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Abstract

The performance of most practical classifiers improves when correlated or irrelevant features are removed. Machine

based classification is thus often preceded by subset selection––a procedure which identifies relevant features of a high

dimensional data set. At present, the most widely used subset selection technique is the so-called ‘‘wrapper’’ approach

in which a search algorithm is used to identify candidate subsets and the actual classifier is used as a ‘‘black box’’ to

evaluate the fitness of the subset. Fitness evaluation of the subset however requires cross-validation or other resampling

based procedure for error estimation necessitating the construction of a large number of classifiers for each subset. This

significant computational burden makes the wrapper approach impractical when a large number of features are pre-

sent.

In this paper, we present an approach to subset selection based on a novel definition of the classifiability of a given

data. The classifiability measure we propose characterizes the relative ease with which some labeled data can be

classified. We use this definition of classifiability to systematically add the feature which leads to the most increase in

classifiability. The proposed approach does not require the construction of classifiers at each step and therefore does

not suffer from as high a computational burden as a wrapper approach. Our results over several different data sets

indicate that the results obtained are at least as good as that obtained with the wrapper approach.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The goal of statistical pattern classification is

to assign a class label to an input x on the basis

of N labeled (possibly noisy) training patterns

fðxðiÞ; tðiÞÞgNi¼1. Here, xðiÞ 2 Rn denotes the input,

tðiÞ 2 fx1;x2; . . . ;xcg denotes the class label (or the
target) corresponding to xðiÞ, and c is the total

number of classes. In high dimensional spaces (n
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is large), features often tend to be correlated or

irrelevant leading to a deterioration of classification

performance. For example, the performance of the

Naive-Bayes classifier is relatively insensitive to

irrelevant features but deteriorates rapidly with

correlated features (Langley et al., 1992; Duda and
Hart, 1973). On the other hand, the performance of

classifiers that rely on some form of distance (for

example, a nearest neighbor classifier which assigns

a class label based on the class labels of a certain

number of training patterns closest to the input)

deteriorates rapidly with irrelevant features. Even

when the effect of irrelevant or correlated features

is limited (or unexplored for a particular classifier),
having fewer inputs can at least lead to simplified

or quicker classifier construction (Hartman et al.,

1990).

Because of the above considerations, feature

subset selection is typically used before pattern

classification to reduce the number of features

(Almuallin and Dietterich, 1991). Subset selection

requires the definition of a fitness criteria to decide
on the relevant merits of a subset and a search

criteria to examine the different subsets. The large

number of possible subsets ð2n� 1 � 2nÞ makes

an exhaustive search impractical. The branch and

bound approach works with a monotonic fitness

criterion to provide the best subset of a given size

(Narendra and Fukunaga, 1977; Fukunaga, 1990)

without searching through all subsets. When the
computational expense of branch and bound is too

large to be acceptable, sequential selection of fea-

tures as done in forward selection or backward

elimination can be carried out. Unlike branch and

bound procedure, forward selection and backward

elimination may not find the best subset of a given

size. At present, the most widely used method is

the so-called wrapper approach which uses hill

climbing (or some other greedy search strategy)

and the error rate of the classifier itself as the fit-

ness criteria (Kohavi and John, 1997). Since the

classifier (for which the lower dimensional sub-

space is being prepared) is itself used to provide

the fitness of a specific subset, features most rele-

vant to the classifier can be chosen. However, be-

cause a classifier is constructed for the evaluation
of each subset (often several classifiers have to be

constructed for each subset; for example when the

error rate has to be estimated through cross-vali-

dation or resampling based methods), the wrapper

approach is extremely slow and impractical for

high dimensional or very large data sets.

In this paper, we present an approach to subset

selection based on a novel definition of the classi-

fiability of a given data. The classifiability, as we

define it, characterizes the relative ease with which

some labeled data can be classified. We use the

proposed definition of classifiability to systemati-

cally examine each of the remaining features and

add the feature which leads to the most increase in

classifiability. We stop adding features when the

classifiability stops increasing. The proposed ap-
proach does not require the construction of mul-

tiple classifiers at each step and is thus faster than

wrapper approach. On the other hand, our results

over several different data sets indicate that the

result obtained are at least as good as that ob-

tained with the wrapper approach.

