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Abstract. The process of automatically extracting novel, useful and ultimately comprehensible
information from large databases, known as data mining, has become of great importance due to
the ever-increasing amounts of data collected by large organizations. In particular, the empha-
sis is devoted to heuristic search methods able to discover patterns that are hard or impossible
to detect using standard query mechanisms and classical statistical techniques. In this paper an
evolutionary system capable of extracting explicit classification rules is presented. Special in-
terest is dedicated to find easily interpretable rules that may be used to make crucial decisions.
A comparison with the findings achieved by other methods on a real problem, the breast cancer
diagnosis, is performed.
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1. Introduction

During the last decade, we have seen an explosive growth in our capabilities to
collect data, thanks to the availability of cheap and effective storage devices. The
advances in data collection have generated an urgent need for techniques that can
intelligently and automatically analyse and mine knowledge from huge amounts of
data. The progress in knowledge discovery brings together the latest research in
statistics, databases, machine learning and artificial intelligence that are part of the
exciting and rapidly growing field of data mining (Fayyad et al. 1996).

The term data mining is normally used to refer to the process of searching through
a large volume of data to discover interesting and useful information. The core of this
process is the application of machine learning-based algorithms to databases. There
are two basic ways of performing data mining and data analysis: the supervised and
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the unsupervised learning. Supervised learning exploits known cases that show or
imply well-defined patterns to find new patterns by means of which generalizations
are formed. In unsupervised learning, data patterns are found starting from some
characterization of the regularities in a set of data.

Classification is perhaps the most commonly applied data mining technique. It
employs a set of preclassified examples to develop a model, which generates a set
of grouping rules by means of which a new object may be categorized. There are
different classification techniques used to extract relevant relationships in the data,
ranging from symbolic learning implementation (Quinlan 1986) to neural networks
(Rumelhart et al. 1986). Though these classification tools are algorithmically strong,
they require significant expertise to work effectively and do not provide intelligible
rules.

The classification problem becomes very hard when the number of possible dif-
ferent combinations of parameters is so high that techniques based on exhaustive
searches of the parameter space rapidly become computationally infeasible. Packard
has shown in Breeden and Packard (1992) how learning and optimization algo-
rithms can be used to produce optimal modeling of experimental data in the ab-
sence of previous theoretical explanations. Moreover, the self-adaptability of Evo-
lutionary Algorithms is extremely appealing for information-retrieval applications.
Thus, it is natural to devote attention to a heuristic approach to find a good-enough
solution to the classification problem. In this paper, the objective is to exploit the
capability of Evolutionary Algorithms to search easily comprehensible classification
rules.

The paper is organized as follows: in Sect. 2, a brief review of the state of
the art of classification methods is illustrated. In Sect. 3, an automatic classification
system based on an evolutionary algorithm is presented together with implementation
details. Section 4 describes the real problem faced, the breast cancer diagnosis, while
Sect. 5 contains the performance of our system compared with that achieved by other
methods. In the last section, final remarks and future work are outlined.

2. State of the art

Information mining and knowledge discovery from large databases have been rec-
ognized as a key research topic in database systems and machine learning. Since
the late 1980s, knowledge-based techniques have been used extensively by infor-
mation science researchers. These techniques have attempted to capture searchers’
and information specialists’ domain knowledge and classification scheme knowledge,
effective search strategies and query refinement heuristics in document retrieval sys-
tems design (Chen and Dhar 1991). Despite their usefulness, systems of this type are
considered performance systems – they only perform what they were programmed
to do (i.e., they are without learning ability). Significant efforts are often required to
acquire knowledge from domain experts and to maintain and update the knowledge
base.

A newer paradigm, generally considered to be the machine learning approach, has
attracted attention of researchers in artificial intelligence, computer science, and other
functional disciplines such as engineering, medicine and business (Michalski 1983;
Carbonell et al. 1993; Weiss and Kulikowski 1991). In contrast with performance
systems, which acquire knowledge from human experts, machine learning systems
acquire knowledge automatically from examples, i.e., from source data. The most
frequently used techniques include symbolic, inductive learning algorithms such as
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ID3 (Quinlan 1986), which uses a fixed number of generalization values, multiple-
layered feedforward neural networks such as Backpropagation networks (Rumelhart
et al. 1986) that can, in principle, produce many more interpolation values not present
in the training cases, and Genetic Algorithms (GAs) (Holland 1975; Goldberg 1989).
Many information science researchers have started to experiment with these evo-
lutionary techniques as well (Gordon 1988; Belew 1989; Chen and Lynch 1992;
Chen et al. 1993). A classification of the data mining techniques and a compara-
tive study of such techniques can be found in (Holsheimer and Siebes 1994; Chen
et al. 1996).

Data classification represents an important theme in data mining (Fayyad et al.
1996) and it has been studied in statistics, machine learning, neural networks and ex-
pert systems (Weiss and Kulikowski 1991). Several classification methods have been
proposed. Those based on decision trees (Quinlan 1986, 1993) operate performing
a successive partitioning of cases until all subsets belong to a single class. This oper-
ating way is impracticable except for trivial data sets. Other data classification tech-
niques include statistical and rough sets approaches (Fayyad et al. 1996; Ziarko 1994)
and neural networks (Lu et al. 1995; Hung et al. 2001). Most data mining related
GAs proposed in the literature address the task of rule extraction in propositional
and first-order logics (Giordana et al. 1994; Augier et al. 1995; Neri and Gior-
dana 1995; De La Iglesia et al. 1996; Anglano et al. 1997; Noda et al. 1999).
A further interesting GA–based method for choosing an appropriate set of fuzzy
if–then rules for classification problems can be found in Ishibuchi et al. (1995),
while in Salim and Yao (2002), an innovative evolutionary algorithm to knowledge
discovery in databases by evolving SQL queries has been presented. Hybrid clas-
sification learning systems involve a combination of artificial neural networks with
evolutionary techniques (Yao and Liu 1997) and with linear discriminant models
(Fogel et al. 1998), and an integration of rule induction and lazy learning (Lee and
Shin 1999). Furthermore, Genetic Programming (Koza 1992) frameworks for discov-
ering comprehensible classification rules have been investigated (Freitas 1997; Ngan
et al. 1998; Bojarczuk et al. 1999; Brameier and Banzhaf 2001).

