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Abstract - This paper gives a survey of fuzzy rule
base reduction methods. The research of complex-
ity reduction methods are originated form two as-
pects depending of different design methodologies of
the model. The first model design type comes from
the original idea of Zadeh, it proposes models which
are built based on expert knowledge, hence the rule
base is set up manually. These models feature linguis-
tic, and hence semantically interpretable fuzzy terms,
and rules with fuzzy sets as consequents. However,
it is often the case that the model contains redun-
dant rules and/or variables, so there is a need to
omit the redundancy of the model. Secondly, in the
last decade data-driven fuzzy model design became
more popular. This is partly due to fact that fuzzy
models were found to be universal approximators, i.e.
they are capable to approximate with arbitrary accu-
racy any continuous control function. For fitting the
model the possible best to the approximated func-
tion, these models, usually having rules with conse-
quents which are linear function of the inputs, use
tremendously large number of rules, and do not take
into account the complexity and interpretability of
the model. This feature also emerged the issue of
rule base reduction for such systems. The present
paper aims at summarizing the efforts done on the
complexity reduction field briefly.

I. Introduction

UZZY MODELS describes systems by determining

the relation between the prospective inputs and the
output of the its model in the form of IF-THEN rules.
The are different methodologies of model design, which
can mainly divided into two groups: the semantic-driven
modelling, and data-driven modelling.

The first model design type comes from the original
idea of Zadeh [1], it proposes models which are built
based on expert knowledge, hence the rule base is set up
manually. In practice the Mamdani version [2] of fuzzy
model became very popular, which worked in the pro-
jection spaces instead of the multidimensional product
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space, and hence required much less computational effort.
Semantic-based models feature linguistic, and hence se-
mantically interpretable fuzzy terms. The rules are usu-
ally of Mamdani type, i.e. with fuzzy sets in the conse-
quents:

R;: If z; is A;; and...and z, is A;, then y is B;.

However, it is often the case that the model contains
redundant rules and/or variables, so there is a need to
omit the redundancy of the model. In Section II we
survey the methods proposed for complexity reduction
of rule base designed by semantic-driven model.

In the last decade data-driven fuzzy model design be-
came more popular. This is partly due to fact that fuzzy
models were found to be universal approximators (see e.g.
(3], [4], [5]), i.e. they are capable to approximate with
arbitrary accuracy any continuous control function. To
achieve the arbitrary accuracy in approximation requires
usually unbounded number of rules, as it was pointed
out in [6]. Moreover, if the number of rules are bounded
the set of resulted models is almost discrete in the set of
continuous functions [7], [8].

This feature urged researchers to search for practically
feasible, but still sufficiently good approximative mod-
els for (control) function approximation. The models
are mostly of Takagi—Sugeno—Kang (TSK) type [9], [10],
where the rule consequents are (usually) linear function
of the inputs:

R;: Ifxz;is A;; and...and z, is A;, then y; = ajx+b;

where a; = [as,...,ain] is the parameter vector, and
x = [z1,...,2,)T is the input vector. Due to the non-
fuzzy consequent this model is easier to handle by classi-
cal numerical in the following manner. The overall out-
put is written as the weighted rule output of local models
described by individual rules:

M
y= wi(x)y ¢y
i=1

1216



where w;(x) is the normalized firing strength of the ith
rule. The equation (1) offers a way to handle to the
problem as linear regression by classical numerical meth-
ods. The Section III surveys the appropriate numerical
methods.

Before going into the details of complexity reduction
we should remark here, that fuzzy models have originally
exponential complexity [11]. The number of the rules is
of order O(T*), where T is the maximum (or average)
number of fuzzy terms in each dimension, and k is the
number of dimensions. When searching for the relevant
rules for a given input (observation), an exhaustive search
among all the rules should be performed, therefore the
exponential complexity is inevitable. In fact, there is
two different ways of reducing the computational need of
the model: the reduction of the number of terms, T, or
the number of variables, k. As a third possibility, these
techniques might be combined, resulting in methods de-
creasing both of the above quantities.

II. Reduction of semantic-based models

A. Fuzzy rule interpolation

Fuzzy rule interpolation was one of first approaches to
reduce the complexity of fuzzy models. The first such
method , proposed by Kéczy and Hirota [12], [13], is
linear fuzzy rule interpolation. Its main idea is that par-
ticular fuzzy rules, which can be (approximately) substi-
tuted by linear interpolation of the neighbouring rules,
can be omitted from the rule base. Hence, the linear sec-
tion of the input-output function of the model needs only
two rules two describe, the rules in-between them are not
necessary. Therefore this method aims at reducing T in
the equation of complexity.

