS

This work was supported by grants from the Spanish Min-
istry of Science (TIN2014-57481-C2-2-R, TIN2016-8113-R,
TIN2017-83132-C2-2-R and TIN2017-89517-P) and Universi-
dad Politécnica de Madrid (PINV-18-XEOGHQ-19-4QTEBP).

REFERENCES

[1] G. N. Vanderplaats, Very large scale optimization. National Aeronautics
and Space Administration (NASA), Langley Research Center, 2002.

[2] T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of Evolu-
tionary Computation. Bristol, UK: IOP Publishing Ltd., 1997.

[3] S. Chen, J. Montgomery, and A. B. Röhler, “Measuring the curse
of dimensionality and its effects on particle swarm optimization and
differential evolution,” Applied Intelligence, vol. 42, no. 3, pp. 514–526,
2015.

[4] D. Molina, A. LaTorre, and F. Herrera, “An insight into bio-
inspired and evolutionary algorithms for global optimization: Review,
analysis, and lessons learnt over a decade of competitions,” Cognitive
Computation, vol. 10, no. 4, pp. 517–544, Aug 2018. [Online].
Available: https://doi.org/10.1007/s12559-018-9554-0

356

[5] K. Tang, X. Li, P. Suganthan, Z. Yang, and T. Weise, “Benchmark
Functions for the CEC’2010 Special Session and Competition on Large
Scale Global Optimization,” Tech. Rep., 2010.

[6] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark
functions for the CEC’2013 special session and competition on large-
scale global optimization,” RMIT University, Melbourne, Australia,
Technical Report, 2013.

[7] S. K. Goh, K. C. Tan, A. A. Mamun, and H. A. Abbass, “Evolutionary
big optimization (bigopt) of signals,” in IEEE Congress on Evolutionary
Computation, CEC 2015, Sendai, Japan, May 25-28, 2015, 2015, pp.
3332–3339.

[8] Y. Zhang, M. Zhou, Z. Jiang, and J. Liu, “A multi-agent genetic
algorithm for big optimization problems,” in 2015 IEEE Congress on
Evolutionary Computation (CEC), May 2015, pp. 703–707.

[9] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 18, no. 3, pp. 378–393, June
2014.

[10] A. LaTorre, S. Muelas, and J. M. Peña, “A mos-based dynamic memetic
differential evolution algorithm for continuous optimization: a scalability
test,” Nov 2011, pp. 2187–2199.

[11] ——, “Large Scale Global Optimization: Experimental Results with
MOS-based Hybrid Algorithms,” in 2013 IEEE Congress on Evolution-
ary Computation (CEC 2013), Cancún, Mexico, 2013, pp. 2742–2749.

[12] D. Molina, A. LaTorre, and F. Herrera, “SHADE with iterative local
search for large-scale global optimization,” in 2018 IEEE Congress on
Evolutionary Computation, CEC 2018, Rio de Janeiro, Brazil, July 8-13,
2018, 2018, pp. 1252–1259.

[13] A. A. Hadi, A. W. Mohamed, and K. M. Jambi, “Lshade-spa
memetic framework for solving large-scale optimization problems,”
Complex & Intelligent Systems, Dec 2018. [Online]. Available:
https://doi.org/10.1007/s40747-018-0086-8

[14] J. L. Morales and J. Nocedal, “Remark on algorithm 778: L-bfgs-b:
Fortran subroutines for large-scale bound constrained optimization,”
ACM Trans. Math. Softw., vol. 38, no. 1, pp. 7:1–7:4, Dec. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2049662.2049669

357

