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Abstract. Radial basis function networks and fuzzy rule systems are functionally equivalent
under some mild conditions. Therefore, the learning algorithms developed in the field of arti-

ficial neural networks can be used to adapt the parameters of fuzzy systems. Unfortunately,
after the neural network learning, the structure of the original fuzzy system is changed and
interpretability, which is considered to be one of the most important features of fuzzy systems,

is usually impaired. This Letter discusses the differences between RBF networks and interpre-
table fuzzy systems. Based on these discussions, a method for extracting interpretable fuzzy
rules from RBF networks is suggested. Simulation examples are given to embody the idea

of this paper.

1. Introduction

Jang and Sun [4] have shown that radial basis function (RBF) networks and a sim-

plified class of fuzzy systems are functionally equivalent under some mild conditions.

This functional equivalence has made it possible to combine the features of these two

systems, which has been developed into a powerful type of neurofuzzy systems [5].

However, a fuzzy system that has been trained using learning algorithms may lose

its interpretability or transparency, which is one of the most important features of

fuzzy systems.

In this Letter, the relationship between RBF networks and fuzzy systems is re-

examined. We emphasize the differences rathr than the equivalence between these

two models. It is argued that the essential difference between RBF networks and

fuzzy systems is the interpretability, which enables fuzzy systems to be easily compre-

hensible. Based on the discussions on their relationships, a method to extract inter-

pretable fuzzy rules from trained RBF networks using regularization techniques is

proposed. Simulation studies are carried out on two test problems and an example

from process modeling to show how fuzzy rules with good interpretability can be

extracted from RBF networks.

It should be mentioned that the method proposed in this work is quite different

from the existing techniques for rule extraction from neural networks [14]. For exam-

ple, a wide class of existing methods extract symbolic rules from multiplayer percep-

trons [15]. Although fuzzy rule extraction has been studied in [2], the work is mainly

based on a special feedforward neural network structure. In our work, fuzzy rules are
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extracted from RBF networks by investigating the difference between interpretable

fuzzy rules and RBF networks. Since fuzzy rules and RBF networks are mathema-

tically equivalent, emphasis of this work has been laid on interpretability, which is

most critical for the semantic meanings of fuzzy rules.

2. Relations Between RBF Networks and Fuzzy Systems

In this section, we first briefly review the functional equivalence between RBF net-

works and a class of fuzzy systems. A definition of interpretability of fuzzy systems

is then proposed. Finally, the conditions on converting an RBF network to a fuzzy

system are discussed.

2.1. FUNCTIONAL EQUIVALENCE BETWEEN RBF NETWORKS AND FUZZY SYSTEMS

Radial basis function neural networks are one of the most important models of arti-

ficial neural networks. They were proposed in [10] and [11] among others in the con-

text of different research motivations. Generally, an RBF network with a single

output can be expressed as follows:

y ¼
XN
j¼1

fjjj

kx� ljk

rj

� �
ð1Þ

where jjð�Þ is called the jth radial-basis function or the jth receptive field unit, lj and

rj are the center and the variance vectors of the jth basis function, and fj is the weight

or strength of the jth receptive field unit. If the basis functions of the RBF net-

work are Gaussian functions and the output is normalized, an RBF network can

be described as:

y ¼

PN
j¼1 fj

Qmj

i¼1 exp �
xi�mij

sij

� �2� 	
PN

j¼1

Qmj

i¼1 exp �
xi�mij

sij

� �2� 	 ð2Þ

where 14mj4M is the dimension of the jth basis function,M is the dimension of the

input space, and N is the number of hidden nodes.

Several supervised and unsupervised learning methods as well as evolutionary

computation based optimization algorithms have been developed to find optimal

values of the neural network parameters. Almost all of these algorithms can be

applied to the neurofuzzy systems.