However, the thinned out rule base usually does not
satisfy the applicability criterion of rule matching based
inference techniques (including Zadeh, Mamdani, and
TSK type models), because the rule antecedents often
do not give a full a-coverage of the input dimensions
(a > 0), i.e. the rule base is {a-) sparse. This means
that these inference techniques should be replaced by
a new approach. The KH linear rule interpolation is
such an approach which is able to work on sparse rule
bases. It determines the conclusion by its a-cuts in such
a way that the ratio of distances among the conclusion
and the consequents should be identical with the ones
among observation and the antecedents for all important
a-cuts. This fundamental equation of KH linear rule in-
terpolation is an extension of the linear interpolation for
rules based convex and normal fuzzy sets in accordance
with the gradual semantic interpretation, proposed first
by Dubois and Prade in 1992 [14], “the more similar is
the observation to an antecedent the more similar the
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conclusion should be to the corresponding consequent of
the given antecedent”.

The linear interpolation can be applied if: 1. there ex-
ists an ordering among the fuzzy sets in each dimension,
2. the observation is located between two antecedents,
and 3. all involved fuzzy sets are convex and normal
(CNF).

The KH method has a significant drawback: it may
produce conclusions which are not interpretable (abnor-
mal) as fuzzy set. This problem urged several researchers
to solve the problem by characterizing the abnormal sit-
uation, or by proposing conceptually new techniques.
Among those here we mention the solid cutting based
method [15], and the modified a-cut based method [16].
The former which determines the conclusion by geometri-
cal transformation of the involved fuzzy sets. The latter
executes the inference in three steps: 1. a state space
transformation is performed, where the structure of the
transformed space alleviate the possibility of abnormal-
ity; 2. the conclusion is calculated in the transformed
space by the a-cut type inference method; 3. the con-
clusion is transformed back to the original state space.
Finally this method tailors the conclusion as combina-
tion of KH methods for each characteristic point. We
also remark that in [17] an axiomatic characterization of
fuzzy interpolation is given.

B. Hierarchical reasoning

An interesting, though not well characterized, approach
to reduce complexity is hierarchical reasoning, which is
based on the modification of rule base structure, and
thus reduce the exponent & in the expression of complex-
ity. The main idea of this approach is that the multi-
dimensional input state space X = X; x --- x X, can
be decomposed, so that some of its components, e.g.,
Zoy = X1 X -+ X X}, determines a subspace (k < n), a
so that in Z a partition II = {D,,...,D,} can be de-
termined. In each element of the partition I, a sub-rule
base can be constructed with local validity. In advanta-
geous case, the local rule bases contain (much) less vari-
ables, and hence the complete structured rule base model
has less complexity in terms of required time. The main
problem of the method is that it is often difficult to deter-
mine a proper partition of the state space so, that in the
elements of the partition some variables can be omitted.
Despite this fact, the approach was successfully applied
in the famous project of Sugeno’s, where they used hier-
archical fuzzy control of an unmanned helicopter [18].
There are attempts to combine hierarchical and sparse
rule bases [19], which could lead to simultaneously reduce
the base T and the exponent k in the expression of O(T*),
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but the characterization of applicability and real-world
applications based on such methods are still missing.

III. Reduction of data-based models

A. Orthogonal least squares-based techniques

The orthogonal least squares (OLS) method was first ap-
plied to fuzzy systems in [20], to select the most impor-
tant fuzzy basis function needed to approximate a data
set.

If we have N input-output data pairs {x;,y; };Vzl then
(1) can be written as:

y=Wb+e 2)

if the rules have only constant consequents b; (a; = 0 for
all the M rules), and where W is composed of vectors
w;(x;) for j € [1, N], end e is the vector of approximation
error.

The OLS method transforms the column of the firing
matrix W into a set of orthogonal basis vectors in order
to inspect the individual contribution of each rule. The
Gram—Schmidt orthogonalization is used to decompose
the matrix W = PA, where PTP = [ is an orthogonal
matrix and A is an upper-triangular matrix. Substituting
W = PA in Eq. (2) and using the fact that columns p;
of P are orthogonal, the sum of squares of y(k) can be

written as:
M

¥y =) gipipi+eTe
=1
where g; = A;b;. The part of output variance yTy/N
explained by regressors is . ¢;p? p;/N. Thus an error
reduction ration [21) due to an individual rule ¢ can be
determined:

T
[ert]! = g—ipTL&,quadl <i< M.
' yy
This ratio offers a simple means of ordering the rules,
and was used in [20] to select a subset of important rules

in a forward-regression manner.

However, as it was pointed out in [22], may produce
an inappropriate subset of fuzzy rules. This problem was
solved in [23], where the authors introduced a check for
very small pIp; value which is the effect of linear com-
bination of column vectors w; previously selected by the
method.

