Journal Contributions: Accepted
Jump to Year: 2008
2008 |
|
J.R. Cano, F. Herrera, M. Lozano. On the Combination of Evolutionary Algorithms and Stratified Strategies for Training Set Selection in Data Mining. Applied Soft Computing (2008) In press |
|
|
bib |
|
Journal Contributions: Published
Jump to Year: 2007 2006 2005 2004 2003 2002 2001 2000 1997
2007 |
|
J.R. Cano, F. Herrera, M. Lozano. Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data and Knowledge Engineering 60:1 (2007) 90-108 |
|
|
bib |
|
2006 |
|
|
|
|
bib |
|
|
R. Baumqartner, R.L. Somorjai. Data complexity assessment in undersampled classification of high-dimensional biomedical data. Pattern Recognition Letters 27:12 (2006) 1383-1389 |
|
|
bib |
|
|
J.W.F. Catto, M.F. Abbod, D.A. Linkens, F.C. Hamdy. Neuro-fuzzy modeling: An accurate and interpretable method for predicting bladder cancer progression. Journal of Urology 175:2 (2006) 474-479 |
|
bib |
|
|
A. Chandramohan, M.V.C. Rao. A novel approach for combining fuzzy rules using mean operators for effective rule reduction. Soft Computing 10:11 (2006) 1103-1108 |
|
|
bib |
|
|
D. Elizondo. The linear separability problem: Some testing methods. IEEE Transactions on Neural Networks 17:2 (2006) 330-344 |
|
|
bib |
|
|
L.A. Kurgan, K.J. Cios, S. Dick. Highly scalable and robust rule learner: Performance evaluation and comparison. IEEE Transactions on Systems, MAn, and Cybernetics, Part B: Cybernetics 36:1 (2006) 32-53 |
|
|
bib |
|
|
|
|
|
bib |
|
2005 |
|
I. De Falco, A. Della Cioppa, A. Iazzetta, E. Tarantino. An evolutionary approach for automatically extracting intelligible classification rules. Knowledge and Information Systems 7:2 (2005) 179-201 |
|
|
bib |
|
|
M.S. Kim, C.H. Kim, J.J. Lee. Evolving structure and parameters of fuzzy models with interpretable membership functions. Journal of Intelligent and Fuzzy Systems 16:2 (2005) 95-105 |
|
bib |
|
|
Y. Li, M. Dong, R. Kothari. Classifiability-based omnivariate decision trees. IEEE Transactions on Neural Networks 16:6 (2005) 1547-1560 |
|
|
bib |
|
|
S. Papadimitriou, K. Terzidis. Mining interpretable fuzzy rules with support vector learning and outer-product fuzzy rule selection. WSEAS Transactions on Information Science and Applications 2:4 (2005) 380-389 |
|
bib |
|
|
A.C. Tan, D.Q. Naiman, L. Xu, R.L. Winslow, D. Geman. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21:20 (2005) 3896-3904 |
|
bib |
|
|
H. Wang, S. Kwong, Y.C. Jin, W. Wei, K.F. Man. Agent-based evolutionary approach for interpretable rule-based knowledge extraction. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 35:2 (2005) 143-155 |
|
|
bib |
|
|
H. Wang, S. Kwong, Y.C. Jin, W. Wei, K.F. Man. Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Systems 149:1 (2005) 209-233 |
|
|
bib |
|
|
Z.Y. Xing, L.M. Jia, Y. Zhang, W.L. Hu, Y. Qin. Case study of data-driven interpretable fuzzy modeling. Zidonghua Xuebao/Acta Automatica Sinica 31:6 (2005) 815-824 |
|
bib |
|
2004 |
|
E. Baralis, S. Chiusano. Essential classification rule sets. ACM Transactions on Database Systems 29:4 (2004) 635-674 |
|
|
bib |
|
|
M. Last, O. Maimon. A compact and accurate model for classification. IEEE Transactions on Knowledge and Data Engineering 16:2 (2004) 203-215 |
|
|
bib |
|
|
K. Muata, O. Bryson. Evaluation of decision trees: a multicriteria approach. Computers and Operations Research 31 (2004) 1933-1945 |
|
|
bib |
|
2003 |
|
M. Dong, R. Kothari. Feature subset selection using a new definition of classifiability. Pattern Recognition Letters 24:9-10 (2003) 1215-1225 |