The theory of fuzzy sets and fuzzy inference systems [17] originated from a com-

pletely different research field. Fuzzy inference systems are composed of a set of

if-then rules. A Sugeno-Takagi fuzzy model has the following form of fuzzy rules [13]:

Rj : If x1 is A1j and x2 is A2j and . . . and xM is AMj;

Then y ¼ gjðx1; x2; . . . ;xMÞ;
ð3Þ
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where gjð�Þ is a crisp function of xi. The overall output of the fuzzy model can be

obtained by:

y ¼

PN
j¼1½gjð�ÞT

mj

i¼1jijðxiÞ�PN
j¼1 T

mj

i¼1jijðxiÞ
ð4Þ

where 14mj4M is the number of input variables that appear in the rule premise,M

is the number of inputs, jijðxiÞ is the membership function for fuzzy set Aij and T is a

t-norm for fuzzy conjunction. It is noticed that the RBF network expressed in

Equation (2) and the fuzzy systems described by Equation (4) are mathematically

equivalent provided that multiplication is used for the t-norm in fuzzy systems

and both systems use Gaussian basis functions. Here, we will not re-state the restric-

tions proposed in [4], however, we will show that although these restrictions do result

in the mathematical equivalence between RBF networks and fuzzy systems, they do

not guarantee the equivalence of the two models in terms of the semantic meanings.

2.2. INTERPRETABILITY CONDITIONS FOR FUZZY SYSTEMS

The main difference between radial-basis-function networks and fuzzy systems is the

interpretability. Generally speaking, neural networks are considered to be black-

boxes and therefore no interpretability conditions are imposed on conventional

neural systems. On the other hand, fuzzy systems are supposed to be inherently com-

prehensible, especially when the fuzzy rules are obtained from human experts. How-

ever, interpretability of fuzzy systems cannot be guaranteed during data based rule

generation and adaptation. For this reason, interpretability of fuzzy systems has

received increasing attention in the recent years [3, 6, 7, 9, 12, 16]. In the following,

we propose some major conditions a fuzzy system should fulfill to be interpretable:

1. The fuzzy partitioning of all variables in the fuzzy system are both complete and

well distinguishable. In addition, the number of fuzzy subsets in a fuzzy partition-

ing is limited.

Remarks. The completeness and distinguishability condition makes it possible to

assign a clear physical meaning to each fuzzy subset in a fuzzy partitioning.

Therefore, it is the most important aspect for the interpretability of fuzzy systems.

Usually, this also leads to a small number of fuzzy subsets. A quantitative

description of the completeness and distinguishability condition can be expressed as

follows:

d14SðAi;Aiþ1Þ4d2 ð5Þ

where,Ai andAiþ1 are two arbitrary neighboring fuzzy subsets in a fuzzy partitioning,

SðAi;Aiþ1Þ is a fuzzy similarity measure between them, d1 and d2 are the lower and
upper thresholds of the fuzzy similarity measure, where a positive d1 guarantees the

EXTRACTING INTERPRETABLE FUZZY RULES 151



completeness and a d2 that is sufficiently smaller than one maintains good distinguish-
ability [8].

2. Fuzzy rules in the rule base are consistent with each other and consistent with the

prior knowledge, if available.

Remarks. Although the performance of fuzzy systems is believed to be insensitive

to the inconsistency of the fuzzy rules to a certain degree, seriously inconsistent fuzzy

rules will undoubtedly result in incomprehensible fuzzy systems. We argue that fuzzy

rules are inconsistent in the following situations:

– The condition parts are the same, but the consequent parts are completely

different. For example,

R1: If x1 is A1 and x2 is A2, then y is Positive Large;

R2: If x1 is A1 and x2 is A2, then y is Negative Large

– Although the condition parts are seemingly different, they are physically the

same. However, the consequents of the rules are totally different.

R1: If x1 is A1 and x2 is A2, then y is Positive Large;

R2: If x1 is A1 and x3 is A3, then y is Negative Large

Although ‘x2 is A2’ and ‘x3 is A3’ appear to be different conditions, they might

imply the same situation in some cases. For example, for a chemical reactor, a

statement ‘temperature is high’ may imply ‘conversion rate is high’.

– The conditions in a rule premise are contradictory, e.g. ‘If the sun is bright and

the rain is heavy’.

– The actions in the rule consequent part are contradictory. For example, in the

rule ‘If x is A then y is B and z is C.’ However, ‘y is B and z is C’ cannot happen

simultaneously.

3. The number of variables that appear in the premise part of the fuzzy rules should

be as small as possible. In addition, the number of fuzzy rules in the rule base

should also be small. These two aspects deal with the compactness of the rule

structure.