The main advantage of OLS method is that it deter-
mines an importance ranking of the rules, so an the user
can select the required number of rules based e.g. on the
approximation accuracy or the relative contribution of
the selected rules.
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B. Singular value based decomposition

Higher Order SVD (HOSVD) based TS fuzzy approxima-
tion technique was initiated by Yam in 1997 [24], which
directly finds the minimal number of rules from sampled
values. Shortly after, this technique was introduced as
SVD reduction of the rule base and structure decompo-
sition by Yam et al. in [25]. An extension of Yen and
Wang’s work outlined above [22] to multi-dimensional
(MIMO rule bases) cases may also be conducted in a sim-
ilar fashion as the HOSVD reduction technique proposed
in {24], [25]. These works give also some transformation
techniques to yield antecedent sets with specific charac-
teristics. Further extensions of [24] to a general rational
form, inference algorithm independent rule bases, linguis-
tic arrays and neural networks are proposed by Baranyi
et al. in (26], [27], [28], [29].

The work in (27] can be applied regardless of the in-
ference paradigm adopted for fuzzy rule base. Presum-
ably, the product operation in [26] can be replaced by the
Rudas’s generalized inference operators [30], [31]. This
would have a prominent role in developing the ability of
finely tuning the TS models according to the applica-
tion at hand and/or specific purposes of system perfor-
mance. Work (32] specializes the use of SVD reduction
to Takagi-Sugeno dynamic models. In order to facilitate
further research a compact tensor product based nota-
tion is proposed by Baranyi et al. in [33], [34], [35], which
works propose adaption techniques to HOSVD reduced
rule bases. Various estimations for the error bound of
HOSVD reduction techniques are proposed by Takdcs in
136], (37, [38], [39]-

SVD is not merely used as a way of reduction of fuzzy
rule bases. A brief enumeration of the potentials offered
by SVD, of which some works were started by Beltarmi
about 200 years ago, can be found in Stewart (1993) [40].
SVD is one of the most fruitful tools in linear algebra,
belting its promising role in complexity reduction in gen-
eral. The key idea of using SVD in complexity reduction
is that the singular values can be applied to decompose a
given system and indicate the degree of the significance
of the decomposed parts. Reduction is conceptually ob-
tained by the truncation of those parts which have weak
or no contribution at all to the output according to the
assigned singular values. This advantageous feature of
SVD is used in Yam’s works to extract a given model ap-
proximation and discard those rules which have no sig-
nificant role in the overall system according to a given
approximation accuracy. However, reducing the number
of rules does not imply the computational cost reduc-
tion in all cases since the computation also depends on
the number of overlapping antecedent membership func-
tions, see [41], {42].
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Let us briefly outline the key idea of HOSVD based
reduction techniques. Let an N-variable rule base given
with the following rules:

R

11,42, IN -
If T1 is Al,il and.. IN is AN,iN then y is Bilyi2y-~~yiN'

Applying TS-model [9] the output is calculated as:

I, I, In N
y= f(X) = Z Z Z Hwﬂ,in(xn)yil,iz,m,izv (3)
t1=11d2=1 in=1n=1

where vector x € RN consists of the input values z,, n =
1...N and wp ;(z) is the i-th antecedent function on the
n-th input universe. Equation (3) can be described in
tensor-product form as proposed in [33], {34]:

N
y = f(x) = BQ)wn(zn) (4)

n=1

where tensor B € RI1*%2%-XI¥ contains the consequent
values yi, 4;,...,in- ROW vector w(z,) contains the mem-
bership functions of the antecedents as:

Wn(xn) = [wn,l(l'n)7 wn,z(zn)y'-:wn,ln(xn)] (5)

Let briefly discuss the fundamentals of HOSVD in the
sense of reduction. Many reduction properties of the
HOSVD of higher-order tensors have been investigated in
related literatures. Here, let us briefly summarize those
that have prominent roles in complexity reduction and
approximation. The HOSVD decomposes a given tensor
B ¢ R *2x-xI~ into the product of:

N
B=SQ) U, (6)
n=1

(for notation see appendix) in which

1) matrix U, is an unitary (Iy x Iy) matrix called
n-mode singular matrix.

2) tensor S € RN*I2X-*In of which the subtensors
Si,.—o have the properties of

(7) all orthogonality: two tensors S; -, and S; —g
are orthogonal for all possible values of n, o and §:
(Sin=p8,S8i.=p) = 0 when o # 3.

(#) ordering: ||S;. =1l > ISi=2ll > ..., ||Si,=1.]| for
all possible values of n. The Frobenius-norm ||S; |,
symbolized by 05"), are the n-mode singular values of B.