|
|
bib |
|
|
R. Goodacre. Explanatory analysis of spectroscopic data using machine learning of simple, interpretable rules. Vibrational Spectroscopy 32:1 (2003) 33-45 |
|
|
bib |
|
|
L.O. Hall, K.W. Bowyer, R.E. Banfield, S. Eschrich, R. Collins. Is Error-based pruning redeemable?. International Journal on Artificial Intelligence Tools 12:3 (2003) 249-264 |
|
|
bib |
|
|
Y.C. Jin, B. Sendhoff. Extracting interpretable fuzzy rules from RBF networks. Neural Processing Letters 17:2 (2003) 149-164 |
|
|
bib |
|
|
S. Singh. Multiresolution Estimates of Classification Complexity. IEEE Transactions on Pattern Analysis and Machine Intelligence 25:12 (2003) 1534-1539 |
|
|
bib |
|
|
T. Sudkamp, A. Knapp, J. Knapp. Model generation by domain refinement and rule reduction. EEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33:1 (2003) 45-55 |
|
|
bib |
|
|
Z.H. Zhou, Y. Jiang. Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble. IEEE Transactions on Information Technology in Biomedicine 7:1 (2003) 37-42 |
|
|
bib |
|
|
C. Zhou, W. Xiao, T.M. Tirpak, P.C. Nelson. Evolving Accurate and Compact Classification Rules With Gene Expression Programming. IEEE Transactions on Evolutionary Computation 7:6 (2003) 519-531 |
|
|
bib |
|
2002 |
|
M. Bramer. Using J-pruning to reduce overffiting in classification trees. Knowledge-Based Systems 15 (2002) 301-308 |
|
|
bib |
|
|
|
|
|
bib |
|
|
J. Li, H. Shen, R. Topor. Mining the optimal class association rule set. Knowledge-Based System 15:7 (2002) 399-405 |
|
|
bib |
|
|
J. Zhang, S. Koper, A. Knoll. Extracting compact fuzzy rules based on adaptive data approximation using B-splines. Information Sciences 142:1-4 (2002) 227-248 |
|
|
bib |
|
|
M. Zorman, H.P. Eich, B. Stiglic, C. Ohmann, M. Lenic. Does size really matter-using a decision tree approach for comparison of three different databases from the medical field of acute appendicitis. Journal of Medical Systems 26:5 (2002) 465-477 |
|
|
bib |
|
2001 |
|
T. Elomaa, M. Kaariainen. An analysis of reduced error pruning. Journal of Artificial Intelligence Research 15 (2001) 163-187 |
|
|
bib |
|
|
S. Guillaume. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Transactions on Fuzzy Systems 9:3 (2001) 426-443 |
|
|
bib |
|
2000 |
|
M. Sebban, R. Nock, J.H. Chauchat, R. Rakotomalala. Impact of learning set quality and size on decision tree performances. International Journal of Computers, Systems and Signals 1:1 (2000) 85-105 |
|
|
bib |
|
1997 |
|
|
|
|
bib |
|
Contributions to Books Chapters
Jump to Year: 2005 2004
2005 |
|
J.R. Cano, F. Herrera, M. Lozano. A study on the combination of evolutionary algorithms and stratified strategies for training set selection in data mining. In:
F. Hoffmann, R. Roy, M. Koppen, F. Klawonn (Eds.) SOFT COMPUTING: METHODOLOGIES AND APPLICATIONS, SPRINGER-VERLAG BERLIN, 2005, 271-284 |
|
|
bib |
|
2004 |
|
|
|
bib |
|
Conference Contributions
Jump to Year: 2006 2005 2004 2003 2002 2001 1999 1998 1997
2006 |
|
F.J. Berlanga, M.J. del Jesus, M.J. Gacto, F. Herrera. A genetic-programming-based approach for the learning of compact fuzzy rule-based classification systems. International conference on. artificial intelligence and soft computing (ICAISC06). Lecture Notes in Computer Science 4029, Springer-Verlag 2006, Zakopane (Poland, 2006) 182-191 |
|
|
bib |
|
|
A. Chan, A.A. Freitas. A new classification-rule pruning procedure for an Ant Colony Algorithm. Evolution Artificielle (EA05). Lecture Notes in Computer Science 2871, Springer-Verlag 2006, Lille (France, 2006) 25-36 |
|
|
