main main
Publicaciones Soportadas por el Proyecto KEEL
  Accountable: Jose Ramon Cano de Amo (member_email)




Main  Journal Contributions: Accepted

Jump to Year:   2008



2008

  J.R. Cano, F. Herrera, M. Lozano. On the Combination of Evolutionary Algorithms and Stratified Strategies for Training Set Selection in Data Mining. Applied Soft Computing (2008) In press   Pdf bib
 




Main  Journal Contributions: Published

Jump to Year:   2007  2006  2005  2004  2003  2002  2001  2000  1997



2007

  J.R. Cano, F. Herrera, M. Lozano. Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data and Knowledge Engineering 60:1 (2007) 90-108   Pdf bib
 

2006

    Pdf bib
 
  R. Baumqartner, R.L. Somorjai. Data complexity assessment in undersampled classification of high-dimensional biomedical data. Pattern Recognition Letters 27:12 (2006) 1383-1389   Pdf bib
 
  J.W.F. Catto, M.F. Abbod, D.A. Linkens, F.C. Hamdy. Neuro-fuzzy modeling: An accurate and interpretable method for predicting bladder cancer progression. Journal of Urology 175:2 (2006) 474-479   bib
 
  A. Chandramohan, M.V.C. Rao. A novel approach for combining fuzzy rules using mean operators for effective rule reduction. Soft Computing 10:11 (2006) 1103-1108   Pdf bib
 
  D. Elizondo. The linear separability problem: Some testing methods. IEEE Transactions on Neural Networks 17:2 (2006) 330-344   Pdf bib
 
  L.A. Kurgan, K.J. Cios, S. Dick. Highly scalable and robust rule learner: Performance evaluation and comparison. IEEE Transactions on Systems, MAn, and Cybernetics, Part B: Cybernetics 36:1 (2006) 32-53   Pdf bib
 
    Pdf bib
 

2005

  I. De Falco, A. Della Cioppa, A. Iazzetta, E. Tarantino. An evolutionary approach for automatically extracting intelligible classification rules. Knowledge and Information Systems 7:2 (2005) 179-201   Pdf bib
 
  M.S. Kim, C.H. Kim, J.J. Lee. Evolving structure and parameters of fuzzy models with interpretable membership functions. Journal of Intelligent and Fuzzy Systems 16:2 (2005) 95-105   bib
 
  Y. Li, M. Dong, R. Kothari. Classifiability-based omnivariate decision trees. IEEE Transactions on Neural Networks 16:6 (2005) 1547-1560   Pdf bib
 
  S. Papadimitriou, K. Terzidis. Mining interpretable fuzzy rules with support vector learning and outer-product fuzzy rule selection. WSEAS Transactions on Information Science and Applications 2:4 (2005) 380-389   bib
 
  A.C. Tan, D.Q. Naiman, L. Xu, R.L. Winslow, D. Geman. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21:20 (2005) 3896-3904   bib
 
  H. Wang, S. Kwong, Y.C. Jin, W. Wei, K.F. Man. Agent-based evolutionary approach for interpretable rule-based knowledge extraction. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 35:2 (2005) 143-155   Pdf bib
 
  H. Wang, S. Kwong, Y.C. Jin, W. Wei, K.F. Man. Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Systems 149:1 (2005) 209-233   Pdf bib
 
  Z.Y. Xing, L.M. Jia, Y. Zhang, W.L. Hu, Y. Qin. Case study of data-driven interpretable fuzzy modeling. Zidonghua Xuebao/Acta Automatica Sinica 31:6 (2005) 815-824   bib
 

2004

  E. Baralis, S. Chiusano. Essential classification rule sets. ACM Transactions on Database Systems 29:4 (2004) 635-674   Pdf bib
 
  M. Last, O. Maimon. A compact and accurate model for classification. IEEE Transactions on Knowledge and Data Engineering 16:2 (2004) 203-215   Pdf bib
 
  K. Muata, O. Bryson. Evaluation of decision trees: a multicriteria approach. Computers and Operations Research 31 (2004) 1933-1945   Pdf bib
 

2003

  M. Dong, R. Kothari. Feature subset selection using a new definition of classifiability. Pattern Recognition Letters 24:9-10 (2003) 1215-1225   Pdf bib
 