We have laid out the rest of the paper as fol-

lows. In Section 2, we discuss the wrapper ap-
proach to subset selection in greater detail. We

also briefly discuss a less widely used (and less ef-

fective) approach––the filter approach. In Section

3, we present a short overview of some existing

methods of characterizing the difficulty of a clas-

sification problem and then present our definition

of classifiability (Dong and Kothari, 2001). In

Section 4, we present the algorithm for subset se-
lection based on the proposed classifiability mea-

sure. In Section 5 we present some experimental

results and compare those results with that ob-

tained with the wrapper approach. In Section 6, we

present our conclusions.

2. The wrapper approach to subset selection

The wrapper approach to feature subset selec-

tion is based on using the classifier as a ‘‘black

box’’. A search algorithm (such as hill climbing) is

used to search for a ‘‘good’’ subset and the clas-

sifier is used to find the error rate with a particular

subset. However, the true error rate of the classi-

fier with a given subset is hard to compute and
an estimate obtained using cross-validation or

bootstrap based methods (Efron and Tibshirani,
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1993, 1995) has to be used in lieu of the true error

rate. When sufficient bootstrap samples are used

the error estimate is usually reliable (Efron and

Tibshirani, 1993, 1995).

Typically, a ‘‘state vector’’ of length n (i.e. of

the same length as the number of features) is de-
fined. A ‘‘1’’ in the state vector implies inclusion of

the corresponding feature and a 0 implies exclu-

sion. To minimize time, wrapper algorithms typi-

cally use forward selection, i.e. they start from an

empty list of features and add relevant features

as they are discovered. The following sequence

of steps, adopted from Kohavi and John (1997),

illustrate a typical wrapper approach to subset
selection based on hill climbing.

(1) Let v empty set of features.

(2) Expand v. Typically, this generates new states

by adding or deleting a single feature from v.
For example, if n ¼ 3 and v ¼ ð000Þ, then ex-

pansion of v might lead to the following states:

(1 0 0), (0 1 0), and (0 0 1).
(3) Use the classifier and an error estimation pro-

cedure (such as bootstrapping) to find the fit-

ness of each subset that resulted from the

expansion of v.
(4) Let v0 be the subset with the highest fitness.

(5) If fitness of v0 is greater than that of v, v v0

and goto step 2. Else terminate with v as the

final subset.

There are of course many variations to the

above algorithm. For example, it is known that hill

climbing may get trapped in a local minima.

Consequently, better search methods, such as best-

first search may be used (Russell and Norvig, 1995;

Goldberg, 1989). Additionally, one can formulate

alternate operators to expand v.
Despite the variations, the central aspect of the

wrapper approach is that since the classifier is used

in the selection process, one can get an accurate

estimate of the performance with a given subset.

On the other hand if a mechanism other than the

classifier is chosen for evaluating the subsets, then

a subset which provides poor performance with

the actual classifier may be chosen. Of course, this
implies that at each pass of the wrapper algorithm

requires the construction of ðEjvjÞ number of

classifiers. Here jvj denotes the number of child

states of v and E denotes the number of indepen-

dent classifiers that must be constructed with a

given subset to obtain an estimate of the error.

For example, if sufficient data is available and a

simple estimation procedure such as k-fold cross-
validation is used, then E ¼ k. When sufficient

data is not available, and resampling based pro-

cedures such as bootstrapping is used then one

might require 100–200 classifiers resulting in

E ¼ 100 or E ¼ 200. Clearly, this results in an

enormous computational expense and is not fea-

sible for large data sets.