bib |
|
|
M.A. Esseqhir, G. Gasmi, S.B. Yahia, Y. Slimani. EGEA: A new hybrid approach towards extracting reduced generic association rule set (application to AML blood cancer therapy). 18th International Conference on Database and Expert Systems Applications (DEXA 2007). Lecture Notes in Computer Science 4081, 2006 (2006) 491-502 |
|
|
bib |
|
|
|
|
bib |
|
|
E. Pranckeviciene, T.K. Ho, R. Somorjai. Class separability in spaces reduced by feature selection. Proceedings - International Conference on Pattern Recognition 3 (ICPR 2006). (2006) 254-257 |
|
|
bib |
|
|
F. Vasile, A. Silvescu, D.-K. Kang, V. Honavar. TRIPPER: Rule learning using taxonomies. Tenth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006). Lecture Notes in Computer Science 3918, 2006 (2006) 55-59 |
|
|
bib |
|
2005 |
|
E. Hernandez, J.A. Carrasco, J.F. Martinez. Classifier Selection Based on Data Complexity Measures. X Congreso Iberoamericano de Reconocimiento de Patrones, CIARP 2005 (CIARP 2005). Lecture Notes in Computer Science 3773, 2005 (2005) 586-592 |
|
|
bib |
|
|
|
|
|
bib |
|
2004 |
|
J.R. Cano, F. Herrera, M. Lozano. Evolutionary stratified instance selection applied to training set selection for extracting high precise-interpretable classification rules. International Conference on Data Mining ((ICDM'2004)). Brightom (England, 2004) 0-0 |
|
|
bib |
|
|
J.R. Cano, F. Herrera, M. Lozano. Evolutionary Stratified Instance Selection applied to Training Set Selection for Extracting High Precise-Interpretable Classification Rules. IEEE ICDM 2004 Workshop on Alternative Techniques for Data Mining and Knwoledge Discovery. Brightom (England, 2004) 0-0 |
|
bib |
|
|
R.P.W. Duin, E. Pekalska, D.M.J. Tax. The characterization of classification problems by classifier disagreements. Proceedings - International Conference on Pattern Recognition 1 (ICPR 2004). (2004) 140-143 |
|
|
bib |
|
|
E.B. Mansilla, T.K. Ho. On classifier domains of competence . Proceedings - International Conference on Pattern Recognition 1 (ICPR 2004). (2004) 136-139 |
|
|
bib |
|
|
A. Riid, E. Rustern. Heuro-fuzzy extraction of interpretable fuzzy rules from data. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics 3. (2004) 2266-2271 |
|
|
bib |
|
|
K. Yamamoto, T. Furuhashi, T. Yoshikawa. A proposal of visualization method for obtaining interpretable fuzzy rules. IEEE International Conference on Fuzzy Systems 2. (2004) 1013-1018 |
|
|
bib |
|
2003 |
|
L.O. Hall, R. Collins, K.W. Bowyer, R.E. Banfield. Error-based pruning of decision trees grown on very large data sets can work!. IEEE International Conference on Tools for Artificial Intelligence (ICTAI'2002). Washington DC (United States of America, 2003) 233-238 |
|
|
bib |
|
2002 |
|
O. Kaynak, K. Jezernik, A. Szeghegvi. Complexity reduction of rule based models: A survey. IEEE International Conference on Plasma Science 2. (2002) 1216-1221 |
|
|
bib |
|
|
|
|
|
bib |
|
2001 |
|
J. Li, H. Shen, R. Topor. Mining the smallest association rule set for prediction. IEEE International Conference on Data Mining (ICDM'01). San Jose (USA, 2001) 361-368 |
|
|
bib |
|
1999 |
|
|
|
bib |
|
1998 |
|
T. Oates, D. Jensen. Large datasets lead to overly complex models: an explanation and a solution. IV International Conference on Knowledge Discovery and Data Mining (KDD-98). New York (USA, 1998) 294-298 |
|
|
bib |
|
1997 |
|
T. Oates, D. Jensen. The effects of training set size on decision tree complexity. Fourteenth International Conference on Machine Learning (ICML'97). Tenessee (USA, 1997) 254-262 |
|
|
bib |
|
|