The interpretability conditions impose implicit constraints on the parameters of

fuzzy systems. While interpretability is one of the most important feature of fuzzy

systems, there are generally no interpretability requirements on the parameters of

RBF networks. In this sense, RBF networks and fuzzy systems are not the same even

if they are functionally equivalent.

2.3. CONVERSION OF AN RBFN INTO FUZZY RULES

The central point in converting an RBFN into a Sugeno fuzzy model is to ensure that

the extracted fuzzy rules are interpretable, i.e. easy to understand. In order to con-

vert an RBF network to an interpretable fuzzy rule system, the following conditions

should be satisfied:
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1. The basis functions of the RBF network are Gaussian functions.

2. The output of the RBF network is normalized.

3. The basis functions within each receptive field unit of the RBF network are

allowed to have different variances.

4. Certain numbers of basis functions for the same input variable but within differ-

ent receptive field units should share a mutual center and a mutual variance. If

Mamdani fuzzy rules are to be extracted, then some of the output weights of

the RBF network should also share.

Conditions 3 and 4 are necessary for good interpretability of the extracted

fuzzy system. Without condition 3, the first part of condition 4 cannot be rea-

lized. As the most important condition, condition 4 requires that some weights

in the RBF network should share. For the sake of simplicity, we use ‘weights’

to refer to both the parameters of basis functions (centers and variances) and

the output weights of RBF networks in the following text. The weight sharing

condition ensures a good distinguishability for the fuzzy partitioning, which is

the most essential feature for the interpretability of fuzzy systems. Given a fuzzy

system in Figure 1, the RBF network that is directly converted from the fuzzy

system is illustrated in Figure 2. If we take a closer look at the RBF network in

Figure 2, we notice that some of the basis functions are identical. On the other

hand, if a fully connected RBF network with N hidden nodes is directly conver-

ted into a fuzzy system, each variable of the fuzzy system will have N sub-fuzzy

sets. If N is large (e.g., N>10), it will be difficult to understand the fuzzy sys-

tem. However, we find it difficult to define the weight sharing condition expli-

citly because we cannot require that the structure of the extracted fuzzy

system should be the same as its original structure, therefore, we do not

know beforehand which weights should share. Additionally, the completeness

Figure 1. A fuzzy system.
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of the fuzzy partitioning should be considered together with the weight sharing

condition in the course of rule extraction. These problems will be treated in

detail in the next section.

Note that the consistency condition is not considered here, because we suppose

that it has been taken into account in generating the initial fuzzy system [8]. Never-

theless, measures can be taken to prevent the rule extraction algorithm from gener-

ating seriously inconsistent rules, namely, rules with the same premise but different

consequents.

3. Fuzzy Rule Extraction from RBF Networks

As we have discussed in the last section, to extract interpretable fuzzy rules

from an RBF network, the number of basis in the RBF network should be kept

small and there should be no very similar basis functions, which means that

some of the weights in the RBF network should share. Thus, extracting inter-

pretable fuzzy rules from RBF networks can be treated as fine training of the

RBF network with regularization [1] such that similar weights in the RBF net-

work share the same value.

Before the regularization can be applied, it is necessary to specify, which weights

should be identical before the weight sharing algorithm can be employed. Thus, the

first step toward rule extraction from RBF networks is to determine which weights,

including the parameters of basis functions and the output weights, should share.

Figure 2. The RBF network converted from the fuzzy system.
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3.1. SPECIFICATION OF SHARED WEIGHTS

Since the rule structure of the fuzzy system is unknown, we do not know in advance,

which weights should share. However, it is straightforward to imagine that the

weights that are going to share a same value should be similar before the regulariza-

tion is applied. Therefore, we have to first identify similar weights using a distance

measure. Currently, several distance measures (or similarity measures) are available.

Among them, Euclidean distance is very simple and has been widely used. The Eucli-

dean distance between two membership functions (basis functions) jiðmi; siÞ and

jjðmj; sjÞ, where mi; mj are centers and si; sj are the variances can be defined as:

dðji;jjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmi � mjÞ

2
þ ðsi � sjÞ

2
q

: ð6Þ

For a Gaussian basis function or membership function, each has two elements,

namely, the center and the variance. For the output weights, each vector has only

one element. Suppose that a given input variable xi has K different basis functions

jijðj ¼ 1; 2; . . . ;KÞ with the center mij and the variance sij, the procedure to determine

similar basis functions can be described as follows:

1. List the basis functions (jij) in the order of increasing sequence with regard to

their center values. Let Uik be the kth set for xi containing similar basis functions.