3. The evolutionary approach

Our aim is the implementation of an evolutionary system able to acquire information
from databases and extract intelligible classification rules for each available class,
given the values of some attributes, called predicting attributes. Each rule is consti-
tuted by conditions on the predicting attributes. These conditions determine a class
description which can be used to construct the classification rule.

Given a number of attributes for each object and its related domain, it is easily
understandable that, for complex classification problems, the number of possible de-
scriptions is enormous. An exhaustive search by enumerating all the possible descrip-
tions is computationally impracticable. Hence, we appeal to heuristic search tech-
niques. In our case, evolutionary approaches based on variants of GAs and Breeder
Genetic Algorithms (BGAs) (Mühlenbein and Schlierkamp-Voosen 1993) have been
used.

The basic idea is to consider a population composed by individuals each repre-
senting a single candidate rule, and to gradually improve the quality of these rules
by constructing new fitter rules until either rules of sufficient quality are found or
no further improvements occur. The major steps of this evolutionary system can be
formalized as follows:
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1. Generate at random an initial population of rules representing potential solutions
to the classification problem.

2. Evaluate each rule on the basis of an appropriate fitness function.
3. Select the rules to undergo the mechanism of reproduction.
4. Apply the genetic operators, such as recombination and mutation, to generate

new rules.
5. Reinsert these offspring to create the new current population.
6. Repeat steps 2 to 5 until either correct (see Sect. 3.3) classification rules are

found or a fixed maximum number of generations has been reached.

To construct the classification model, data is partitioned into two sets: the train-
ing and the test sets. The training set contains the known objects used during the
evolution process to find one explicit classification rule able to separate an instance
of a class from instances of all other classes, while the test set is used to evaluate the
generalization ability of the rule found. It should be observed that, for a multiple-
class problem, the system needs as many rules as the number of classes, say c. Thus,
the training phase consists in running c times the system in order to find these rules,
each of which establishes the related membership class. The found rules are used to
predict the class of the examples in the test set. If for an example only one rule is
applicable, i.e., all its conditions are satisfied, the example is assigned to the class
predicted by the rule. Instead, if more or no rules are applicable, the example is
classified as indeterminate by our system.

3.1. Encoding

A single rule is defined by a genetic encoding, in which each genotype codes for the
different attributes. The phenotype is the classification rule itself. This rule is con-
stituted by a number of conditional clauses, in which conditions on some attributes
are set, and by a predictive clause representing the class. A class together with its
description forms a classification rule ‘if <description> then <class>’. The condi-
tional part of the rule is formed by the conjunction (logical AND) of all the active
conditional clauses. This choice is a limitation to the expressive power of the rule
and it is due to the chosen encoding. Actually, this limitation could be overcome by
letting the conjunctions evolve within a set containing AND (∧), OR (∨) and NOT
(¬). However this would make the chromosome handling much more troublesome.
In fact, the use of further connectives would require the introduction of delimit-
ing symbols such as parentheses in order to ensure rule consistency. Moreover, this
would imply variable-sized chromosomes.

It is easily comprehensible that the optimal search of a classification rule includes
two tightly coupled subproblems: the search of the more discriminating attributes
and the search of the variation interval within the domain of these attributes. Then
it is necessary to provide an encoding able to represent a rule with conditions on
any number of available attributes and to specify which types of conditions we can
establish on a generic attribute Ai . In our case, the domains can vary in an integer
or a real range according to the chosen database. We have considered four types of
possible conditions:

Ai ∈ [ki1, ki2] (COND1)
Ai ≤ ki1 (COND2)
Ai ≥ ki2 (COND3)
(Ai ≤ ki1) ∨ (Ai ≥ ki2) (COND4)
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Table 1. An example of the interval and the condition vectors

Interval vector

4.2 8.7 2.1 0.8 12 89 67 6.5 7.5 61.7

Condition vector

1 3 0 2 4 2

where ki1 and ki2 are numerical constants related to attribute Ai . This means that we
have made reference to 0 order logic. Also this is a limitation due to the evolutionary
algorithm and to the chosen encoding.

