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Abstract— In this brief, we present a novel model fitting pro-
cedure for the neuro-coefficient smooth transition autoregressive
model (NCSTAR), as presented by Medeiros and Veiga. The
model is endowed with a statistically founded iterative building
procedure and can be interpreted in terms of fuzzy rule-based
systems. The interpretability of the generated models and a
mathematically sound building procedure are two very important
properties of forecasting models. The model fitting procedure
employed by the original NCSTAR is a combination of initial pa-
rameter estimation by a grid search procedure with a traditional
local search algorithm. We propose a different fitting procedure,
using a memetic algorithm, in order to obtain more accurate
models. An empirical evaluation of the method is performed,
applying it to various real-world time series originating from
three forecasting competitions. The results indicate that we can
significantly enhance the accuracy of the models, making them
competitive to models commonly used in the field.

Index Terms— Autoregression, memetic algorithms,
neuro-coefficient smooth transition autoregressive model
(NCSTAR), regime-switching models, threshold autoregressive
model (TAR).

I. INTRODUCTION

Time series prediction and modeling is an important
interdisciplinary field of research, involving among others
Computer Sciences, Statistics, and Econometrics. Made pop-
ular by Box and Jenkins [1] in the 1970s, traditional mod-
eling procedures combine linear autoregression (AR) and
moving average. But, since data are nowadays abundantly
available, often complex patterns that are not linear can be
extracted. So, the need for nonlinear forecasting procedures
arises. Commonly used in this context are procedures, such
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as multilayer perceptrons or support vector machines [2], and
recent developments focus on recurrent neural networks [3],
[4], generalized regression neural networks [5], and other
regression procedures from machine learning.

But following the ideas of Box and Jenkins [1], a special
type of nonlinear models, mainly developed by Tong [6], are
piecewise linear models, which allow for modeling a series
using various linear models assigned to different zones of the
series. A threshold variable is then used to switch between
the linear models. Many different types of these so-called
threshold AR models can be found in the literature [6], [7].
If the threshold variable is chosen to be a lagged value of the
time series, the model is called self-exciting threshold AR.
Taking into account that the series are usually continuous, it
may often be better if the change from one regime to the
other is not performed by a sudden change, but merely using
a smooth, differentiable function, such as the Gaussian or
logistic function, which leads to smooth transition AR models.

Using this theory, Medeiros and Veiga [8] developed the
neuro-coefficient smooth transition AR (NCSTAR), which
uses a neural network to learn the threshold variable as a
weighted sum of the inputs from the training data. Further-
more, those authors presented an iterative building procedure
based on statistical testing to define the number of hidden units
of the neural network.

All these models (in the following, we call the model family
*TAR) have the advantage that there is a theory to translate
them to fuzzy rule-based systems (FRBS) [9]–[12], which
makes their interpretability more accessible.

Accuracy and interpretability are usually considered
contradictory goals. In many modeling approaches, accuracy
is strived for and interpretability is hardly considered.
In contrast, the focus of fuzzy modeling initially was to
obtain interpretable systems with acceptable accuracy, as the
seminal purpose of FRBSs is to exploit the descriptive power
of linguistic variables in linguistic fuzzy modeling [13]. Only
in later developments, the focus was broadened to concentrate
solely on accuracy in precise fuzzy modeling, and nowadays
often a tradeoff between accuracy and interpretability is aimed
at, e.g., by using multiobjective optimization algorithms [13].

So, although the sole use of FRBSs does not guarantee
interpretability, their overall design as systems of rules makes
them more accessible to humans. Furthermore, the question of
measuring interpretability of FRBSs is an important subject of
ongoing research in the area [14], and there exists certain con-
sensus that important matters for interpretability are the overall
number of rules, and easily understandable rule premises with
few input variables [14]. Also, FRBSs are used in the literature
to give interpretations to not only *TAR models [9], but also
to other model classes like, e.g., neural networks [15], and
support vector machines [16].
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As the iterative building procedure of the NCSTAR
model controls the overall number of regimes, the resulting
models typically have only few rules, and can be considered
interpretable in this sense.

For model identification and estimation, the NCSTAR model
uses a combination of a grid search (GS) procedure and a local
search (LS) to optimize its parameters. This optimization step
is crucial during the iterative building procedure, as it both
influences the behavior of the test that determines the number
of regimes, and the overall accuracy of the method. On the
other hand, evolutionary algorithms (EAs) [17] have proven to
be very efficient techniques in various fields of optimization
problems [18], especially in the optimization of neural network
parameters [19], [20]. They have also been applied in various
time series prediction problems [21]–[24].

