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Abstract - The paper addresses extraction of linguistic 
fuzzy rules f.om data, paying specifc attention to such 
properties of the resulting fuzzy model as interpretability 
and generalization abili5. A modeling technique, 
combining some previously known heuristic modeling 
approaches, is developed Experiments of controller 
identification based on the truck backer-upper application 
demonstrate that the proposed technique is able ta capture 
the relevant information even f the data sets used for  
model extraction are insuficient and/or contain noise. 
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1 Introduction 
Many applications of fuzzy logic use it as the 

underlying logic system for expert systems consisting of a 
collection of IF-THEN rules, to reason about data. Fuvy 
logic systems are able to capture the inexact and 
approximate nature of buman knowledge and provide a 
man-machine interface to make accumulated human 
experience available for the applications in different fields 
of automated decision-making, e.g. in control. Note that in 
this case the interface translates empirical human 
knowledge into exact numerical relationship between 
observed input-output variables. This poses a question - 
could fuzzy systems be used for the opposite task, i.e. for 
extracting interpretable lingnistic information from raw 
identification data? Extracted fuzzy model can reveal 
causal relationships between system variables and this 
information that can be very useful in system analysis and 
controller design (e.g. by linguistic inversion techniques 
[I]). Data-driven fuzzy modeling today, however, is 
primarily a black-box technique; further emphasized by the 
fact that fuzzy system structure commonly used belongs to 
the class of 1" order Takagi-Sugeno systems [Z], with 
admittedly poor interpretation values. Even if the initial 
model is consistent with existing buman knowledge about 
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the modeled process, it generally loses any linguistic 
integrity it bad during the subsequent optimization. 

One of the obvious reasons this situation can be 
contributed to is that the modeling techniques applied 
generally ignore the semantic aspect of fuzzy system. The 
resulting fuzzy models are non-transparent to 
interpretation, i.e. interpretation of extracted fuzzy rules 
can lead to erroneous conclusions. This problem can be 
solved by applying transparent fuzzy modeling techniques 
[l] that maintain transparency of the model throughout tbe 
training process thus ensuring that combined meaning of 
fuzzy rules and fuzzy membership functions (MFs) of the 
fmal model is consistent with the observed numerical 
behavior of the model. 

Transparency, however, is the measure of model 
internal consistency and does not give any guarantee that 
the model is consistent with training data (in this context, 
external consistency). Obviously, the primary measure of 
the latter is the approximation error but, in particular, 
difficulties arise when fuzzy model is identified from 
scarce (and possibly noisy) data where the algorithm has to 
generalize on the basis of existing samples. Note that tbis 
situation is quite common because it is usually difficult to 
get good coverage of the input space by training data as the 
number of inputs increases and for the same reason it may 
be difficult to obtain adequate validation data sets. 

The generalization ability of the model depends on the 
distribution of training data and on how the modeling 
algorithm uses the parameters of the model. Fuzzy 
modeling methods (e.g. neural network inspired leaming 
algorithms [3]) generally rely on global leaming techniques 
driven by numerical approximation error and tend to obtain 
the missing rules by drawing conclusions through the 
extrapolation of existing data samples often resulting in 
fuzzy rules that are unrealistic or simply untrue for the 
given application, interpretation of which would lead to 
invalid conclusions. For example, least squares estimation 
[4], commonly used for consequent parameter 
identification, has such properties. 
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This paper investigates the properties of alternative 
algorithms ([S, 61) and ends up with the unified method for 
antecedent and consequent MF identification from data 
with subsequent fuzzy model refmement technique to 
merge compatible membership functions and remove R 

Moreover, if Vr,  s, = t, where { is arbitrary positive 
constant and taking into Consideration (4) the expression 
(2) further simplifies 

redundant rules. The approach is tested on the simplified 
truck backer-upper application [ 7 ] ,  where our goal is to 

developed method. t IC; ICY’ 

Y =C+, (5) 
,=I 

replicate the existing controller from control data using the 

... ... 2 System definition 
Throughout the paper we consider linguistic fuzzy 

systems with the following rule format c 
X - b‘*‘ b: , - ,  (I. -p  

I -  c 

lFxl isA,,AND ... ANIx,isA,THENyisB,, (1) 

where A ,  and B, denote the linguistic labels (such as 
“small”, “hot”, etc.) of input variables xi and output 

Fig. 1. Input partition style, employed in current paper. 

variable y ,  respectively (i = 1 ... N, r = 1, ..R). 3 Heuro-fuzzy function approximation 
It has been shown [ S I  that with inference operators such 

as product implication and sum aggregation, it is sufficient 
to consider triangular symmetric output MFs (which ensure 
output transparency condition by default [l]) that results in 
a computationally inexpensive inference algorithm that 
gives numerical relationship between the system (1) 
variables 