The encoding must consider the absence or the presence of a condition on an
attribute and, in the latter case, the condition type is to be specified. The geno-
type of each individual in the population is represented by using two vectors. The
first vector, called interval vector, is constituted by a number of loci which is twice
the number of attributes. They contain in sequence for each attribute Ai pairs of
numerical values vi1 and vi2 representing the current extremes of the variation in-
terval. The second vector, named condition vector, has a number of loci equal to
the number of attributes. Each allele of this vector can take on five values (0 ÷ 4),
indicating five possible variants on the corresponding attribute condition. Namely,
with reference to the aforementioned condition types, if the value in the ith locus
is 0, there is absence of the condition for the ith attribute Ai ; if it is 1, it means that
there is a condition of type (COND1) and so on. The values ki1 and ki2 indicated in
the conditions are tied to the values vi1 and vi2 of the first vector by means of the
following relationships: ki1 = min{vi1, vi2} and ki2 = max{vi1, vi2}. Finally, in the
last position, the condition vector contains a further element representing the class.
Supposing there are only five attributes, indicated with A1, . . . , A5, and the interval
and the condition vectors are as in Table 1, the classification rule can be interpreted
as follows:

if (A1 ∈ [4.2, 8.7]) ∧ (A2 ≥ 2.1) ∧ (A4 ≤ 6.5) ∧ ((A5 ≤ 7.5) ∨ (A5 ≥ 61.7))

then C2

where C2 is the class labelled with the value 2.

3.2. Genetic operators

As concerns the genetic operators, apart from the crossover and mutation extended
to other representation languages with m-ary rather than binary alphabets, recom-
bination and mutation operators able to directly deal with real variables have been
taken into account.

These last operators are those typical of BGAs (Mühlenbein and Schlierkamp-
Voosen 1993). In particular, as far as the recombination operator is concerned, the
Discrete Recombination (DR), the Extended Intermediate Recombination (EIR) and
the Extended Line Recombination (ELR) have been investigated. For the mutation
operator, the Discrete Mutation (DM) and the Continuous Mutation (CM) have been
considered. A detailed description of how these operators work can be found in
Mühlenbein and Schlierkamp-Voosen (1993, 1994).
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3.3. Fitness function

We are looking for classification rules and different criteria can be used to evaluate
the fitness of a rule. However, in an evolutionary search, this fitness must encapsu-
late as much as possible the desired features. Each individual in the population is
a possible class description, that is to say, a set of conditions on attributes of the
objects to classify. Denoting with D the set of all possible descriptions for a given
class, to each description d in D corresponds a subset of the training set S, de-
noted with σD(S), i.e., the set of points where the conditions of a rule are satis-
fied, and a size of the class C representing the points where the prediction of the
rule is true. Intuitively, a description is correct if it covers all positive and none
of the negative examples. During the iterative process, the search system will en-
counter many incorrect descriptions, yet useful as components for new, and hope-
fully better, descriptions. The concept of correctness needs to be extended to be
able to select the most promising descriptions out of a set of incorrect ones. Thus,
for each description d for a class C, we recall the definition of the accuracy φ
as:

φ � σD(S) ∩ C

σD(S)
(1)

and coverage γ as:

γ � σD(S) ∩ C

C
(2)

The accuracy of a description represents the probability that an object covered
by the description belongs to the class while the coverage is the probability that an
object belonging to class C is covered by the description D. Moreover, on the basis
of these values, the following kinds of rules can be distinguished:

– Complete rules: the rule is complete if γ is equal to 1, that means any object
belonging to the class is covered by the description for this class, i.e., C ⊆ σD(S).

– Consistent rules: the rule is consistent if φ is equal to 1, that is, any object
covered by the description belongs to the class, i.e., C ⊇ σD(S).

– Correct rules: the rule is correct if both the classification accuracy and the cov-
erage are equal to 1, i.e., if σD(S) = C.

We can use the correctness-criterion as a fitness function fc. A value 1 is as-
signed to fc if the description is correct, while its value for any incorrect rule is
smaller than 1. Piatesky-Shapiro (1991) proposes principles for the construction of fc
which assigns a numerical value indicating the correctness of any description d in
the description space D. The correctness depends on the size of σD(S), covered
by the description, the size of the class C and the size of their overlapping region
σD(S) ∩ C.

The simplest function to evaluate the fitness of a rule is:

fc = |σD(S) ∩ C| − |σD(S)||C|
|S| (3)

This function can be intuitively understood as the difference between the actual
number of examples for which the rule classifies properly and the expected number
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if C were independent of D. It assumes its maximum value when the examples
belonging to C are all and only those that satisfy the condition of D, that is to say,
when σD(S) = C. In this case:

fcmax = |C| − |C||C|
|S| (4)

Another possible fitness function is that proposed by Radcliffe and Surry (1994).
It takes into account a correction term that measures how statistically meaningful

a rule is, as suggested in Holsheimer and Siebes (1994). The model proposed is:

f ∗
c = (log(1 + |σD(S) ∩ C|) + log(1 + |σD′(S) ∩ C′|)) ·

(
φ − |σD′(S) ∩ C|

|σD′(S)|
)

(5)

where σD
′(S) is the set of the points in the database in which the conditions are

not satisfied while C′ is the set of the points in which the prediction of the rule is
false. Equation (5) assumes its maximum value when φ = 1 and σD′ ∩ C = 0:

f ∗
cmax

= log(1 + |σD(S) ∩ C|) + log(1 + |σD′(S) ∩ C′|) (6)

By looking at the fitness functions reported both in (3) and in (5), it is clear
that they increase with coverage and accuracy. Consequently, this also guarantees an
improvement in terms of completeness and consistency.

Apart from these statistical considerations, the quality function could also take
some other factors into account. Keeping in mind that most data mining systems rely
on Ockham’s razor (Derkse 1993) (“the simpler a description, the more likely it is
that it describes some really existing relationships in the database”), we have decided
to add further terms to yield a more discriminating fitness function. In particular, we
have considered two quantities that take into account in some way the simplicity and
the compactness of the description.

The concept of simplicity is incorporated in the function f1 and it is related to
the number of conditions. Namely:

f1 = 1 − n

nmax
(7)

where n is the number of the conditions active in the current description and nmax
is the maximum number of conditions that, in our encoding, corresponds to the
number of database attributes. Its goal is to prefer the rules with a lower number of
conditions.