In particular, memetic algorithms [17], [25] are well-suited
for continuous optimization, where high precision in the
solutions has to be achieved [26], as they combine the evo-
lutionary paradigm with LS strategies. In this brief, we will
use memetic algorithms based on local search chains (MA-
LS-Chains) [27]. Our aim is to combine the strength of EAs
to find good parameters, with the benefits of the NCSTAR
model, in order to develop a building procedure which results
in equally interpretable, but more accurate models for time
series (in comparison to the original NCSTAR method).

The structure of this brief is as follows. Section II details
the theoretical background of the threshold autoregressive
models. Section III discusses the memetic algorithm scheme
employed, namely MA-LS-Chains. Section IV presents the
proposed algorithm, which combines the NCSTAR model with
the MA-LS-Chains optimization method. Section V presents
the performed experimental setup, and Section VI discusses
the results. Finally, Section VII concludes this brief.

II. NEURO-COEFFICIENT SMOOTH TRANSITION

AUTOREGRESSIVE MODEL: NCSTAR

We define an autoregressive model for a time series x(t)
with a function F and a series e(t) of independent, identically
distributed error terms in the following way:

x(t) = F(x(t − 1), . . . , x(t − d))+ e(t). (1)

The delay parameter d determines which lagged values are
used as input for the method. From this general definition,
various time series models can be derived according to the
choice of F .

In a linear autoregression, F performs a linear combination
of the past values

x(t) = a0 +
d∑

i=1

ai x(t − i)+ e(t). (2)

With z(t) = [1, x(t − 1), x(t − 2), . . . , x(t − d)]T , and a =
[a0, . . . , ad ], (2) becomes in vector notation

x(t) = az(t)+ e(t). (3)

When F is to be a nonlinear function, a popular approach
is to use mixtures of linear models

x(t) =
k∑

j=1

f j (th j (t))a j z(t)+ e(t). (4)

Here, two important lines of research can be found in the
literature [6], [7]: 1) regarding the (nonlinear) functions f j

that are used for mixing and 2) composition of the threshold
function th j (t). This function can, for instance, take into
account exogenous variables, lagged values, or combinations
of both. In the threshold AR model (TAR), the functions f j

are chosen to be index functions I j that switch between the
different linear models, depending on the current threshold
value th j (t), using threshold constants c0, . . . , ck with −∞ =
c0 < c1 < · · · < ck = ∞, in the following way:

I j (th j (t)) =
{

1, if th j (t) ∈ (c j−1, c j ]
0, otherwise.

(5)

In the self-exciting TAR, for instance, the threshold variable
is defined as th j (t) := x(t − d) [7]. As the index function
causes abrupt changes, which might not be desirable, another
possibility is to use the logistic function, that is

f j (th j (t)) = (1+ exp(−γ j (th j (t)− c j )))
−1. (6)

This defines the logistic smooth transition autoregressive
model (LSTAR) [7]. Here, the parameter c j can still be
interpreted as the threshold between two regimes, and the
parameter γ j is the slope parameter of the logistic function,
which determines the smoothness of the change in the logistic
function [7].

There are some other possibilities to choose the functions f j

and th j (t), to generate other models. The most relevant for our
work, the NCSTAR, is a modification of the LSTAR model,
with

th j (t) = ω j w(t). (7)

Here, w(t) is a vector containing all variables that are
relevant for the threshold, that is, lagged values and/or
exogenous variables. In the following, we will use w(t) =
[x(t − 1), x(t − 2), . . . , x(t − d)]T . And ω j is a vector of
weights with ‖ω j‖ = 1, which has the same length as w(t).

The NCSTAR model has some interesting properties.
Medeiros and Veiga [8] presented an iterative building pro-
cedure based on statistical tests for this type of model, and
Aznarte and Benítez [9] showed that “NCSTAR models are
functionally equivalent to Additive TSK FRBS with logistic
membership function.” Thus, with the NCSTAR, we have a
model at hand with a powerful iterative building procedure
that can be interpreted in terms of a fuzzy rule-based system.

The parameters of NCSTAR can be divided into linear and
nonlinear ones. After having fixed the nonlinear parameters,
the linear parameters can be computed in a closed-form solu-
tion. In the original version of the NCSTAR [8], a combination
of GS and LS is used to determine good settings for the
nonlinear parameters. The nonlinear parameters are γ j , c j , and
ω j for j = 1, . . . , k as in (5) and (6), with ωi j ∈ [−1, 1], and
‖ω j‖ = 1. Whenever during the iterative procedure a new
regime is added, starting values for this regime j are chosen
in the following way [8].