Two basis functions are considered similar if the distance between them is less

than di, where di is a prescribed threshold. The regularization algorithm will drive

the similar basis functions in set Uik to share the same parameters. Put jij to Uik,

let j; k ¼ 1, j0i ¼ ji1.

2. If dðj0i ;jijþ1Þ < di, put jijþ1 to Uik; else k ¼ k þ 1, put jijþ1 to Uik and let

j0i ¼ jijþ1.

3. j ¼ j þ 1, if j4K, go to step 2; else stop.

The prescribed distance threshold di is very important because it determines both

the distinguishability and the completeness of the fuzzy partitions. Suppose m̂ik and

ŝik are the averaged center and variance of the basis functions in Uik, then the fuzzy

partition constructed by m̂ik and ŝik should satisfy the completeness and distinguish-

ability condition described in Equation (5).

In practice, we find that the performance of the extracted fuzzy system is not satis-

factory if we simply choose m̂ik and ŝik to be the values to share by the basis functions

in Uik. In other words, a direct merge of similar basis functions will degrade the per-

formance seriously. In the following subsection, we will introduce an adaptive weight

sharing method to improve the performance of the extracted fuzzy system.

3.2. ADAPTIVE WEIGHT SHARING

We do not directly require that the weights in the same set should be identical.

Instead, we realize weight sharing by regularizing the RBF network. In
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the following, we present the weight sharing algorithm with regard to the RBF

model described in Equation (2).

Regularization of neural networks is realized by adding an extra term to the con-

ventional cost function:

J ¼ E þ l � O; ð7Þ

where E is the conventional cost function, l is the regularization coefficient
(04l < 1), and O is the regularization term for weight sharing.
The cost function E is expressed as:

E ¼
1

2
ð y � ytÞ

2; ð8Þ

where, y is the output of the neural network and yt is the target value. In the follow-

ing, we assume that Sugeno fuzzy rules are to be extracted, that is to say, the output

weights of the RBF network are not regularized. In this case, the regularization term

O has the following form:

O ¼
1

2

X
i

X
k

X
jij2Uik

ðmij � �mikÞ
2
þ
1

2

X
i

X
k

X
jij2Uik

ðsij � �sikÞ
2

ð9Þ

where �mik and �sik are the center and variance to be shared by the basis functions jij in

set Uik. Empirically, the averaged center m̂ik and variance ŝik of set Uik are used as the

initial values for �mik and �sik. The gradients of J are:

@J

@mij

�����
jij2Uik

¼
@E

@mij

þ lðmij � �mikÞ ð10Þ

@J

@sij

�����
jij2Uik

¼
@E

@sij
þ lðsij � �sikÞ ð11Þ

@J

@ �mik

¼ �l
X

jij2Uik

ðmij � �mikÞ ð12Þ

@J

@ �sik
¼ �l

X
jij2Uik

ðsij � �sikÞ; ð13Þ

where

@E

@mij

¼ ð y�ytÞð fj�yÞðxi�mijÞ
Ymj

i¼1

exp �
ðxi � mijÞ

2

s2ij

 !" #.
s2ij ð14Þ

@E

@sij
¼ ð y�ytÞð fj�yÞðxi�mijÞ

2
Ymj

i¼1

exp �
ðxi � mijÞ

2

s2ij

 !" #.
s3ij ð15Þ

It should be pointed out that the specification algorithm introduced in the last sub-

section must be applied in each iteration of the neural network learning to improve
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the performance of the extracted fuzzy system. Recall that the weights of the RBF

network are determined not only by the regularization term, but also by the

conventional error term. That is to say, it is possible that a basis function jij that

is originally put in Uik will be classified to another set after an iteration of learning.

By specifying the shared weights during network learning, a more optimal rule struc-

ture will be obtained. It is also necessary to check the completeness condition on the

fuzzy partitioning constructed by ð �mik; �sikÞ during learning. The incompleteness of

the fuzzy partitioning can be avoided by temporarily stopping the adaptation of

the shared parameters ( �mik; �sik).