The compactness is considered in the function f2. For each condition active in
the current rule, the ratio between the range of the corresponding attribute and the
range of the attribute domain is evaluated. The function f2 contains the sum of
these n ratios divided by their number. This factor varies in [0.0, 1.0] and gives an
indication on the width of the intervals for the conditions present in the rule. The
function f2 can be formalized as follows:

f2 = 1 − 1

n

n∑
i=1

δi

∆i
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where ∆i = (maxi − mini) is the range of the domain of the ith attribute and δi is
given by:

δi =




ki2 − ki1 if the condition is of type (COND1)

ki1 − mini if the condition is of type (COND2)

maxi − ki2 if the condition is of type (COND3)

∆i − (ki2 − ki1) if the condition is of type (COND4)

where ki1 and ki2 are the same as in Sect. 3.1. Its aim is to favour the rules with
more restrictive conditions.

The total fitness function ftot considered during the training phase is then the
sum of three terms:

ftot = 1

k
( fstat + p1 f1 + p2 f2) (8)

with

fstat =



fv
fvmax

if fv > 0

0 if fv ≤ 0

where fv corresponds to (3) or (5) for the linear and the logarithmic fitness functions,
respectively, fvmax represents the best value that fv can assume in the ideal case,
while k = 1

1+p1+p2
represents a normalization factor. The weights p1 and p2 must

assume values much lower than 1 which is the assigned weight for fstat . This is
in order not to affect too much the evaluation of the description which must take
into account the correctness above all. The function fstat is normalized in [0.0, 1.0].
With these choices, the problem becomes a maximisation task. It should be noted
that the chosen evaluation mechanism does not guarantee to find the single best rule
describing the class under consideration. This is why it is based on some subjective
criteria, and even if a perfect evaluation mechanism could be devised, a selection of
rules could be necessary for representing different instances of patterns within the
database.

4. The problem

In order to exploit the evolutionary approach ability to face a classification task, an
evolutionary system has been implemented and applied to one of the most important
real problems in the medical domain, i.e., the breast cancer problem. The purpose
is to find intelligible rules to classify a tumour as either benign or malignant.

Breast cancer data sets were originally obtained from W.H. Wolberg at the Uni-
versity of Wisconsin Hospitals, Madison. We have considered two data sets. The
first contains 10 integer-valued attributes, of which the first is the diagnosis class,
while the other nine attributes are related to cell descriptions gathered by microscopic
examination (Wolberg and Mangasarian 1990). All these attributes have values in the
set {1, 2, . . . , 10}. The data set is constituted by 699 examples, of which 458 are
benign examples and 241 are malignant examples. In the following, this database
will be denoted as CANCER1a. It should be noted that this database contains 16
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missing attribute values. If we omit the examples with missing attributes, the total
number of instances becomes 683, of which 444 are benign and 239 are malignant.
This database without missing values will be called CANCER1b.

The second data set contains 569 instances, of which 357 are diagnosed as benign
and the remaining 212 are known to be malignant. These data have been obtained by
means of an image analysis system developed at the University of Wisconsin. First,
a fine-needle aspirate (FNA) (Mangasarian et al. 1995) is taken from a lump in a pa-
tient’s breast. Then the fluid from the FNA is placed onto a glass slide to highlight
the nuclei of the cells. An area of the slide is considered to generate a digitized
image. Ten real-valued features are computed for each cell nucleus. The mean, stan-
dard error and worst or largest (mean of the three largest values) of these features
were computed for each image, resulting in 30 features in addition to the diagnosis
class. This database will be called CANCER2.

Note that we consider a two-class problem. Nonetheless, this is not restrictive
because each multiple-class classification problem can be reduced to a two-class
problem. In fact, in the case of multiple classes, during the search of the rules pre-
dicting a given class, all the other classes can be conceptually thought of as merged
into a larger class containing the examples that do not belong to the class predicted.
The breast cancer problem is intended as a test to evaluate the effectiveness of the
approach proposed.

4.1. Related work

The breast cancer problem has been faced by means of different techniques. As
concerns the CANCER1 data set, initially the classification was performed by linear
programming methods (Mangasarian et al. 1990; Bennett and Mangasarian 1992).
Prechelt (1994) showed the results obtained with manually constructed artificial neu-
ral networks and Setiono and Hui (1995) used a new neural algorithm called FNNCA.
A comparison with these results is effected by Yao and Liu (1997) who present a new
evolutionary system, i.e., EP-Net, for evolving artificial neural networks and compare
their results with those attained in Prechelt (1994); Setiono and Hui (1995). These
approaches have the disadvantage of lacking explicit rules. In Sherrah et al. (1997)
the authors proposed a system that can perform both feature selection and feature
construction, but they still do not focus on the discovery of comprehensible rules.
Taha and Ghosh, in Taha and Ghosh (1997), have exploited rule extraction tech-
niques from trained feedforward neural networks while Peña–Reyes and Sipper, in
Peña and Sipper (1999), have combined fuzzy systems and Evolutionary Algorithms
to provide comprehensible classification rules.

Linear programming techniques (Mangasarian et al. 1995; Fung and Mangasarian
1999) and machine learning methods (Hung et al. 2001; Wolberg et al. 1995) have
been applied to breast cancer diagnosis and prognosis using the real-valued CANCER2
data set.