First, in multi-linear algebra as well as in matrix alge-
bra, the Frobenius-norm is unitary invariant. As a con-
sequent, the squared Frobenius-norm of a matrix can be
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generalized as equal to the sum of its squared singular
values. Let the approximation property of HOSVD be
characterized first. Assume that tensor B is decomposed
by HOSVD as above in eq. (6), further let the n-mode
rank of B equals to R,,. Define tensor ﬁ, by discarding
singular values agzzrl,af,zzrz, e ’“g:) for given values of

I}, i.e. set the corresponding parts of S equal to zero.
Then we have

R N R,
B-BI=Y" 3 (@M )

n=1li,=I+1

This property is the higher-order equivalent of the link
between the SVD of a matrix and its best approximation
in a least-squares sense, by a matrix of lower rank. The
situation is, however, quite different for tensors. By dis-
carding the smallest n-mode singular values, one obtains
a tensor B with n-mode rank of I, but this tensor is , in
general, not the best possible approximation under the
given n-mode rank constraints. Nevertheless, the order-
ing implies that the main components of B are mainly
concentrated in the part corresponding to low values of
the indices. Consequently, if U§:) > a,(:_),,l where I/, ac-
tually corresponds to the numerical ranking of B then
the smaller n-mode singular values are not significant,
justifying that they be discarded. In this sense, the B as
obtained can still be considered as a good approximation
of B.

Consequently, if a rule base is given by tensor B and
vectors w,,(z,,) as in eq. (4) its complexity can then be
minimized via executing HOSVD on B as:

N N N
y=f(x) =BQwWn(zn) = (S Q) Un) Q) Wn(zn) =
n=1 n=1 n=1
(8)

= S Q(Wn(2n)Un) (©)

If singular values are discarded the size of S and U,
decreases. Let they respectively be denoted as B” €
RIxI3%-.xIN  where ”r” means "reduced”, and U; €
R 1n where IT, < I, for all n. So, eq. (9) becomes:

N
v = f(x) 2 BT Q)(wa(za)Uy) (10)
n=1
finally we obtain:
N
y = f(x) 2 B Q) w(zn) (11)

n=1

where W7 (z,) € R% = w,(2,)UT,. eq. (11) represents
a TS rule base like eq. (4). As a consequence the size of
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BT is less than B if singular values are discarded, hence
the rule base is reduced.

An important issue should be addressed here. The re-
duced functions w, ;(z,) in (11) may not be interpretable
as membership functions, since the transformation us-
ing matrix U may result in functions with negative val-
ues. Another crucial point is that the resulted antecedent
functions do not guarantee the Ruspini-partition, which
means that the sum of the antecedents over all inputs
may not be equal to 1. This fact would destroy the
whole reduction concept. However, if only the saving
of computational cost of final implementation is in pur-
pose and no any conditions of the membership func-
tions have to be accommodated then (11) is directly
applicable. If the reduced form is for further studies
in fuzzy theory then the reduced antecedent functions
should accommodate additional characterization pertain-
ing to specific operations. This may require further trans-
formations. To obtain matrices U in such a way that
the reduced antecedent functions are bounded by [0,1]
and hold Ruspini-partition, Non-Negativeness (NN) and
Sum-Normalisation (SN) transformation techniques are
developed by Yam in [24], [25].

IV. Conclusions

In this paper we give a brief survey of reduction tech-
niques. The motivation of this topic is that the identifi-
cation of fuzzy models and controllers from training data
needs to consider an important feature between data fit-
ness and complexity. We emphasize the importance of
these features by pointing out that fuzzy models and
controllers with large number of local models may en-
counter the risk of having an approximation capable of
fitting training data well, but incapable of running on
low satisfactory computational cost. In order to help the
developments of fuzzy models and controllers to strive for
balance between the two conflicting design objectives, we
survey various fuzzy model reduction techniques.

V. Appendix

DEFINITION (n-mode matrix of tensor A) Assume
N-th order tensor A € RI1*12%-xIn = The n-mode ma-
trix Ay € R J = ,IC", where k = 1...N and
k # n, contains all the vectors of the n-th dimension of
tensor A. The ordering of the vectors is arbitrary, this
ordering shall, however be consistently used later on.

DEFINITION (n-mode matrix-tensor product) The
n-mode product of tensor A € RI1xI2%--XIN by a matrix
U € R/*In denoted by Ax, U isan (I xIzX. .. XJX...X
Iy)-tensor of which the entries are given by Ax,U =B,
where B(n) = UA(n). Let Ax1 Uy xoUsy...xnyUp be
noted for brevity as A™ ®va1 U,.
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DEFINITION (n-mode rank of tensor A) The n-
mode rank of tensor A is the rank of the n-mode matrix
of tensor A: rank,(A) = rank(A,)).
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