1) ω j is drawn from a uniform distribution, and normalized
afterwards to ensure its norm is 1. If ω1 j < 0, ω j :=
−ω j . This is performed M times, so that we obtain M
vectors ωm

j (with m = 1, . . . , M).
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2) For every ωm
j , c j is defined to be the median of ωm

j x,
with x being the embedded time series.

3) A grid of N values is defined to choose γ n
j (with n =

1, . . . , N) as γ n
j := n.

Hence, a total of N × M candidate solutions for the new
regime are generated. The parameter γ j is scale-dependent,
so the series are normalized before NCSTAR model building.
The best parameter set, appended to the regimes yet present,
is used then to initialize the LS algorithm, which improves on
all values of the current model. In the original publication, the
Levenberg–Marquardt algorithm [28] is used for the LS.

III. MEMETIC ALGORITHMS WITH LOCAL

SEARCH CHAINS: MA-LS-CHAINS

Evolutionary algorithms [17] are used nowadays success-
fully in a wide range of optimization problems. They evaluate
a population of candidate solutions and alter and combine
them to new solutions, substituting iteratively the candidate
solutions by better suited variants. A central idea of EAs
states that, with the use of several candidate solutions, better
coverage of the search space will be achieved, and getting
stuck in a particular local optimum will be avoided.

When using EAs, a tradeoff has to be made between ex-
ploring new unknown areas of the search space and exploiting
already known good solutions to reach the local optimum in
their neighborhood. This problem is important for continuous
optimization problems, such as the one addressed in this brief,
as results of high precision are required.

Memetic algorithms combine EAs with LS in order to
explore more intensely the most promising areas of the search
space. Instead of a generational approach for the EA, where the
whole population is substituted by a new one, in this context
a steady-state approach is better suited, where only single
individuals are substituted. When using an elitist algorithm,
it is then possible to maintain the results of the LS in the
population.

In the MA-LS-Chains paradigm [27], we use a steady-state
genetic algorithm [29] designed to maintain population diver-
sity high by combining the BLX–α crossover operator [30]
with a high value for its associated parameter (the default is
alpha = 0.5), the negative assortative mating strategy [31] as
its selection method, replace worst as replacement strategy,
and the BGA mutation operator [32].

Another central idea of MA-LS-Chains is that, not only are
the individuals stored, but also the current state of the LS for
each individual. As a result, it becomes possible to interrupt
the LS after a fixed number of iterations (the parameter istep
of the method), and later resume it from the same state.
In this way, MA-LS-Chains adapts the intensity of the LS to a
solution in function of the fitness of that solution. The process
of interrupting and later continuing LS is called LS chaining.
In these LS chainings, the final state of the LS parameters after
each LS application becomes the initial point of a subsequent
LS application over the same solution, continuing the LS. In
this way, MA-LS-Chains applies a higher intensity to the most
promising solutions. Finally, the parameter effort controls the
ratio of function evaluations used for LS over those used for
the genetic algorithm.

Different LS algorithms can be used within the MA-LS-
Chains paradigm. MA-CMA-Chains [27] uses the covariance
matrix adaptation evolution strategy (CMA-ES) [33]. Though
CMA-ES is itself an EA, it performs well in detecting and
exploiting local structures. A drawback is that it does not
scale well with the amount of parameters, as it employs
complex mathematical operations. However, in our application
this is of minor importance, as the amount of parameters
is relatively low (for instance, a NCSTAR with order 4 and
10 regimes has 60 nonlinear parameters).

See [27] for a more detailed discussion of the MA-CMA-
Chains algorithm.

IV. NCSTAR FITTED WITH MA-LS-CHAINS

In order to apply the MA-LS-Chains paradigm to replace
the combination of GS and LS of the original NCSTAR, some
adjustments are necessary.

The individuals of the population of the MA-LS-Chains
algorithm consist of vectors X = [

γ1, . . . , γk, c1, . . . , ck,
ω11, . . . , ωd1, . . . , ω1k, . . . , ωdk

]
, which are realizations of the

nonlinear parameters γ j , c j , and ω j with j = 1, . . . , k of
a NCSTAR model with k transitions (and therewith k + 1
regimes).