5. Experimental results

The evolutionary system works on the training set only. At the end of the training
phase the best rules found are evaluated on the test set. The system allows attaining
two rules covering the benign and the malignant cases. To achieve these two rules,
the evolutionary algorithm is run twice. In practice, we analyse one class at a time.
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The training sets must be reasonably sized to ensure adequate population cov-
erage. Moreover, as indicated by Prechelt (1994, 1995), it is insufficient to indicate
the number of the examples in each of the partitioned sets because the results may
vary significantly for different partitions even when the number of examples in each
set is unchanged.

5.1. Genetic parameter setup

The evolutionary classification system requires that some control parameters be spec-
ified. Preliminary trials have been performed for an appropriate tuning of these pa-
rameters, which vary as a function of the problem chosen. For both the problems,
the selection mechanism and the fitness function chosen have been the same. The
tournament selection with a tournament size µ = 20% has been used. It should be
noted that the results remain similar if the parameter µ is within 15% and 25% of the
population. This selection scheme has outperformed the proportional and the trun-
cation selections. Furthermore a 1-elitism mechanism has been applied. The fitness
function chosen has been (8) where p1 and p2 have been derived empirically equal
to 0.05. Moreover, it should be pointed out that a linear normalization in [0.0, 1.0]
has been applied to all the values in the databases to avoid some attribute being
more significant than others.

The values of the other parameters depend on the problem. For the database
CANCER1, the population size is equal to 200. Because we have nine attributes plus
the class, on the basis of the fixed encoding, each chromosome is composed of 28
genes. The single-point crossover has been used for both the condition vector and
the interval vector, as we are dealing with integer values. This operator has resulted
in being more efficient with respect to the uniform crossover. In the interval vector,
the mutation operator randomly transforms with uniform probability the value of an
attribute into another value belonging to the domain of that attribute. The mutation
rate used was 0.7. For the condition vector the mutation changes the condition related
to a single attribute. Its application probability was 0.3. This last value is not restric-
tive. For example, the goodness of the results remains about the same if the mutation
probability on the condition vector varies in the range [0.2, 0.3]. The difference in
the mutation rates is due to the fact that the operator used for the condition vector
may introduce or destroy new conditions so as to introduce significant variations,
while the mutation on the interval vector changes the range of the attribute only and
thus its probability can be higher without risking the loss of basic information. The
evolution process terminates after at most 100 generations if a correct rule is not
found before.

As concerns the database CANCER2, the population size is 300, the search space
being larger than in the previous case. Because we deal with 30 attributes plus 1 for
the class, the chromosome on the basis of the chosen encoding is constituted by 91
genes.

For the integer-valued condition vector, we have used the single-point crossover
while, for the real-valued interval vector, EIR has resulted in being more efficient
than ELR and DR. On the basis of their definitions in Mühlenbein and Schlierkamp-
Voosen (1994), for EIR d = 0.3, so that the scalar parameter αi is distributed in the
range [−0.3, 1.3]. For the interval vector, DM has had worse performance than CM
(Mühlenbein and Schlierkamp-Voosen 1993). Hence, CM with rangei = 0.5, s = 8
and β ∈ [0.0, 1.0] has been considered. The mutation operator on the condition vector
and the mutation rates as well have been the same as in the previous problem. The
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finding of one correct rule or a number of at most 200 generations has been fixed
as termination criterion.

5.2. Performance measures

In order to determine the validity of our system, let us formulate some definitions.
For each class, we indicate with:

• T+ the number of true positive examples, i.e., the number of the examples cor-
rectly classified as belonging to the class

• T− the number of true negative examples, that is to say, the number of examples
correctly classified as not belonging to the class

• F+ the number of false positive examples that are the examples classified incor-
rectly as belonging to the class

• F− the false negative examples, i.e., those examples that are incorrectly classified
as not belonging to the class

Based on these definitions, in the medical domain, there are two indicators, namely
the sensitivity Se and the specificity Sp defined as follows:

Se = T+

T+ + F− Sp = T−

T− + F+

which indicate the rule’s ability to classify correctly examples as belonging or not
belonging to the predicted class, respectively.

As our system is constituted, we are concerned with two classification rules. We
will denote with I1 and I2 the indeterminate cases, which include examples satisfying
both the rules or no rule, respectively. Moreover, we indicate with CC and UC the
total number of examples correctly and incorrectly classified, respectively. Finally,
we denote with %Ac the percentage of classification accuracy, with %C and %U the
percentage of cases correctly and incorrectly classified, respectively, and at the end,
with %I the percentage of indeterminate examples. These last values are computed
by means of the following formulas:

%Ac = CC

CC + UC
100 %C = CC

NV
100

%U = UC

NV
100 %I = I1 + I2

NV
100

where NV is the number of the examples in the test set. These parameters are tied
by the formula:

NV = CC + UC + I1 + I2.

5.3. First set of experiments

Several experiments have been performed on a SUN workstation for the database
CANCER1, varying the size of the training and the test sets. Moreover, both the
linear and the logarithmic fitness functions proposed in Sect. 3.3 have been tested.
The execution of this algorithm requires about 6 minutes if a correct rule is not
found before.
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Table 2. The results of the system averaged over 10 runs

I1 I2 %Ac %C %U %I

Av 3.5 5.1 99.58 94.69 0.4 4.91
StdDev 0.71 2.81 0.29 0.97 0.28 1.21

Table 3. The results for the best malignant rule

T+ F+ F− T−

38 5 1 131

Table 4. The results obtained by the best benign rule

T+ F+ F− T−

133 0 3 39

5.3.1. Results on the CANCER1b database

Because the database contains some missing values, we have initially decided to
merely remove instances with the missing attributes, with the awareness that this
approach may lead to serious biases (Little and Rubin 1987). The available 683
instances of the database CANCER1b have been subdivided into 508 examples for
the training set and 175 for the test set. The test set remains unchanged and contains
the same 136 benign and 39 malignant examples. The results achieved over 10 runs
by using the linear fitness function (3) in (8) are reported in Table 2 in terms of
average values Av and standard deviations StdDev.