A less widely used approach is the so-called
filter approach. Algorithms based on the filter

approach typically do not consider the classifier

(or error estimates obtained from the target clas-

sifier) for subset selection. The Relief algorithm

(Kira and Rendell, 1992) for example, assigns a

‘‘relevance’’ to each feature. Relevance values are

updated by selecting a pattern at random from the

data set and finding the difference between it and
two ‘‘nearest’’ patterns to the chosen pattern––one

of the same class and the other of the opposite

class. Due to the random sampling involved in

Relief, it is likely that results exhibit a large vari-

ance unless the algorithm is run for a very long

time. Other approaches in this category include the

FOCUS algorithm, the decision tree based feature

selection Cardie (1993), and the PRESS algorithm
(Neter et al., 1990).

3. A new definition of classifiability

Prior to presenting the proposed measure of

classifiability we present a short overview of some

of the existing approaches to characterizing the
difficulty of a classification problem.

A classical approach to measuring the classifi-

ability uses Fisher�s discriminant ratio (FDR)

which in a two class situation can be defined as

FDR ¼ max
i2f1;2;...;ng

ðl1i � l2iÞ2

r12i þ r22i

( )
ð1Þ

where, l1i and l2i denote the mean and r12i and

r22i denote the variance of the two classes along

the ith feature. The maximum along any feature is
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then used to characterize the problem. Of course,
an underlying assumption in FDR is that the class

distribution is normal along the individual features

which in general is not valid.

Friedman and Rafsky (1979) proposes a mini-

mum spanning tree (MST) that is constructed from

all the patterns in a sample. The fraction of patterns

of opposite classes connected by an edge in theMST

is then used as a measure of the classifiability of the
sample. Of course as noted in Ho and Basu (2002),

even in a simple linearly separable classification

problem there might exist a large number of pat-

terns of opposite classes that are close to each other.

In effect, as might become evident later, the distri-

bution (structure) of the pattern distribution is

ignored in this formulation. In some other ap-

proaches, the deviation from linear separability is
used a basis for characterizing the classifiability

(Smith, 1968; Hoekstra and Duin, 1996).

In some other approaches, the deviation from

linearity as measured from the value of the ob-

jective function used to obtain a linear classifier is

used as a measure of classfiability (Smith, 1968;

Hoekstra and Duin, 1996). However, these mea-

sures do not accurately capture the classifiability
since they rely primarily on the number of mis-

classifications (or more generally on the value of

the objective function) and disregard the distri-

bution of the error. For additional details and a

comparative review we refer the reader to Ho and

Basu (2002).

Our definition of classifiability is motivated by

the fact that a n-dimensional classification prob-
lem may be visualized in ðnþ 1Þ dimensions using

the class label as the ðnþ 1Þth dimension. For

example, Fig. 1 shows a classification problem in

two dimensions with the corresponding visualiza-

tion in three-dimensions. The class label may thus
be viewed as defining a surface which is ‘‘rough’’

when patterns of different classes are near each

other and ‘‘smooth’’ when patterns of the same

class are adjacent to each other. Naturally, classi-

fication is considerably more complicated when

the ‘‘class label surface’’ is rough. Consequently, if

the smoothness (or roughness) of the class label

surface can be quantified, then a natural measure
of classifiability is obtained.

This intuitive notion is nicely captured by the

second order joint conditional density function

f ðxi;xjjdÞ, i.e. the probability of going from class

xi to class xj within a distance d. 1 We develop

the proposed measure of classifiability as follows.

For simplicity, and without loss of generality, we

consider a two class classification problem.
Consider a given training pattern xðiÞ. Let y be

a training pattern in the neighborhood (within a

distance d) of xðiÞ. One can then define a joint

probability matrix for pattern xðiÞ as

J ðiÞ ¼ P ðx1jy;x1jxðiÞÞ P ðx2jy;x1jxðiÞÞ
P ðx1jy;x2jxðiÞÞ P ðx2jy;x2jxðiÞÞ

� �
ð2Þ

Since y and xðiÞ are independent, this simplifies to

J ðiÞ ¼ P ðx1jyÞP ðx1jxðiÞÞ P ðx2jyÞP ðx1jxðiÞÞ
P ðx1jyÞP ðx2jxðiÞÞ P ðx2jyÞP ðx2jxðiÞÞ

� �
ð3Þ

Fig. 1. A two class classification problem (left panel) and the visualization in three-dimensions (right panel).