The process for model building is then the following (also
shown in Algorithm 1): first, the series is tested for linearity. If
the linearity assumption can be rejected, the series is assumed
to be nonlinear, and the iterative building procedure is started.
Otherwise, a linear model is built (a one-regime NCSTAR
is a linear model). Within the iterative procedure, in the kth
iteration, a (k+1)-regime NCSTAR is built. In every iteration,
the following is executed.

1) A randomly initialized regime is added to the last
iterations’ solution, and this solution is added to the
initial population. The rest of the population is initialized
randomly. A uniform distribution constrained by the
parameter domains given below is used.

2) The nonlinear parameters for all k transitions are fixed
with the optimization algorithm (the linear parame-
ters are computed for every evaluation of the fitness
function).

3) The residuals of the built model are tested for linearity.
4) If the test indicates that a new regime should be added,

the algorithm goes back to step (1). Otherwise, the
method terminates.

It is important to properly constrain the values for γ j and c j .
A regime that is relevant only for few training data leads
to numerical problems, and unreasonable linear parameters,
which may lead to very unexpected forecasts. Furthermore, if
the γ j are high, the NCSTAR deteriorates to a TAR model.

So, we restrict the nonlinear parameters in the following
way.

1) For a time series x , we define the domain of the γ j to
be γ j ∈ [0, γ0 · (max(x) − min(x))], with γ0 being a
parameter of the method.

2) The thresholds c j are constrained to lie into the
[min(x), max(x)] interval. In preliminary experiments,
we also evaluated the less narrow interval [−mth, mth],
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Algorithm 1 NCSTAR-MA-LS Algorithm
1: NCSTAR ← a linear model fitted to the series
2: k ← 0 {the current number of transitions}
3: Test for linearity (H0 : γ1 = 0).
4: if H0 is not rejected then
5: {The series is assumed to be linear.}
6: return NCSTAR
7: else
8: repeat
9: {Add a new regime to NCSTAR.}

10: k ← k + 1
11: Build a random initial population.
12: Add a new, randomly initialized regime to NCSTAR.
13: Add vector X of non-linear parameters of current

NCSTAR to the population.
14: Run MA-LS-Chains using the initial population.
15: Store the result in NCSTAR.
16: Test for the addition of another regime (H0 : γk+1 = 0).
17: until H0 is not rejected
18: end if
19: return NCSTAR

with mth =
√

d · max(|min(x)|, |max(x)|). But because
of the numerical problems mentioned earlier, the former
turned out to be a better choice for the threshold domain.

3) In order to handle the constraint ‖ω j‖ = 1, ω j is
encoded with n-dimensional polar coordinates [34], so
that ωi j ∈ [0, π] for i = 1, . . . , (d − 1), and ωd j ∈
[0, 2π].

V. EXPERIMENTAL SETUP

In order to analyze the performance of the proposed method,
an experimental study was carried out, which is detailed in
this section. We comment on the time series data and the
algorithms used, as well as on the results that were obtained.

A. Time Series Used for the Experiments

We use data from the NNGC1 and NN5 forecasting com-
petitions,1 and from the Santa Fe [35] competition. The high-
frequency data, that is, weekly, daily, and hourly data from
the NNGC1, are used. The weekly data are those related to
the oil industry, such as import quantities or prices. The daily
series are throughput measures of several car-tunnels, and the
hourly data are arrival times of planes at airports and trains at
metro stations.

The NN5 competition data are daily cash withdrawal
amounts at different ATMs in the UK, measured over a period
of 2 years. There is a so-called full dataset consisting of
111 series, and a reduced dataset containing 11 series. We
use the reduced dataset. There are missing values present in
the series, so we use one of the methods proposed for this
dataset [36] to fill the gaps.

Regarding the Santa Fe data, from the six datasets, we
only use data where our methods are applicable. Some of

1Available at http://www.neural-forecasting-competition.com.

the datasets have a special focus and would require special
treatment. For instance, there are series with nonuniform mea-
surement intervals, series with missing values, and a problem
where the objective is to learn a concept out of many series.

The augmented Dickey–Fuller test [37] was applied to the
series, in order to use only stationary series (*TAR models
are, as ARMA models, only applicable to stationary
series [6]). Furthermore, series are excluded for which the lin-
earity test, performed during the building procedure, suggests
linearity. In this case, the one-regime NCSTAR that is built is
a linear AR model which has no nonlinear parameters, so that
the optimization procedure is not executed at all.