As can be observed by the reported values, the system shows an average per-
centage for accuracy equal to 99.58%, with a standard deviation equal to 0.29%.
This means that over 100 examples for which the system has been able to classify
on average more than 99 examples are correctly catalogued. Nevertheless, it is pos-
sible to note from the table that there is 4.91% of indeterminate examples. It should
be observed that, in many cases, it is better that the system does not classify rather
than performs an incorrect classification. However, the system has correctly classified
94.69% of examples, with an error classification equal to 0.4%.

The best rule found by the system for the malignant cases presents the following
conditions:

(A2 ≥ 2) ∧ (A3 ≥ 3)

This rule classifies the examples in the test set as shown in Table 3.
The best rule found for the benign cases is:

(A2 ≤ 3) ∧ (A6 ≤ 5) ∧ (A8 ≤ 3)

This rule classifies the examples in the test set as in Table 4.
In our case for the malignant rule we have Se = 0.97 and Sp = 0.96, so that

we correctly classify 97% of individuals having the disease and 96% of those truly
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Table 5. The results achieved by using the two best rules

Classification Benign Malignant

Benign 129 0
Indeterminate 6 1
Malignant 1 38

Table 6. The results of the system averaged over 10 runs

I1 I2 %Ac %C %U %I

Av 2.7 4.8 99.35 95.09 0.63 4.28
StdDev 2.06 2.57 0.52 1.4 0.5 1.62

without disease. For the benign rule, Se = 0.98 and Sp = 1, and thus this rule
correctly classifies 98% of benign and 100% of malignant cases.

The results obtained by using both the rules are reported in the global Table 5.
The system with these two rules has %Ac = 99.40, %C = 95.43, %U = 0.57 and
%I = 4.

The connection between the tables reporting the results of the application of the
two rules separately and the global table can be understood observing that the number
F+ in Table 3 increases either the number of cases satisfying both the rules or the
number of examples incorrectly classified, while the number F− in the same table
increases either the number of examples that satisfy no rule or the number of cases
incorrectly classified. The same observations are possible for Table 4.

From the analysis of the rules, it is possible to find out which attributes are more
discriminant for the diagnosis. For example, during the trials effected, it has been
observed that the attributes A2 and A3 for the malignant classification rules and A2,
A6 and A8 for the benign classification rules are almost always present. Moreover,
the conditions on these attributes are often very similar.

The fitness (8) with the logarithmic function (5) has been tested on the same
database. The results achieved over 10 executions are shown in Table 6.

The best rules found for the malignant and benign cases and the global system
behaviour as well are the same as those obtained during the previous test.

As can be observed by the reported values, the system shows an accuracy per-
centage on average equal to 99.35%, with a standard deviation equal to 0.52%.
Nevertheless, it is possible to note by comparing Table 6 with Table 2 that there
is a greater percentage of correctly classified cases, a lower percentage of indetermi-
nate examples but a greater number of incorrectly classified examples. Furthermore,
the standard deviations are higher except for one parameter.

In Taha and Ghosh (1997), the authors divided randomly the available 683 in-
stances into a training set of size 341 and a test set of size 342. Three rule ex-
traction techniques from trained feedforward networks were applied. Furthermore,
a method of integrating the output decisions of both the extracted rule-based system
and the corresponding trained network is proposed. The rule evaluation is based on
performance measures, among which are the soundness (T+) and the false alarms
(F+). The dimensionality of the breast-cancer input space is reduced from 9 to 6
inputs. Different from Taha and Ghosh, we have used the complete set of attributes
without performing any kind of data preprocessing. As regards the performance mea-
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sures, our single-rule classification system is able to achieve better results in terms
of soundness but this is detrimental to the number of false alarms. In fact, in Taha
and Ghosh (1997), considering the single best rule for the malignant and the be-
nign case, we have an overall classification rate of 92.83 with 21 false alarms. By
performing randomly their same subdivision of the instances, the best overall clas-
sification rate found by our system over 10 runs is 96.35 with 33 false alarms.
However, Taha and Ghosh obtained better results than ours for their five-rule sys-
tem. In particular, their best overall classification rate is 96.63. A simple explanation
of all of our above reported results is that this multiple-rule approach is conceived
taking in mind that the classification system will be constituted by the conjunction
in OR of more rules. In this way, the aim is to control the number of true positive
cases to make the global system more reliable, but this is also detrimental to sim-
ple interpretability of the results. Our system provides two easily interpretable rules
with good performance. Moreover, it can be noted that it is difficult to try describ-
ing complex phenomena by means of single rules able to generalize over the whole
data set.

Better results are obtained by Peña–Reyes and Sipper, who present a fuzzy-
genetic system (Peña and Sipper 1999). They presented very good results for mul-
tiple-rule systems, e.g., the overall classification rate for their best system is 97.8%,
but the same authors admit that, for this system, there are 39 cases for which they
are “somewhat less confident about the output.” Their best fuzzy one-rule system
presents an overall performance of 97.07% but no information is given about the
diagnostic confidence. Besides, their threshold system is based on the knowledge of
the problem at hand, while our results have been obtained without assigning any
external value.