If Mamdani fuzzy rules are to be extracted, a similar specification of the shared

weights should be carried out on the output weights and an extra term should be

added to O. Then, a regularized learning algorithm for the output weights can also
be derived. The resulting weights can be explained as the centers of the membership

functions for the output variable.

4. Examples

4.1. THE MACKEY–GLASS SYSTEM

In this subsection, simulation studies on the modeling of the Mackey–Glass time ser-

ies are carried out to show the feasibility of the proposed method. The Mackey–

Glass time series is described by:

_x ¼
axðt � tÞ
1þ xbðt � tÞ

� cxðtÞ; ð16Þ

where t ¼ 30, a ¼ 0:2, b ¼ 10, and c ¼ 0:1. One thousand data samples are used in

the simulation, 500 samples for training and the other 500 samples for test. The goal

is to predict xðtÞ using xðt � 1Þ, xðt � 2Þ and xðt � 3Þ. That is to say, the system has

three inputs and one output.

An RBF neural network with 6 hidden nodes is converted from a fuzzy system

that is generated using the training data [7]. After training the RBF network, the

mean absolute errors on the training and test data are about 0:008. The basis func-

tions of the xðt � 2Þ and xðt � 1Þ are shown in Figure 3. xðt � 3Þ has only one basis

function, and therefore, it is not shown in the figure.

The weight specification process is then applied on the basis functions of xðt � 2Þ

and xðt � 1Þ. As a result, the basis functions of xðt � 2Þ are classified into two groups

and those of xðt � 1Þ are divided into three groups. Using the adaptive weight shar-

ing algorithm, five fuzzy rules are obtained. The mean absolute errors for training

and test are both about 0:016, which are larger than those of the RBF network.

The new basis functions of xðt � 3Þ, xðt � 2Þ and xðt � 1Þ, which are now called mem-

bership functions, are shown in Figure 4.

According to the distribution of the membership functions, a linguistic term is

assigned to each membership function of the inputs, refer to Figure 4. For example,
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for xðt � 2Þ, ‘SMALL’ can be assigned to its membership function ð0:01; 0:7Þ and

‘quite SMALL’ can be assigned to the membership function ð0:29; 1:68Þ. In this

way, the following interpretable fuzzy rules for the Mackey-Glass system can be

extracted:

– If xðt � 2Þ is SMALL and xðt � 1Þ is BIG, then xðtÞ is BIG;

– If xðt � 1Þ is quite SMALL, then xðtÞ is SMALL;

– If xðt � 2Þ is quite SMALL and xðt � 1Þ is SMALL, then xðtÞ is SMALL;

– If xðt � 1Þ is BIG, then xðtÞ is BIG;

– If xðt � 3Þ is SMALL and xðt � 2Þ is SMALL, then xðtÞ is BIG.

4.2. THE LORENZ SYSTEM

The Lorenz system studied in this paper is described by the following differential

equations:

dx

dt
¼ �y2 � z2 � aðx � F Þ ð17Þ

Figure 4. Membership functions of the fuzzy system. (a) xðt � 3Þ, (b) xðt � 2Þ, and (c) xðt � 1Þ:

Figure 3. Basis functions of the RBF network. (a) xðt � 2Þ, (b) xðt � 1Þ.
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dy

dt
¼ xy � bxz � y þ G ð18Þ

dz

dt
¼ bxy þ xz � z ð19Þ

where a ¼ 0:25, b ¼ 4:0, F ¼ 8:0 and G ¼ 1:0. In our simulation, we predict xðtÞ from

xðt � 1Þ, yðt � 1Þ and zðt � 1Þ. 2000 data pairs are generated using the fourth order

Runge–Kutta method with a step length of 0:05, where 1000 pairs of data are used

for training and the other 1000 for test.

An initial fuzzy system is generated using the evolutionary algorithm based

method. Consequently, we convert this fuzzy system to an RBF neural network

and continue to train it with the conventional gradient method. During the network

training, the inactive field units are deleted. Thus, after the learning algorithm con-

verges, we obtain an RBF network with 5 receptive field units. Although the approx-

imation performance has been improved significantly, most of its fuzzy subsets (basis

functions) are hard to distinguish and such a fuzzy system is not well interpretable,

see Figure 5.

The algorithm for extracting fuzzy rules is then implemented. The performance of

the extracted fuzzy system is a little worse than that of the RBF network, interpret-

ability of the extracted fuzzy system is much better: the fuzzy partitions are both

complete and well distinguishable, see Figure 6, and the number of fuzzy rules is also

reduced.