1 This definition is similar to that used in image processing to

characterize the texture of images (Haralick, 1980; Rao, 1990).

In the context of image processing, the gray level intensities

serve the role that the class label serves here.
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Note that the matrix J ðiÞ defined in Eq. (2) will be

strongly diagonal when patterns in the neighbor-

hood of xðiÞ belong to the same class as xðiÞ. Neigh-

boring patterns (i.e. within a distance d) belonging
to the same class correspond to a smooth class
label surface or easier classification. As the class

label surface becomes more rough, the off-diagonal

entries become larger.

The classifiability measure for patterns distrib-

uted in the neighborhood of a pattern xðiÞ is thus

defined by

CðxðiÞÞ ¼ Pðx1jyÞPðx1jxðiÞÞ
þ P ðx2jyÞP ðx2jxðiÞÞ � P ðx2jyÞPðx1jxðiÞÞ
� P ðx1jyÞP ðx2jxðiÞÞ ð4Þ

and the overall classifiability L for the entire data

can be defined by

L ¼
X
i

P ðyÞCðxðiÞÞ ð5Þ

where y, as before, is a pattern in the neighbor-

hood of a pattern xðiÞ.
Computationally, it is easy to compute the

classifiability. One can simply consider a train-

ing pattern––say xðiÞ and populate J ðiÞ based on

fraction of neighboring patterns in the different

classes. This provides J ðiÞ and thus CðxðiÞÞ. P ðyÞ is
simply given by the ratio of patterns in the
neighborhood of xðiÞ over N .

It is easy to see that 06 L6 1 and a higher value

of L implies greater classifiability. In the next sec-

tion, we use this definition of classifiability for

subset selection.

4. Classifiability based subset selection

The proposed measure of classifiability provides

an efficient measure for the subset selection. Our

specific method is based on forward selection,

where at each stage we add the feature which gives

the largest increase in classifiability. The complete

algorithm is shown below. In the algorithm we

have used the shorthand notation LðvÞ to denote
the classifiability as computed with all the features

in v and we have used � as a user specified para-

meter representing the minimum acceptable in-

crease in classifiability with each added feature.

Let v ¼ f;g and let s ¼ fx1; x2; . . . ; xng
for i ¼ 1 to length(s) do

Find argmaxiLðv0Þ where v0 ¼ v [ xi
if ðLðv0Þ � LðvÞÞ > �

v ¼ v [ xi
s ¼ s� xi
i ¼ 1

continue

else

break

end if

end for

Return v as the final subset

In the proposed algorithm for feature subset

selection, the need for constructing multiple clas-

sifiers does not arise since the classifiability (for a

fixed d) does not depend on random sampling,

initial conditions or other factors that can alter
results from one run to another. Therefore, unlike

as in the wrapper based approach multiple classi-

fiers do not need to be constructed.

It is easy to compute the worst case running

time for the proposed algorithm. In the worst case,

all the input features may have to be included in

the subset. In that situation, the maximum number

of times that the classifiability has to be computed
is given by

Pn
i¼1 i ¼ nðnþ 1Þ=2. Each time the

classifiability is computed one has to compute

ðN � 1Þ distances to count the points which are

within the neighborhood d of xðiÞ. This has to be

done for each of the N points. So the total com-

plexity of the proposed subset technique in the

worst case is given by OðN 2n2Þ. In practice, the size

of the subset is much lesser than n and the com-
plexity in practice is significantly less. In addition,

when the distance computation are done in par-

allel (or using some efficient data structures), then

the actual complexity can be quite modest.