5.3.2. Results on the CANCER1a database

The second experiment involved all the 699 instances: the 16 missing attributes have
to be replaced. Little and Rubin (1987) describe several approaches to estimate the
missing values, but all of the proposed methods are biased because they treat the
replacement value as the actual missing value. Another replacement strategy based
on a Monte Carlo simulation technique called multiple imputation (Shafer 1997)
allows the generation of multiple values for each missing datum. These values are
analysed by standard complete-data methods and integrated into a single model. From
a practical standpoint, a single replacement value must be chosen for each missing
datum and this reintroduces bias. A further method, rather than trying to estimate
the unknown attribute, treats as unknown a new possible value for each attribute and
deals with it as other values (Lee and Shin 1999). We have chosen to replace the
missing data with random values within the variation interval of the single missing
attribute.

The first three quarters of the data (524 patterns) have been used for the training
set and the last 175 for the test set, of which 137 are benign and 38 malignant
patterns. We have run the evolutionary system 10 times, each with a different starting
random population and using the (3) within the total fitness function (8). The average
results are outlined in Table 7. The average percentage for accuracy is equal to
98.52%, with a standard deviation equal to 0.8%.

The best rule found for the malignant cases is the following:

(A2 ≥ 3) ∧ (A7 ≥ 2)
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Table 7. The results of the system averaged over 10 runs

I1 I2 %Ac %C %U %I

Av 2.5 3.5 98.52 95.14 1.43 3.43
StdDev 1.18 1.65 0.8 0.86 0.77 0.81

Table 8. The findings of the best malignant rule

T+ F+ F− T−

38 5 0 132

Table 9. The results for the best benign rule

T+ F+ F− T−

134 0 3 38

Table 10. The results achieved by using the two best rules

Classification Benign Malignant

Benign 131 0
Indeterminate 4 0
Malignant 2 38

This rule classifies the examples in the test set as shown in Table 8. For this rule,
we have Se = 1 and Sp = 0.96.

The best rule found for the benign cases is:

(A1 ≤ 6) ∧ (A3 ≤ 4) ∧ (A5 ≤ 4) ∧ (A8 ≤ 3)

This rule classifies the examples in the test set as in Table 9 with Se = 0.98 and
Sp = 1.

It should be noted that the rules found are different from those achieved in the
previous test. This may be due both to the insertion in the database of the previously
discarded examples and to the fact that the evolutionary system provides a number
of solutions that are nearly suboptimal from the performance point of view. This
does not imply that the provided solutions be genotypically similar. The availability
of different rules could represent an assistance for a human expert to make a deci-
sion.

The results obtained by using both the rules are reported in the global Table 10.
The system has %Ac = 98.83, %C = 96.57, %U = 1.14 and %I = 2.29.

The (8) with the logarithmic function (5) has been tested on the same database
and with the same subdivision for the training and the test set. The average results
achieved over 10 executions are shown in Table 11.

The best rule found for the malignant cases is the following:

(A2 ≥ 4)
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Table 11. The results of the system averaged over 10 runs

I1 I2 %Ac %C %U %I

Av 3.8 3.2 99.47 95.49 0.51 4
StdDev 2.62 0.63 0.59 1.19 0.57 1.48

Table 12. The findings of the best malignant rule

T+ F+ F− T−

36 2 2 135

Table 13. The results for the best benign rule

T+ F+ F− T−

135 0 2 38

Table 14. The results obtained by using the two best rules

Classification Benign Malignant

Benign 133 0
Indeterminate 4 2
Malignant 0 36

This rule classifies the examples in the test set as presented in Table 12. For this
rule we have Se = 0.95 and Sp = 0.99.

The best rule found for the benign cases is:

(A1 ≤ 6) ∧ (A2 ≤ 4) ∧ (A6 ≤ 6) ∧ (A8 ≤ 8)

This rule classifies the examples in the test set as in Table 13. For this rule, we have
Se = 0.99 and Sp = 1.

The results obtained by using both the rules are reported in the global Table 14.
The system has %Ac = 100, %C = 96.57, %U = 0 and %I = 3.43.

Apart from the best results, it should be noted that the performance of the fit-
ness with the linear function is more robust, the standard deviations of the different
parameters being lower on average.

In Yao and Liu (1997), the same problem is faced by taking into account the miss-
ing attributes. Unfortunately, they do not give any information on how the missing
attributes are treated. They have presented a new evolutionary system for evolving
feedforward ANNs applied to this medical diagnosis problem. Their results show
a lower percentage of wrong classifications. No indeterminate cases are provided.
Though the percentage of the wrong classifications obtained by our classification
system is higher with respect to that attained by Yao and Liu, it is important to
emphasize that we provide intelligible rules, unlike they do. This, in our opinion,
counterbalances the worse results. However, our system includes indeterminate cases
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Table 15. The results of a cross-validation method

I1 I2 %Ac %C %U %I

Av 6.1 6.4 97.30 90.35 2.51 7.14
StdDev 0.74 2.46 1.00 1.49 0.94 1.58

Table 16. The results averaged over 10 runs

I1 I2 %Ac %C %U %I

Av 1.4 10.7 96.71 86.41 2.98 10.61
StdDev 1.58 4.11 2.23 2.38 2.08 3.35

but it is easily explicable by the fact that it is sufficient that one single condition be
not satisfied to make the examples classified as indeterminate. Moreover, the limited
expressive power of the chosen encoding plays an important role.