With an interpretable fuzzy system at hand, knowledge about the system can be

acquired. In the fuzzy model, xðt � 1Þ has 4 fuzzy subsets, while yðt � 1Þ has 2 subsets

and zðt � 1Þ has only one subset. It is straightforward to see that in this model, xðtÞ

depends much more on xðt � 1Þ than yðt � 1Þ or zðt � 1Þ. According to the distribu-

tion of the membership functions, a proper linguistic term can be assigned to each

fuzzy set (refer to Figure 6). For input xðt � 1Þ, ‘Negative Small ðNSÞ’ can be

assigned to the membership function ð�0:49; 1:69Þ, ‘Positive Small ðPSÞ’ to ð0:37;

1:24Þ, ‘Positive Middle ðPMÞ’ to ð1:01; 0:80Þ and ‘Positive Large ðPLÞ’ to ð2:01;

1:49Þ. Similarly, for yðt � 1Þ, ‘Negative Small ðNSÞ’ is assigned to ð�0:35; 4:11Þ,

Figure 5. The basis functions of the trained RBF network: (a) xðt � 1Þ, (b) yðt � 1Þ and (c) zðt � 1Þ.

EXTRACTING INTERPRETABLE FUZZY RULES 159



‘Zero ðZOÞ’ to ð0:03; 3:53Þ; for zðt � 1Þ, ‘Zero ðZOÞ’ is assigned to ð�0:04; 2:79Þ. In

this way, some intelligible knowledge about the Lorenz system in terms of interpre-

table fuzzy rules is acquired.

– If xðt � 1Þ is Positive Small, Then xðtÞ is Negative Small

– If xðt � 1Þ is Positive Large and yðt � 1Þ is Zero and zðt � 1Þ is Zero, Then xðtÞ is

Positive Large

– If xðt � 1Þ is Negative Small and zðt � 1Þ is Zero, Then xðtÞ is Negative Small

– If xðt � 1Þ is Positive Middle and yðt � 1Þ is Negative Small, Then xðtÞ is

Positive Middle

We mentioned that the approximation accuracy of the extracted fuzzy system is a

little worse than that of the RBF neural network. This implies that better interpret-

ability may lead to lower approximation accuracy, especially when the fuzzy parti-

tions of the fuzzy system are required to be well distinguishable.

4.3. PROCESS MODELING

The data used in the following simulation are generated to simulate an industrial

process. We use this example because it is a high-dimensional system with deliber-

ately added biased noises. In this simulated system, there are 11 inputs and one out-

put with 20; 000 data for training and 80; 000 data for test.

An RBF network with 27 hidden nodes is obtained using the training data. The

RMS errors on training and test data are 0:189 and 0:207. Although the performance

is satisfying, the RBF model is hard to understand when we take a look at the basis

functions of, particularly 6 of the 11 inputs, see Figures 7 and 8.

To extract interpretable fuzzy rules from the RBF network, the proposed algo-

rithm is employed. After training, the RMS errors of the fuzzy system on the training

and test data become 0:191 and 0:213 respectively, which have slightly increased as

expected. What is very encouraging is that the number of fuzzy subsets in the fuzzy

partitions are significantly reduced and the distinguishability is greatly improved, see

Figures 9 and 10. With these well distinguishable fuzzy partitions, it is possible to

Figure 6. The membership functions of the extracted fuzzy system: (a) xðt � 1Þ, (b) yðt � 1Þ and (c) zðt � 1Þ.

160 YAOCHU JIN AND BERNHARD SENDHOFF



Figure 7. The basis functions of the RBF network: (a) x1, (b) x2 and (c) x3.

Figure 9. The membership functions of the fuzzy system: (a) x1, (b) x2 and (c) x3.

Figure 10. The membership functions of the fuzzy system: (a) x4, (b) x5 and (c) x6.

Figure 8. The basis functions of the RBF network: (a) x4, (b) x5 and (c) x6.
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associate a linguistic term to each fuzzy subset and thus interpretable fuzzy rules can

be obtained. This demonstrates that the proposed algorithm is effective for high-

dimensional systems.