5. Experimental results

We present our experimental results in four

separate groups. The first group consists of a single
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simulation and is intended to highlight that our

definition of classifiability is in fact robust to the

addition of irrelevant features. The second group

of simulations is based on eight separate data sets.

These data sets are the ones used with the wrapper

approach (Kohavi and John, 1997) and thus allow
for a direct comparison of the proposed method

with the wrapper approach. The third group of

simulations is based on two large data sets (one

with 60 features and one with 649 features) that

are widely available but were not used in the

wrapper approach reported earlier (Kohavi and

John, 1997). This group provides further evidence

of the effectiveness and efficiency of the proposed
method. The last group of simulations is used to

show the effect of varying neighborhood when

selecting feature subset based on classifiability

measure. We found out that the classifiability is

quite robust to the change of the neighborhood

size. So is the feature selection results.

In all our simulations, we normalized each

feature to lie in the range ½a; aþ 1�, where a is some
constant. We achieved this by dividing values of

a feature by the difference between the maximum

and the minimum values of the feature. Also, in all

our simulations (except those in the last group)

neighborhood size d is set to be 3� the RMS dis-

tance of each pattern from its nearest neighbor. In

our distance computation, we use the Euclidean

distance when a feature has a numeric value. For
symbolic features we fixed the distances between

two dissimilar symbolic features to be 1.

5.1. Simulation group I

We present results with a synthetic data set to

illustrate that ideally (i.e. when we have a large

number of samples) the classifiability of a data set

does not change when we add some irrelevant

features. In this simulation, there are three attri-

butes and two classes labeled class 1 and class 2.

The first attribute for each class is obtained by
sampling from a Gaussian distribution (l1 ¼ 0 and

r ¼ 1 for class 1, and l2 ¼ 1 and r ¼ 1 for class 2).

The second and third attributes are random num-

bers uniformly generated in ½0; 1�. We constructed

three different data sets by using attribute 1 only,

attribute 1 and 2 and attribute 1, 2 and 3. The last

two data sets thus contain some irrelevant fea-

tures. For each data set, we calculate the classifi-

ability five times (with a different sample each

time) and the results are summarized in Table 1.

We can clearly see that the difference between the

classifiability of first data set and the classifiability
of the second and third data set decreases as the

sample size increases. In the limit where a large

number of samples are present, the classifiability

will be constant for all three data sets.

From the simulation, we also observe that the

classifiability varies with the sample size although

the effect is not very significant. This can be ex-

plained by the third criterion we mentioned in
Section 3. The proposed measure of classifiability,

like other empirical techniques, provides more

accurate estimates with increasing sample size.

5.2. Simulation group II

We present the results with eight different data

sets to illustrate that the proposed feature subset
selection criterion can achieve similar or better

performance compared with wrapper approach.

We used two typical classification algorithms, ID3

(Quinlan, 1986) and Naive-Bayes (Langley et al.,

1992; Duda and Hart, 1973; Fukunaga, 1990) to

evaluate the classification accuracy on the original

data set (with all features) and on the subset as

chosen by us. Results are reported based on 10-
fold cross-validation irrespective of whether there

is separate testing set or not. When separate

training and testing data sets are present, we sim-

ply merge them into one data set. All instances

with missing value are discarded. These test con-

ditions are identical to the ones used with the

Table 1

Classiffiability L of three data sets with diffierent sample size

# of

patterns

L with 1

attribute

L with 2

attributes

L with 3

attributes

200 0.6081� 0.0253 0.5109� 0.0260 0.3722� 0.0187

400 0.5556� 0.0710 0.4960� 0.0340 0.3858� 0.0358

800 0.5628� 0.0510 0.5214� 0.0354 0.4411� 0.0403

1600 0.5378� 0.0163 0.5043� 0.0094 0.4302� 0.0144

All results are reported as mean� standard deviation computed

from five independent trials.
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wrapper approach (Kohavi and John, 1997) and

thus allow for a direct comparison.

All data sets can be obtained from the MLC++

Machine Learning Library (www.sgi.com/tech/

mlc) along with some additional documentation.