An interesting characteristic of a stochastic classification system is that it can
provide, when run more times, rules with different features. For example in our case,
apart from the best rules above reported, we have at our disposal several more:

if (A2 ≥ 2) ∧ (A3 ≥ 3) then malignant
if (A2 ≥ 4) then malignant
if (A1 ≤ 6) ∧ (A2 ≤ 4) ∧ (A6 ≤ 6) ∧ (A8 ≤ 3) then benign
if (A1 ≤ 6) ∧ (A3 ≤ 4) ∧ (A8 ≤ 3) then benign

Note that some of these rules have been already found previously. Among them, the
first and the third have together an accuracy equal to 100% while the second and
the fourth present together the highest percentage of correctly classified examples,
i.e., 96.57%.

To evaluate the effectiveness of our automatic classification system, a cross-
validation method has been applied. Considering the database with 699 examples,
524 of which are in the training set and the remaining in the test set, the examples
in the two sets are randomly varied over 10 runs. The results averaged over the runs
using the linear function in (8) are reported in Table 15.

It is simple to note that the accuracy is lower and the percentage of indeterminate
cases is higher with respect to the database with the first examples in the training
set and the others in the test set. The increase in the indeterminate cases could be
ascribed to the presence of the anomalous examples in the test set.

5.4. Second set of experiments

The system has also been tested on the database CANCER2. It should be considered
that this problem is more complex because the search space of the descriptions is
much larger. Several experiments have been performed in Hung et al. (2001) con-
sidering a training set composed by 455 examples and a test set of 114 examples.
The test set is randomly varied but it always includes 76 benign and 38 malignant
examples. We have carried out 10 runs on a SUN workstation with this subdivision
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Table 17. The findings of the best malignant rule

T+ F+ F− T−

30 1 8 75

Table 18. The results of the best benign rule

T+ F+ F− T−

74 4 2 34

Table 19. The results achieved by applying the two best rules

Classification Benign Malignant

Benign 74 3
Indeterminate 1 6
Malignant 1 29

and with the linear function in (8). The execution of this algorithm requires about 40
minutes if a correct rule is not found before. Our classification system has produced
the results shown in Table 16.

The best rule for the malignant cases is:

(A2 ∈ [16.1443, 33.5886])∧ (A17 < 0.1441) ∧ (A20 < 0.01284)

∧ (A21 > 16.7940)

This rule produces the results in Table 17 with Se = 0.79 and Sp = 0.99.
The rule for the benign cases is:

(A14 < 54.4786) ∧ (A23 < 116.0951) ∧ (A24 < 950.2699) ∧ (A28 < 0.1604)

This rule determines the results in Table 18. In this case, Se = 0.97 and Sp = 0.89.

In Table 19, the results obtained by applying both the rules are shown.
As an example of evolution, the values related to these two best rules during

the training phase in terms of the best and average fitness and standard deviation
are shown in Fig. 1. The values within the range [0.7, 0.9] have not been reported,
while the values in the range [0.9, 1.0] have been magnified to make evident the
small variations for the best fitness value.

As can be noted, the increase in fitness values shows an initial remarkable quasi-
linear phase, then this increase gets slower. During the final phase, no further fitness
improvements are obtained until the end of the run. Because a correct rule is not
achieved, the evolution terminates when the fixed maximum number of generations
is reached.

In Hung et al. (2001), the classification has been performed by using feedforward
neural networks. The network is used to estimate the posterior probabilities of the
observations in the test set. According to Mangasarian et al. (1995), a case with
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Fig. 1. Best and average fitness value and standard deviation related to the best run for the malignant (left)
and for the benign rule (right)

malignancy probability between 0.30 and 0.70 is classified as indeterminate, while
for values lower than 0.3 as benign and finally malignant for values higher than 0.7.
The paper illustrates several neural network models for classification. The value of
the posterior probability is obtained by considering the mean of the outputs of 200
trained networks. Each model allows attaining high correct classification rates, but it
is to be pointed out that the best results are obtained by applying a feature selection
procedure which results in a model dealing with only 9 variables instead of 30. This
reduces the corresponding search space, while we have left out of consideration any
kind of preprocessing and postprocessing activity in the database construction. The
best results in Hung et al. (2001) outperform those achieved by our system but their
classification technique has the disadvantage of lacking in comprehensible rules. The
availability of explicit rules is of noticeable importance because it provides human
experts with a further investigation tool.

6. Conclusions and future works

In this paper we have presented an evolutionary classification system for automati-
cally extracting explicit rules. The system has been evaluated on two two-class prob-
lems in the medical domain, both related to breast cancer diagnosis. It should be
pointed out that this test problem has been chosen only to evaluate the ability of an
evolutionary technique in designing an automatic classification system. Naturally, the
conceived system is easily applicable to any other kind of database and generaliz-
able to multiple-class problems. We have compared our system with other methods.
Experimental results have demonstrated the effectiveness of the approach proposed
in providing the user with comprehensible classification rules.

Future work will include the investigation of other evolutionary techniques and
their application to different real-world data sets in order to further improve the
promising results reported in the present paper. In particular, a Genetic Program-
ming approach will be investigated to enhance the expressive power of the extracted
rules. This will allow us both to easily introduce a wider set of conjunctions (∧, ∨
and ¬) and to use higher order logics, i.e., to create clauses containing two attributes.
Furthermore, niching methods (Goldberg and Richardson 1987; Smith et al. 1992)
will be exploited with the aim of finding rule sets.
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Another interesting task to face will be unsupervised data mining, in which the
goal is to discover rules that predict a value of a goal attribute which, unlike clas-
sification, is not chosen a priori.
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