In function approximation the goal is usually to 
modeling error, tyPiCalY a root mean squared 

error (WsE) 

E =  JR> (6)  

(2) where y(k) denotes the k’ output reading of the model and 
y”(k) is the respective reference output. 

where b, and s, are the center and support of the output MF 
B, associated with the r6 rule and 7, is the activation degree 
of the same rule, given by 

(3)  . .  
i i l  

where pi, denotes the MF of the i’ input variable 
(representing A , )  associated with the 

In order to satisfy input transparency conditions [ I ]  we 
require triangular input MFs (given by parameters 
a;, b l , c ; , s  = 1 ,___,Si, see Fig. 1) to form a partition (4) - 

i.e. a; = br’-l, cf = b,?’ , except for the MFs at the extremes 

of the domain where af = b: , c? = b? . 

rule. 

R 

Note that with (4), ’dr ( r, = 1). 

(4) 

Heuristic approximation schemes, however, generally 
based on some simple principle, usually do not address the 
minimization of (6) directly. Consequently, the obtained 
Rh4SE value is usually higher in comparison with methods 
(e.g. gradient descent [ 3 ] )  with built-in minimization of (6) .  
Nevertheless, heuristic algorithms may have other 
attractive properties such as low computational cost, 
improved model generalization properties, etc. 

It is observed in [9] that good learning schemes should 
he able to place optimal lone rules so that they cover the 
extremes or humps of the approximand (and then till in 
between with extra rule patches if the rule budget allows). 
Identification of these crucial points is not a trivial task hut 
the method proposed by Nakoula et al. [5] does a rough job 
by placing the rules iteratively at the locations responsible 
for local error maxima. Model is initialized with 2, rules, 
i.e. for each input variable there are two MFs placed at the 
extremes of its domain ( x y ,  x,’”“). Rule output parameters 
b, for these rules are equal to the output readings y(k)  that 
correspond to the samples that provide max(r@)) for the 
given rules. 

At each iteration the absolute value of modeling error 
is computed over the training data set and the sample 
[XI@), . . ., x8(k), . . ., xN(k), y(k)] responsible for max(4k)) is 
selected (we denote it by [xl(r), ._., xQ), ..., xdr ) ,  ~ (01) .  
Then one MF is added to each input variable x,, centered at 
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x@) and the MFs in its immediate neighborhood are 
updated to preserve (4) (see Fig. 2). Note that the number 

of introduced rules at each iteration is n(Si + 1 ) - n  Si , 

where Sj is the number of MFs per i~ input variable at the 
previous iteration and b, must be specified for all inserted 
rules (unless r, = 0, in which case we cannot add the rule). 

N N 

i=l k l  

- # d$) ...... d!: 
... dii) . . . . . . . . .  

dg; . . . . . . . . .  d$, 

. . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  

- 

Fig. 2. First few iterations ofNakoula’s algorithm 

(10) 

x 

Fig. Final approximation result with 8 fuzzy n 
numbers on M k s  indicate the order in what they were 

generated. 

As the fmal result in Fig. 3. demonstrates, what we 
have is a very simple yet clever method that can produce a 
reasonable approximation just in a few iterations. Two 
disadvantages of the method, however, can be pointed out. 
First, it may fail if training data set contains noise because, 
by definition, it gets booked on outliers if they are present 
in identification data. This can result in a seriously biased 
model. The solve this problem we replace the original 
consequent parameter identification routine with the 
method of No& et al. [6]  

where a is the parameter that influences model accuracy in 
terms of RMSE (it is reported in [6]  that a = 10 provides 

best results in ideal environment and that it should be 
smaller if data is bad). Note also that if a = 1, (7) is the 
local least squares method [lo] and if a is very large, (7) 
performs the original approach of Nakoula. The basic 
important characteristic of Nozaki’s method is that 
consequent parameters for a given rule are computed as the 
weighted average of relevant (relevancy is expressed by 
rule activation degree r, in (7)) output samples that gives 
the algorithm interpolating rather than extrapolating 
character. 

P 

x 

Fig. 4. Overdetermined fuzzy partition 

The second problem is that resulting input MFs of the 
extracted model can be very barely distinguishable from or 
too close to each other (see certain regions in Fig 4). Note 
that this primarily happens in multidimensional function 
approximation. On one hand, distinguishability is 
commonly listed as one of the requirements for 
interpretability, on the other band, merging of highly 
similar MFs would reduce complexity of the model. 