We provide the salient characteristics of each of
the data sets.

Cleve data set: The first data set in this group

is the Cleve data set, which has a total of 14 (8

symbolic, 6 numeric) attribute and two classes:

sick or healthy. Our proposed algorithm chooses 5

attributes (see Table 2). The cross-validation ac-

curacy of feature subset is improved for both

classification algorithms (see Table 3). For com-
parison, the wrapper approach chooses 2.6 (ID3)

or 3:1 (Naive-Bayes) 2 chosen are shown as frac-

tional attributes and results in better classification

performance.

Corral data set: The Corral data set is an ar-

tificial data set. It has 6 attributes: A0, A1, B0,
B1, Irr and Correlated. The target concept is

ðA0 \ A1Þ [ ðB0 \ B1Þ. Irr is an irrelevant attrib-
ute, and Correlated is an attribute highly corre-

lated with the class label, but with a 25% error

rate. Our proposed algorithm chooses A0, A1, B0,
B1 and Correlated as the feature subset (see Table

2). For ID3, the cross-validation accuracy of fea-

ture subset is the same, while the accuracy is im-

proved for Naive-Bayes classifier (see Table 3).

For comparison, the wrapper approach will
choose only 1 attribute and results in worse clas-

sification performance.

Crx data set: The Crx data set is based on credit

card applications. There are a total of 15 attributes

and two classes. As Tables 2 and 3 show, we

choose 4 attributes and the accuracy increases for

both the classification algorithms. For compari-

son, the wrapper approach chooses 2.9 (ID3) or
1.6 (Naive-Bayes) attributes and results in Better

(ID3) or worse (Naive-Bayes) classification per-

formance.

M of n 3-7-10 data set: This data set is again an

artificial data set. It has 10 attributes and 7 of

which (numbers 2, 3, 4, 5, 6, 7, 8) are relevant to
the class label. Table 2 shows that our algorithm

chooses 7 features, 3, 4, 5, 6, 7, 8, 9, as the subset

and Table 3 shows accuracy is improved. The

wrapper approach results 0 attributes chosen and a

corresponding decrease in accuracy.

MONK’s problem: For the next three simula-

tions, we consider the well known MONK�s data

sets. The MONK�s data sets are actually three sub-
problems. The domains for all MONK�s problems

are the same. There are 432 instances that belong

to two classes and each instance is described by

7 attributes ða1; . . . ; a7Þ. Among the 7 attributes,

there is one ID attribute (a unique symbol for each

instance), which is not related to classification and

is ignored in our simulations.

MONK-1: The target concept associated with
the MONK-1 problem is ða1 ¼¼ a2Þ OR ða5 ¼
¼ 1Þ. Table 2 summarizes the results obtained. We

choose totally three attributes in the order of a5,
a1, a2, which is a good match with the target

concept. The cross-validation accuracy is shown in

Table 3. For comparison purpose, wrapper ap-

proach will choose only 1 attribute and results in

worse classification performance.
MONK-2: The target concept associated

with the MONK-2 problem is: exactly two of

(a1 ¼¼ 1, a2 ¼¼ 1, a3 ¼¼ 1, a4 ¼¼ 1, a5 ¼¼ 1,

a6 ¼¼ 1). Table 2 shows the results obtained.

Proposed algorithm choose all 6 attributes. The

cross-validation accuracy is shown in Table 3.

For comparison purpose, wrapper approach will

choose only 0 attribute and results in worse clas-
sification performance.

Table 2

The number of features in the original data set and the number

of features retained in the subset

Data set Original Subset Features #

1 Cleve 13 5 10, 13, 12, 3, 9

2 Corral 6 5 6, 1, 2, 3, 4

3 Crx 15 4 8, 9, 13, 10

4 M of n-3-7-10 10 7 4, 9, 5, 8, 3, 6, 7

5 MONK-1 6 3 5, 1, 2

6 MONK-2 6 6 3, 6, 1, 2, 4, 5

7 MONK-3 6 4 2, 5, 4, 1

8 Pima 8 3 2, 8, 1

The features retained in the subset are also shown in the order

of selection.