In total, 30 series are used, which are all available in the
KEEL-dataset repository [38].2

For the experiments, we withhold 20 percent from the end
of every series as test set, and the rest of the data is used
for model building. Furthermore, as mentioned above, the
series are normalized to zero mean and unitary variance. The
normalization parameters are computed on the training sets,
and then applied to both training set and corresponding test set.

B. Applied Algorithms

The experiments were carried out with the programming
language R [39]. Our code is based on the implementations
of *TAR models in the package tsDyn [40]. The MA-LS-
Chains algorithm is available in the package Rmalschains [41].
Instead of the Levenberg–Marquardt algorithm, the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm was used, which
is available in R by the function optim [42].

To analyze the effects of the parameter domains discussed
in Section IV, we use the original method furthermore with
a box-constrained version of the algorithm, the large-scale
bound-constrained BFGS (L-BFGS-B) algorithm, which is
available through the same function optim [42]. We call
these two algorithms the NCSTAR and the NCSTAR-BOX,
respectively. The version of the algorithm using MA-CMA-
Chains for optimization is called NCSTAR-MA-CMA.

The original methods were used with N = 20, and
M = 1000, which are the values proposed by the original
authors [8]. The N = 20 values for each γ j are chosen equidis-
tant within the domain for the γ j as defined in Section IV,
using γ0 = 20 within all of our experiments. The LS algorithm
is run with a maximum of 1000 iterations. So, this yields
a number of approx. 21 000 function evaluations per newly
added regime in total.

To yield comparable results, the MA-CMA-Chains
algorithm is used with the same amount of function
evaluations. It is used with the parameter settings effort = 0.5,
alpha = 0.5 (which are the default parameters of the algorithm
recommended by the authors), istep = 300 (the method has
a low sensitivity w.r.t. this parameter [27]), and a population
size of 70 individuals. Although we evaluated other parameter
sets in preliminary experiments, it turned out that these values
are good reliable choices.

Besides the comparison within NCSTAR models, we also
performed a study comparing the proposed method with other

2Available at http://sci2s.ugr.es/keel/timeseries.php.
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TABLE I

PARAMETERS USED THROUGHOUT THE EXPERIMENTS

Algorithm Parameters

SVR cost = 10, gamma = 0.2, epsilon = 0.1

MLP size = 15, decay = 0.0147, maxit = 1000

NNET size = 9, decay = 0.1, maxit = 1000

methods commonly employed for time series forecasting.
Namely, we used ε-support vector regression (SVR), different
versions of the multilayer perceptron (MLP) trained with
standard backpropagation and with the BFGS, multivariate
adaptive regression splines (MARS) [43], and a linear model.

SVR is available in R through the package e1071, which
implements a wrapper to LIBSVM [44]. The BFGS-trained
MLP (which in the following we call NNET) is available
through the nnet package [42]. The MLP with standard
backpropagation is available in the package RSNNS [45]
(and will be called MLP in the following). MARS is available
from the package mda.

Table I shows the parameters that are used throughout the
experiments (for the methods that require parameters to be set).
The parameters are determined in the following way. First,
a parameter grid is defined empirically for every method.
Then, the parameter set performing best on a set of test series
(artificial series generated from a NCSTAR process) w.r.t. the
root mean squared error (RMSE) on the respective test sets is
chosen.

VI. RESULTS AND DISCUSSION

For all of the 30 series, models were trained, predictions
were made on the test set, and the RMSE was computed
for these predictions. As both the original and the proposed
NCSTAR building procedures are nondeterministic, the whole
process was executed ten times, and the respective arithmetic
means of the RMSE from the ten executions were used. As the
series are normalized, comparing the RMSE of the different
series is feasible. Fig. 1 shows box and whisker plots of the
RMSE, and Table II shows averaged values over all series. The
results indicate that NCSTAR-MA-CMA performs best within
the compared methods, as it yields the lowest averaged RMSE.

However, this measure may be heavily influenced by
outliers, and may not represent the distribution of the er-
rors adequately. Especially in situations like ours, where the
distributions are close together (see Fig. 1), this may lead
to erroneous conclusions. So, in order to perform a more
sophisticated evaluation of the results, we perform an analysis
of the frequencies with which the methods outperform each
other. Therefore, we use nonparametric statistical tests for
multiple comparisons.

Concretely, we use the Friedman rank-sum test for multiple
comparisons to detect statistically significant differences, and
the post-hoc procedure of Hochberg [46] to characterize those
differences [47].3

3More information can be found on the thematic web site of SCI2S about
Statistical Inference in computational intelligence and data mining. Available
at http://sci2s.ugr.es/sicidm.
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Fig. 1. Box and whisker plots for the RMSE obtained on the test sets of the
series for every method. The boxes contain 50% of the data, the middle line
is the median. The whiskers extend to the most extreme values.