  R. Goodacre. Explanatory analysis of spectroscopic data using machine learning of simple, interpretable rules. Vibrational Spectroscopy 32:1 (2003) 33-45   Pdf bib
 
  L.O. Hall, K.W. Bowyer, R.E. Banfield, S. Eschrich, R. Collins. Is Error-based pruning redeemable?. International Journal on Artificial Intelligence Tools 12:3 (2003) 249-264   Pdf bib
 
  Y.C. Jin, B. Sendhoff. Extracting interpretable fuzzy rules from RBF networks. Neural Processing Letters 17:2 (2003) 149-164   Pdf bib
 
  S. Singh. Multiresolution Estimates of Classification Complexity. IEEE Transactions on Pattern Analysis and Machine Intelligence 25:12 (2003) 1534-1539   Pdf bib
 
  T. Sudkamp, A. Knapp, J. Knapp. Model generation by domain refinement and rule reduction. EEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33:1 (2003) 45-55   Pdf bib
 
  Z.H. Zhou, Y. Jiang. Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble. IEEE Transactions on Information Technology in Biomedicine 7:1 (2003) 37-42   Pdf bib
 
  C. Zhou, W. Xiao, T.M. Tirpak, P.C. Nelson. Evolving Accurate and Compact Classification Rules With Gene Expression Programming. IEEE Transactions on Evolutionary Computation 7:6 (2003) 519-531   Pdf bib
 

2002

  M. Bramer. Using J-pruning to reduce overffiting in classification trees. Knowledge-Based Systems 15 (2002) 301-308   Pdf bib
 
    Pdf bib
 
  J. Li, H. Shen, R. Topor. Mining the optimal class association rule set. Knowledge-Based System 15:7 (2002) 399-405   Pdf bib
 
  J. Zhang, S. Koper, A. Knoll. Extracting compact fuzzy rules based on adaptive data approximation using B-splines. Information Sciences 142:1-4 (2002) 227-248   Pdf bib
 
  M. Zorman, H.P. Eich, B. Stiglic, C. Ohmann, M. Lenic. Does size really matter-using a decision tree approach for comparison of three different databases from the medical field of acute appendicitis. Journal of Medical Systems 26:5 (2002) 465-477   Pdf bib
 

2001

  T. Elomaa, M. Kaariainen. An analysis of reduced error pruning. Journal of Artificial Intelligence Research 15 (2001) 163-187   Pdf bib
 
  S. Guillaume. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Transactions on Fuzzy Systems 9:3 (2001) 426-443   Pdf bib
 

2000

  M. Sebban, R. Nock, J.H. Chauchat, R. Rakotomalala. Impact of learning set quality and size on decision tree performances. International Journal of Computers, Systems and Signals 1:1 (2000) 85-105   Pdf bib
 

1997

    Pdf bib
 




Main  Contributions to Books Chapters

Jump to Year:   2005  2004



2005

  J.R. Cano, F. Herrera, M. Lozano. A study on the combination of evolutionary algorithms and stratified strategies for training set selection in data mining. In: F. Hoffmann, R. Roy, M. Koppen, F. Klawonn (Eds.) SOFT COMPUTING: METHODOLOGIES AND APPLICATIONS, SPRINGER-VERLAG BERLIN, 2005, 271-284   Pdf bib
 

2004

    bib
 




Main  Conference Contributions

Jump to Year:   2006  2005  2004  2003  2002  2001  1999  1998  1997



2006

  F.J. Berlanga, M.J. del Jesus, M.J. Gacto, F. Herrera. A genetic-programming-based approach for the learning of compact fuzzy rule-based classification systems. International conference on. artificial intelligence and soft computing (ICAISC06). Lecture Notes in Computer Science 4029, Springer-Verlag 2006, Zakopane (Poland, 2006) 182-191   Pdf bib
 
  A. Chan, A.A. Freitas. A new classification-rule pruning procedure for an Ant Colony Algorithm. Evolution Artificielle (EA05). Lecture Notes in Computer Science 2871, Springer-Verlag 2006, Lille (France, 2006) 25-36   Pdf bib
 