2 The number of features reported are the number of features

chosen averaged over 10 independent trials (Kohavi and John,

1997). Hence the fractional number of features.
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MONK-3: The target concept associated with
the MONK-3 problem is ða5 ¼¼ 3 AND a4 ¼¼ 1Þ
OR ða5 6¼ 1 AND a2 6¼ 3Þ. 5% noise is added to the

training set. Results obtained are shown in Table

2. Totally 4 attributes are chosen. The cross-

validation accuracy is shown in Table 3. For

comparison purpose, wrapper approach chooses 2

attributes and results in better (ID3) or same

(Naive-Bayes) classification performance.
Pima data set: The last data set is the Pima data

set. It has two classes, 8 attributes and a total of

768 instance. Tables 2 and 3 show that 3 attributes

are chosen and accuracy increases. For compari-

son, the wrapper approach chooses 1 (ID3) or 3:8

(Naive-Bayes) attributes and results in better (ID3)

or worse (Naive-Bayes) classification performance.

From these eight simulations, we can see clearly
that proposed approach performs at least as well

as the wrapper approach when using real data sets,

while does much better than the wrapper approach

when using artificial data sets. Fig. 2 provides a

pictorial comparison of the proposed method and

the wrapper based approach to subset selection

when the Naive-Bayes classifier is used. In either

case, the proposed approach is faster than the
wrapper approach. 3

5.3. Simulation group III

In this group of simulations, we present the

results with two widely used data sets each with

a large number of features. As such this group

provides further evidence of the effectiveness and

efficiency of the proposed subset selection strategy.
As before, we used ID3 (Quinlan, 1986) and

Naive-Bayes (Langley et al., 1992; Duda and

Hart, 1973; Fukunaga, 1990) to evaluate the clas-

sification accuracy on the original data set (with

all features) and on the subset as chosen by us.

Results are reported based on 10-fold cross-

validation irrespective of whether there is separate

testing set or not. When separate training and

Table 3

Cross-validation accuracy for ID3 and Naive-Bayes classiffier with the entire data set (all features) and the subset (selected features)

Data set Full set Subset

ID3 Naive-Bayes ID3 Naive-Bayes

1 Cleve 73.31� 4.26 83.51� 1.38 76.23� 2.25 84.17� 1.82

2 Corral 96.92� 2.05 80.83� 8.79 96.92� 2.05 86.03� 3.75

3 Crx 81.16� 1.04 77.68� 1.56 85.65� 1.3 84.06� 1.33

4 M of n-3-7-10 83.67� 2.19 87.33� 1.63 84.33� 1.22 89.33� 1.56

5 MONK-1 95.12� 1.36 74.97� 1.95 100.00� 0.00 74.97� 1.95

6 MONK-2 46.05� 3.02 66.22� 2.80 46.05� 3.02 66.22� 2.80

7 MONK-3 100.00� 0.00 97.22� 0.47 100.00� 0.00 97.22� 0.47

8 Pima 70.56� 1.66 75.90� 1.88 71.73� 1.38 73.43� 1.57

All results are reported as mean� standard deviation computed from 10 independent trials.
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Fig. 2. Comparison with wrapper approach (Naive-Bayes

classiffier).

3 The differences in CPU time are trivial for these data sets

because it usually takes only several seconds (0–5 s) for both

approaches on today�s PC. The slight differences were also

affected by many factors other than the algorithm itself, for

example, the number of features selected, the status of CPU.

Hence the CPU time is not reported here. The CPU time on two

large data sets is reported in the following section.
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testing data sets are present, we simply merge them

into one data set. All instances with missing values

are discarded. The simulation was done on the

Pentium IV 1.8 GHz PC with 256 M memory

running Microsoft Windows XP Professional

Edition.
We present a brief description of each of the

data sets and summarize the subset selected for

each data set in Table 4 and the cross-validation

accuracy obtained with the original and reduced

data sets in Table 5.