Fuzion algorithm proposed in [ 111 that can be used for 
that purpose measures the distance 
( d ,  = b,’” - b,’ , s = 1, ___,Si - 1 ) between consecutive MF 
centers and compares those values with the pre-specified 
resolution limit dmi,. All MFs corresponding to detected 
sequences s = a, , , , , b satisfying d, < &,, will be replaced 
by a MF centered at b ,  

The disadvantage of FuZion is that it merges detected 
sequences even if the distance between the MFs at the 
extremes of the sequence is much greater than d,, which 
may result in considerable loss of information. The 
technique that we introduce here (that may be termed as 
FuZion 11) tries to avoid it. First, we compute the distance 
matrix Di (10) with elements di:’ for each input variable. 

d::) = lb; -bi 1,s = 1 ..... S j , t  = 1 ,...,Si (9) 

D; = 
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Note that the elements in the main diagonal of 0, are 
equal to zero ( 16: -b: I = 0,  i f s  = t) and elements helow the 

main diagonal are the same that the respective elements 
above the main diagonal ( Ib: -b: I = Ib: - b: I ). 

Each element of the matrix gives the distance between 
the centers of the extrema1 MFs of the sequence s, . . ., f. 

The sequence can be merged only if dj:' < d-. The 
merging procedure starts from the right upper element 
(distance between bi and 6:' ). Generally, if the merge for 

selected sequence represented by dj:' is accepted then the 
whole sequence is replaced by a MF centered at 

bo,= P.S/I.S (11) 

where P is the row vector containing the centers bf of the 
MFs to be merged, S is the corresponding column vector 
containing respective supports (b? - b8?Fl) and 1 is the 
unitary row vector consisting of the same number of 
elements as P and S. For the elements in the first row, 
however, bnew = bj and for the elements in the last column 

hew = b: because two MFs must be kept at the extremes 
of the domain of the given input for numerical reasons. 
After the merge, Di must be re-evaluated (it shrinks as the 
number of MFs is reduced) and the process restarts from 
the upper right element again. If there is nothing to merge 
in the given diagonal we simply move to the next one. In 
case of several merge candidates in the same diagonal the 
sequence with the corresponding minimum d,, will be 
chosen. The procedure concludes when we reach the main 
diagonal. 

Fig. 5 shows how FuZion I and Fuzion I1 are able to 
handle the overdetermined partition from Fig. 4 (d- is 5% 
of the domain). It can be seen that FuZion I1 is able to 
avoid a loss of information in comparison with FuZion I. 

variables x, y > 0 and @ = [-go", 270"], where the latter is 
the angle between truck's onward direction and the x-axis 
(Fig. 6). The width and length of the car are 2 and 4 
meters, respectively. The ultimate goal of the controller is 
to deliver the car to the loading dock positioned at (x,, y,, 
0,) = (0, 0,90") from any given point in the backing field. 

The control system developed for this problem in [7], 
consists of two units. The main component of the system is 
the trajectory mapping unit (TMU) that specifies the 
optimal car angle (Or) for the given point in input space 
determined by car current coordinates x and y .  
Computation of the actual steering angle Bthat would lead 
to the desired car orientation is carried out by a PD control 
loop (Fig. 7). Optimized TMU consists of 15 fuzzy rules 
(Fig. 8). Although the input range of the TMU is [-IO, 
IO]x[O, 251, the limiting fbnctions on input variables (e.g. 
if x > 10 then x = IO) can be used to ensure flawless 
performance even if the original value of the input variable 
is beyond the scope of the TMU. Simulations in [7] show 
that the controller performs on the testing set of ten car's 
initial positions (also used here) with 90% reliability. 

270" 

t 

Fig. 6. Car and main variables 

In this paper we attempt to replicate the TMU from data 
measurements by applying the method developed in this 
paper (HF) alongside with M I S  [3] and variation of the 
heuro-fuzzy method that uses least squares estimator [2] 
for consequent parameter identification instead of Nozaki's 
method (HFILSE). Note that the general model 
configuration (numher of rules, type of system, MFs) is the 
same for all algorithms for adequate comparison (the 
number is self determined by Fuzion I1 component of HF 
method that is run for 5 iterations). Data distribution and 
noise level, however, vary, to simulate the conditions that 
we are likely to encounter in real life. 

Fig. 5. Refined input partitions with FuZion I (above) and 
Fuzion I1 (below). 

4 Application Example 
As an application example for the combined method of 

[SI, [6] and FuZion I1 we consider truck backer-upper 
control. The car position is determined by three state 

I I  x 

TMU y 
x 

Fig. 7. Original control system from [7]. 
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First (complete) data set is obtained from TMU 
evaluation with input samples that are uniformly 
distributed over the input space (interval between the 
samples for x and y is 1 m). The resulting data set contains 
546 samples. Second (scarce) data set that consists of 406 
samples is measured from 5 backings (Fig. 9, left). Third 
data set is essentially a corrupted fmt data set (noise level 
is up to 20% of the original signal, with normal 
distribution). Finally, fourth data set is based on the second 
one, but only each eight element of it is picked out bringing 
the number of samples down to 51, data in this set is 
similarly corrupted (30% noise). 