  M.A. Esseqhir, G. Gasmi, S.B. Yahia, Y. Slimani. EGEA: A new hybrid approach towards extracting reduced generic association rule set (application to AML blood cancer therapy). 18th International Conference on Database and Expert Systems Applications (DEXA 2007). Lecture Notes in Computer Science 4081, 2006 (2006) 491-502   Pdf bib
 
    bib
 
  E. Pranckeviciene, T.K. Ho, R. Somorjai. Class separability in spaces reduced by feature selection. Proceedings - International Conference on Pattern Recognition 3 (ICPR 2006). (2006) 254-257   Pdf bib
 
  F. Vasile, A. Silvescu, D.-K. Kang, V. Honavar. TRIPPER: Rule learning using taxonomies. Tenth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006). Lecture Notes in Computer Science 3918, 2006 (2006) 55-59   Pdf bib
 

2005

  E. Hernandez, J.A. Carrasco, J.F. Martinez. Classifier Selection Based on Data Complexity Measures. X Congreso Iberoamericano de Reconocimiento de Patrones, CIARP 2005 (CIARP 2005). Lecture Notes in Computer Science 3773, 2005 (2005) 586-592   Pdf bib
 
    Pdf bib
 

2004

  J.R. Cano, F. Herrera, M. Lozano. Evolutionary stratified instance selection applied to training set selection for extracting high precise-interpretable classification rules. International Conference on Data Mining ((ICDM'2004)). Brightom (England, 2004) 0-0   Pdf bib
 
  J.R. Cano, F. Herrera, M. Lozano. Evolutionary Stratified Instance Selection applied to Training Set Selection for Extracting High Precise-Interpretable Classification Rules. IEEE ICDM 2004 Workshop on Alternative Techniques for Data Mining and Knwoledge Discovery. Brightom (England, 2004) 0-0   bib
 
  R.P.W. Duin, E. Pekalska, D.M.J. Tax. The characterization of classification problems by classifier disagreements. Proceedings - International Conference on Pattern Recognition 1 (ICPR 2004). (2004) 140-143   Pdf bib
 
  E.B. Mansilla, T.K. Ho. On classifier domains of competence . Proceedings - International Conference on Pattern Recognition 1 (ICPR 2004). (2004) 136-139   Pdf bib
 
  A. Riid, E. Rustern. Heuro-fuzzy extraction of interpretable fuzzy rules from data. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics 3. (2004) 2266-2271   Pdf bib
 
  K. Yamamoto, T. Furuhashi, T. Yoshikawa. A proposal of visualization method for obtaining interpretable fuzzy rules. IEEE International Conference on Fuzzy Systems 2. (2004) 1013-1018   Pdf bib
 

2003

  L.O. Hall, R. Collins, K.W. Bowyer, R.E. Banfield. Error-based pruning of decision trees grown on very large data sets can work!. IEEE International Conference on Tools for Artificial Intelligence (ICTAI'2002). Washington DC (United States of America, 2003) 233-238   Pdf bib
 

2002

  O. Kaynak, K. Jezernik, A. Szeghegvi. Complexity reduction of rule based models: A survey. IEEE International Conference on Plasma Science 2. (2002) 1216-1221   Pdf bib
 
    Pdf bib
 

2001

  J. Li, H. Shen, R. Topor. Mining the smallest association rule set for prediction. IEEE International Conference on Data Mining (ICDM'01). San Jose (USA, 2001) 361-368   Pdf bib
 

1999

    bib
 

1998

  T. Oates, D. Jensen. Large datasets lead to overly complex models: an explanation and a solution. IV International Conference on Knowledge Discovery and Data Mining (KDD-98). New York (USA, 1998) 294-298   Pdf bib
 

1997

  T. Oates, D. Jensen. The effects of training set size on decision tree complexity. Fourteenth International Conference on Machine Learning (ICML'97). Tenessee (USA, 1997) 254-262   Pdf bib
 




If you would like to add a new reference in this specific topic, please contact:
     Jose Ramon Cano de Amo (member_email)



 
 Copyright 2004-2018, KEEL (Knowledge Extraction based on Evolutionary Learning)
About the Webmaster Team
Valid XHTML 1.1   Valid CSS!