Sonar data set: The first simulation is based on

Sonar data set, which has 208 instances and two

classes. Out of 60 possible attributes, our algo-
rithm chooses 2, shown in Table 4. From Table 5,

we can see clearly that the cross-validation accu-

racy of feature subset is improved for both clas-

sification algorithms.

Multi-feature digit data set: The second simu-

lation is based on multi-feature digit data set,

which has 1000 instances and five classes. Out of

649 possible attributes, our algorithm chooses 10

as shown in Table 4. The cross-validation accuracy

is shown in Table 5.

Once again, it is clear that the proposed algo-

rithm succeeds in selecting a subset with far fewer

features than the original data set while improving

the testing accuracy. We can also clearly see the
efficiency of proposed method based on CPU time

reported in Table 4.

5.4. Simulation group IV

This group of simulations is intended to esti-

mate the effect of neighborhood size when doing

subset selection based on the proposed classifi-
ability measure. For that purpose, we chose data

sets Crx and Pima and varied the neighborhood

size from 2r to 8r as shown in the second column

of Table 6 (r is the RMS distance of each pattern

from its nearest neighbor). As the results in Table

6 show, there exists a large range of values of d
for which the same feature subset is selected. For

example, the subset for the Crx data set always

Table 4

The number of features in the original data set, the number of features retained in the subset and corresponding CPU time

Data set Original Proposed method Wrapper approach

Subset Features # CPU (s) Subset Features # CPU (s)

Sonar 11, 19

18, 37

59 2 12, 16 3 11 27, 43 107

55, 29

9, 41

42

Digit

362, 48 361, 295

475, 133 132, 294

358, 582 152, 289

649 10 86, 638 2150 9 643, 359 4807

645, 359 47

The features retained in the subset are shown in the order of selection.

Table 5

Cross-validation accuracy for ID3 and Naive-Bayes classifier with the entire data set (all features) and the subset (selected features)

Data set Full set Subset (proposed method) Subset (wrapper approach)

ID3 Naive-Bayes ID3 Naive-Bayes ID3 Naive-Bayes

Sonar 72.60� 1.05 68.75� 0.36 76.44� 1.32 71.15� 0.25 76.92� 1.98 68.75� 0.31

Digit 98.50� 0.87 98.50� 1.54 96.25� 2.35 98.50� 0.54 93.40� 1.32 94.50� 0.58
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contains features 8, 9, 13 and 10 when the neigh-

borhood size d equals 2r, 3r or 5r. When d ¼ 8r,
those four features were picked again with priority

although two more features (6 and 12) were in-

cluded.

In general, there is no definite way of knowing
an appropriate value to use for neighborhood d.
Typically, d should increase linearly with n––the
number of attributes. Indeed, d should be large

enough such that at least a few instances are pre-

sent within that neighborhood of each instance. d
should also be small enough such that classifi-

ability is evaluated locally. However, as Table 6

shows, the proposed method is not overly sensitive
to the choice of d. In practice, we found out that

3� the RMS distance of each pattern from its

nearest neighbor gives good results.

6. Conclusions

In this paper, we described a novel subset se-
lection technique based on a definition of classifi-

ability. The proposed definition of classifiability

is based on the general notion of proximity (or

overlap) of patterns of opposite classes and is thus

unbiased to any particular classifier. We used the

proposed definition of classifiability to implement

a forward selection based subset selection scheme.

More specifically, a feature which maximized the
classifiability was added to the subset. Results

on the eight data sets reported earlier with the

wrapper approach (Kohavi and John, 1997) con-

firm that the proposed scheme provides a subset

with equal or better performance than the wrapper

approach without the need for constructing a

large (often in the hundreds) number of classifi-

ers. Based on these results, we believe that the
proposed method can be of significant utility in

machine based classification of high dimension

data.
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