Table 1 contains obtained modeling errors (RMSE) for 
all datasets. Note that ANFIS models are created with 200 
training steps and that a = 10 for noise-free and 1 for noisy 
data for HF algorithm. For noisy data, the validation error 
for corresponding noise-free data sets is provided in 
parentheses. Unsurprisingly, it can be seen that both 
ANFIS and HFLSE consistently outperform our heuro- 
f i m y  method in terms of modeliig error (except for the 
evaluation error for 4'h dataset). 

- 
M I S  

HF 

m15 

mn 
25 

20 

l5 Y 

mf2 10 

5 

0 
-10 -5 0 5 10 

(25) (34) (30) (23) 
0.0445 0.8579 24.7779 17.7282 

4.5174 6.2777 26.9767 25.1311 
(9.2115) (73.2060) 

x 

Fig. 8. TMU rulebase 

ANFIS 2.9606 
HF 0.3849 

x x 

13.3862 - 60% 
1.1054 95.1 % 20% 

E, =Ix, -x(T,)1+0.02671@, -@(T,)l, (12) 

where is the duration of the backing. Backing is 
considered successful if E~ < 0.4 [7]. 

Table 1. Modeling errors. Number of fuzzy rules is given 
in parentheses in the first row. 

Aleorithm I Data set 1 I Data set 2 I Data set 3 I Data set 4 

(14.3393) (19.0036) 
HFLSE (11907 11.2851 (25.1864 (9.2010) (21.2912 (45.2276) 

Table 2. Control results 

HF 10.1264 I 0.6300 I 104.3% I 20% 

ANFIS 10.6595 10.9988 I 96.5% 1 100% 
HF 0.2821 0.8099 92.5 % 20% 
HFLSE I 0.8332 I 1.0083 196.1 % 1 80% 

With dataset 1 there are no apparent problems; the 
identified controllers perform as the original TMU @IF is 
somewhat weaker and produces one slight extra failure 
with = 0.4116). We consider the obtained trajectories in 
these experiments to be close to the ideal and averaged 
trajectory lengths q; =(q,"+r7$nsE +qk"')I3 (k = 1, 
..., 10) are the basis for the secondary quality measure (13) 
for all experiments. 

Problems start with the second group of controllers 
where the ANFIS controller clearly fails to do the job. Note 
that on three occassions (out of ten) the car simply gets 
lost. The other controllers produce much stabler results 

Fig. 9 .5  backings that provide data for the scarce data set 
(left). Corrupted scarce data set (right) 

except that HFLSE temporarily loses track on two 
occassions (although the final error is very small) that is 
reflected by a higher value of avg( q). Control results are given in Table 2, where control error 

is evaluated by 

2270 



With the third data set both ANFIS and HFLSE 
controllers consistently fail in the fmal stage. Closer 
inspection (linguistic validation) of fuzzy rules that 
contribute to the final position of the car sheds some light 
to this problem. As Fig. 11 exposes, rules of HFLSE 
controller have been disturbed by the noise in training data 
more heavily than those of the HF controller. 

Controllers identified on the basis of fourth dataset are 
technically nothing but failures (average errors for ANFIS, 
HF and HFLSE are 7.0100, 2.6677 and 6.3043, 
respectively). Still, some interesting moments can be 
pointed out. Not only is HF the best controller in this 
comparison, hut it is able to produce one successll result 
(the only one in this series) and keeps the car under 
reasonable control (Both ANFIS and HFLSE mislead its 
car in one experiment). The controller cannot be 
remarkably better than the corresponding data set (see Figs. 
9, left and 10 for comparison). Therefore, it can be said, the 
proposed modeling scheme can be very useful when we 
deal with noise and underdetermined data sets, which come 
up frequently in many real life applications. 

Fig. 10. Rulehase of the HF controller based on 4" dataset 

Fig. 11. Comparison of rules responsible for car fmal 
orientation. HF (left) and HFLSE (right). 

5 Conclusions 
In this paper we have developed a method for fuzzy 

approximation, based on combining different heuro-fuzzy 
approaches. In the light of the results of current paper, it 
can be stated that heuro-fuzzy modeling can be viable 
altemative to immensely popular neuro-fuzzy methods, in 
particular when extraction of interpretable linguistic fuzzy 

models from data is required in real conditions because of 
its robustness, working speed, conservative generalization 
properties and despite somewhat less outstanding results in 
terms of direct approximation error. 
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