The linguistic terms for input variables are listed as follows:

x1: {Very Small (VS), Small (S), Medium (M), Large (L)};

x2: {Small (S), Medium (M), Large (L)};

x3: {Small (S), Medium (M), Large (L)};

x4: {Medium (M), Large (L)};

x5: {Very Small (VS), Small (S), Medium (M), Large (L), Very Large (VL)};

x6: {Small (S), Medium (M), Large (L)};

x7: {Medium (M), Large (L)};

x8: {Negative Large (NL), Negative Medium (NM), Negative Small (NS)};

x9: {Very Small (VS), Small (S), Medium (M), Large (L), Very Large (VL)};

x10: {Large (L)};

x11: {Small (S), Medium (M), Large (L)}.

Notice that the maximal number of linguistic terms for a variable is 5, and most

variables have 3 to 4 linguistic terms, which is ideal for good interpretability of fuzzy

systems.

The 27 fuzzy rules are:

1. IF x1 is VS, x2 is M, x3 is S, x4 is M, x5 is VS, x8 is NM, THEN y ¼ �0:434;

2. IF x1 is M, x3 is M, x5 is L, x8 is NM, x10 is L, THEN y ¼ 4:558;

3. IF x3 is M, x4 is L, x5 is VL, x9 is S, x10 is L, THEN y ¼ 4:012;

4. IF x3 is M, x5 is VS, x8 is NL, x9 is M, x10 is L, THEN y ¼ 1:482;

5. IF x1 is S, x2 is M, x4 is M, x5 is VS, x6 is S, THEN y ¼ �0:497;

6. IF x2 is M, x5 is M, x6 is M, x9 is L, x10 is L, THEN y ¼ 1:221;

7. IF x1 is M, x4 is M, x5 is M, x8 is NM, x10 is L, THEN y ¼ 0:680;

8. IF x1 is M, x3 is M, x4 is M, x5 is M, THEN y ¼ 0:268;

9. IF x4 is M, x5 is VS, x6 is M, x9 is L, THEN y ¼ 0:849;

10. IF x2 is S, x5 is VS, x6 is S, x10 is L, THEN y ¼ 1:324;

11. IF x2 is L, x5 is VL, x6 is L, x10 is L, THEN y ¼ 4:428;

12. IF x3 is S, x4 is M, x5 is S, x10 is L, THEN y ¼ 1:340;

13. IF x5 is VS, x6 is M, x8 is NM, x10 is L, THEN y ¼ 2:720;

14. IF x1 is L, x2 is L, x5 is VL, x6 is M, THEN y ¼ 3:893;

15. IF x1 is VS, x2 is S, x8 is NS, x9 is VL, THEN y ¼ 0:770;

16. IF x2 is M, x5 is VS, x9 is VL, THEN y ¼ 0:546;

17. IF x4 is M, x5 is VL, x10 is L, THEN y ¼ 2:102;

18. IF x1 is VS, x5 is VS, x8 is NM, THEN y ¼ 0:414;

19. IF x2 is L, x3 is L, x10 is L, THEN y ¼ 5:114;

20. IF x3 is M, x5 is L, x8 is NS, THEN y ¼ 4:265;

21. IF x7 is L, x9 is L, THEN y ¼ 2:292;
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22. IF x5 is L, x6 is S, THEN y ¼ 3:758;

23. IF x7 is M, x11 is L, THEN y ¼ 2:531;

24. IF x6 is M, x9 is VS, THEN y ¼ 3:867;

25. IF x9 is VL, x11 is M, THEN y ¼ 2:231;

26. IF x9 is M, THEN y ¼ 2:788;

27. IF x11 is S, THEN y ¼ 2:411.

5. Conclusions

The relationships between RBF networks and interpretable fuzzy systems have been

discussed. A definition for an interpretable fuzzy system has also been suggested.

Conditions for converting RBF networks to fuzzy systems have been proposed. In

order to extract interpretable fuzzy rules from an RBF network, an adaptive weight

sharing algorithm has been introduced. We have shown that an RBF network and a

fuzzy system are not fully equivlent in terms of their semantic meanings and that the

extraction of interpretable fuzzy rules from RBF networks is both important and

feasible for gaining a deeper insight into the logical structure of the system to be

approximated. Simulation studies have been carried out on two test problems and

one high-dimensional system to demonstrate the proposed method.
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