TABLE II

RMSE AVERAGED OVER ALL SERIES,

FOR THE METHODS COMPARED

RMSE

NCSTAR-MA-CMA 0.579

NNET 0.608

NCSTAR-BOX 0.612

SVR 0.614

MLP 0.617

NCSTAR 0.623

MARS 0.667

AR 0.765

At first, we perform a comparison among the NCSTAR
methods, to clearly determine the possible advantages of the
method that is proposed in this brief bears. The Friedman
test detects highly significant differences on a significance
level of α = 0.01 (p-value < 2.81 · 10−5). Because it
obtains the best ranking, NCSTAR-MA-CMA is chosen as
the control method, and the Hochberg post-hoc procedure is
applied. Table III shows the results. As Hochberg’s procedure
is highly significant (with a significance level of α = 0.01)
for all compared methods, it is clear that NCSTAR-MA-CMA
performs significantly better than the original versions of the
algorithm.

In a second step, we compare NCSTAR-MA-CMA to the
other benchmarks. The Friedman test shows highly significant
differences ( p-value < 2.43·10−8). Table IV shows the results,
which indicate that NCSTAR-MA-CMA also performs signif-
icantly better than the benchmark methods we compare it to.

In combination, the results indicate that NCSTAR-MA-
CMA is the best method, both in terms of the absolute value
of the error as well as the frequency with which it outperforms
the other methods. It especially outperforms the original algo-
rithm, thus improving the accuracy of the generated NCSTAR
models.
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TABLE III

COMPARISON WITHIN THE NCSTAR METHODS. AVERAGE RANKS

AND ADJUSTED p-VALUES FOR THE FRIEDMAN TEST

USING THE Post-hoc PROCEDURE OF HOCHBERG

Average Rank pHochberg

NCSTAR-MA-CMA 1.37 –

NCSTAR-BOX 2.27 4.91 · 10−4

NCSTAR 2.37 2.15 · 10−4

TABLE IV

COMPARISON WITH THE BENCHMARK METHODS. AVERAGE RANKS

AND ADJUSTED p-VALUES FOR THE FRIEDMAN TEST

USING THE Post-hoc PROCEDURE OF HOCHBERG

Average Rank pHochberg

NCSTAR-MA-CMA 1.93 –

NNET 3.23 7.12 · 10−3

SVR 3.23 7.12 · 10−3

MLP 3.36 7.12 · 10−3

MARS 4.53 2.94 · 10−7

AR 4.70 5.09 · 10−8

TABLE V

AMOUNT OF REGIMES PRESENT IN THE MODELS, AVERAGED

OVER ALL SERIES AND OVER TEN RUNS

Amount of Regimes

NCSTAR-BOX 5.467

NCSTAR 5.513

NCSTAR-MA-CMA 5.940

Another issue is the interpretability of the model. All the
NCSTAR building procedures produce the same kind of mod-
els, only the amount of regimes varies. The question is whether
the NCSTAR-MA-CMA procedure yields a comparable num-
ber of rules. Table V shows the results. The original proce-
dure generates on average 5.5 regimes, and NCSTAR-MA-
CMA produces with an average of 5.9 regimes approximately
0.4 regimes more than the original methods. We consider this
not to be a qualitative change in the interpretability, as an
average of up to nine fuzzy rules is considered interpretable
by human beings.

VII. CONCLUSION

We investigated the use of memetic algorithms within the
iterative NCSTAR building procedure. In every iteration, a
statistical test determines if a new regime is to be added, or
if the process should terminate. If a new regime is added,
the whole model is readjusted using the MA-CMA-Chains
algorithm. With the combination of a building procedure that
is well-founded on statistics, the possibility to interpret the
model as an FRBS, and the advanced optimization procedures,
we obtained a model that is flexible and robust in terms of
construction, interpretability, and accuracy.

The combination of the NCSTAR model with the
MA-CMA-Chains algorithm for optimization produces signif-
icantly more accurate results than the original methods.

Moreover, by using a powerful optimization algorithm,
NCSTAR is also competitive with other procedures commonly
employed in time series forecasting with machine learning
procedures. So, NCSTAR-MA-CMA is an algorithm that can
be used to build accurate and interpretable models for time
series.
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