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Does Size Really Matter—Using a Decision Tree
Approach for Comparison of Three Different Databases
from the Medical Field of Acute Appendicitis
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Decision trees have been successfully used for years in many medical decision making
applications. Transparent representation of acquired knowledge and fast algorithms
made decision trees one of the most often used symbolic machine learning approaches.
This paper concentrates on the problem of separating acute appendicitis, which is a
special problem of acute abdominal pain, from other diseases that cause acute ab-
dominal pain by use of an decision tree approach. Early and accurate diagnosing
of acute appendicitis is still a difficult and challenging problem in everyday clinical
routine. An important factor in the error rate is poor discrimination between acute
appendicitis and other diseases that cause acute abdominal pain. This error rate is
still high, despite considerable improvements in history-taking and clinical examina-
tion, computer-aided decision-support, and special investigation such as ultrasound.
We investigated three databases of different size with cases of acute abdominal pain
to complete this task as successful as possible. The results show that the size of the
database does not necessary directly influence the success of the decision tree built on
it. Surprisingly we got the best results from the decision trees built on the smallest and
the biggest database, where the database with medium size (relative to the other two)
was not so successful. Despite this we were able to produce decision tree classifiers
that were capable of producing correct decisions on test data sets with accuracy up to
84%, sensitivity to acute appendicitis up to 90%, and specificity up to 80% on the same
test set.
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INTRODUCTION

Decision support systems that help physicians are becoming a very important
part of medical decision making. They are based on different models and the best
of them are providing an explanation together with an accurate, reliable, and quick
response. One of the most popular among machine learning approaches are decision
trees. For years they have been successfully used in many medical decision making
applications. Transparent representation of acquired knowledge and fast algorithms
made decision trees what they are today: one of the most often used symbolic ma-
chine learning approaches.(1) Decision trees have been already used successfully
in medicine, but as in traditional statistics, some hard real world problems cannot
be solved successfully using the traditional way of induction.(2) One of the hardest
problems is the diagnostic of acute appendicitis (AAP), which is a special problem of
acute abdominal pain. The early and accurate diagnosis of acute appendicitis is still a
difficult and challenging problem in everyday clinical routine. Of major concern are
the perforation rate (up to 20%) and negative appendectomy rate (up to 30%).(3,4)

An important factor in the error rate is poor discrimination between acute appen-
dicitis and other diseases that cause acute abdominal pain. This error rate is still
high, despite considerable improvements in history-taking and clinical examination,
computer-aided decision-support, and special investigation such as ultrasound.

Different types of automatic knowledge acquisition tools such as decision trees(5)

and neural networks(6) have been already evaluated on databases with cases of acute
abdominal pain. This clinical problem seems to be well suited for inductive learn-
ing systems since a standardized terminology has been defined. Agreed definitions,
criteria, and minimum data sets have been laid down by the World Organization of
Gastroenterology.(7)

This paper concentrates on the problem of separating acute appendicitis from
other diseases that cause acute abdominal pain by use of an improved decision tree
approach. In addition three different large databases with cases of acute abdominal
pain have been investigated to find out the influence of different database character-
istics such as size, prevalence of appendicitis, reliability of data collection, etc. to the
accuracy of decision support tools.

METHODS

Decision Trees

Inductive inference is a process of moving from concrete examples to general
models, where the goal is to learn how to classify (predict) objects by analyzing a set
of instances (already solved cases) whose classes (predictions) are known. Instances
are typically represented as attribute-value vectors. Learning input consists of a set
of such vectors, each belonging to a known class (prediction), and the output consists
of a mapping from attribute values to classes (predictions). This mapping should
accurately classify/predict both the given instances and other unseen instances.

A decision tree(8,9) is a formalism for expressing mappings from attribute values
to classes (predictions) and consists of tests or attribute nodes linked to two or more
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subtrees and leafs or decision nodes labeled with a class which represents the decision.
Because of the very simple representation of accumulated knowledge they also give
us the explanation of the decision, and that is essential in medical applications.

The tool we used is called MtDeciT2.0. It not only follows the same prin-
ciples as many other decision tree building tools but also implements different
extensions.(10,11) One of those extensions is called dynamic discretization of con-
tinuous attributes, which was used in our experiments with success.

For the purpose of performing objective tests, we used a basic type of decision
tree algorithm, which is implemented in MtDeciT2.0 among other machine learning
approaches. We performed tests with all three training sets using different discretiza-
tion methods: from simple equidistant discretization, to threshold and both dynamic
types of discretization. We also varied other parameters such as prepruning criteria
and type of heuristic function (entropy, gain, or gain ratio). The values for those
parameters that had an important influence to the tree’s accuracy, sensitivity, and
specificity, are also listed for each best individual decision tree.

Dynamic Discretization of Continuous Attributes

Because of the nature of decision trees, all numeric attributes must be mapped
into a set of discrete values. In MtDeciT 2.0 tool we implemented an algorithm
for finding subintervals,(11) where we consider the distribution of training objects
and there are more than two subintervals possible. The approach is called dynamic
discretization of continuous attributes since the subintervals are determined dynam-
ically during the process of building the decision tree. This technique first splits the
interval into many subintervals, so that every training object’s value has its own subin-
terval. In the second step it merges together smaller subintervals that are labelled
with the same outcome into larger subintervals (see Fig. 1).

Here is a more detailed algorithm for dynamic discretization:

1. Set the values for constants z and percentage of discretization tolerance. Here
z represents a preset value, usually greater then 2. Percentage of discretization
tolerance can take any value between 0% and 50% and it represents the
upper percentage of all training objects, contained in subintervals marked
with different outcome then their own.

2. Split the interval of the continuous attribute into many subintervals, so that
every training object’s value lays its own subinterval. Threshold candidates
are all values ti , (Eq. (1)) that lay between ai in ai+1, where ai in ai+1 are two
neighbor values of the continuous attribute:

ti = ai+1−ai

2
(1)

3. For each subinterval count the number of training objects that belong to each
class. It is possible that two training objects which belong to different classes
have the same value of the attribute in question. Set the dominant class in
each subinterval.

4. Merge together smaller subintervals that are labelled with the same class into
larger subintervals.
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Fig. 1. Dynamic discretization of a continuous attribute, which has values between
60 and 100.

5. Determine triplets of neighbor subintervals ([A0)[A1)[A2)), where the outer
(“strong”) two subintervals A0 and A2 are labelled with the same class. Each
of the outer intervals A0 and A2 must contain at least as many training objects
as the inner (“weak”) subinterval A1. A0 and A2 must have together at least
z -times as many training objects as A1. Find the triplet where the ratio
between the “strong” subintervals and the “weak” subinterval is the greatest.
If merging these three subintervals into one subinterval and labelling it with
the dominant class does not cause the overflow of percentage of discretization
tolerance, then we merge the three subintervals together.

6. Repeat the procedure in point 5 until one of the following conditions is met:
• There are no more triplets left
• We exceeded the percentage of discretization tolerance
• There are less then four subintervals left.

In comparison to other approaches the dynamic discretization returns more “natural”
subintervals, which results in better and smaller decision trees.

In general we differentiate between two types of dynamic discretization:

• General dynamic discretization and
• Nodal dynamic discretization.

General dynamic discretization uses all available training objects for the definition
of subintervals. That is why we perform the general dynamic discretization before we
start building the decision tree. All the subintervals of all attributes are memorized
so as to be used later in the process of building of the decision tree. Nodal dynamic
discretization performs the definition of subintervals for all continuous attributes
that are available in the current node of the decision tree. Only those training objects
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Table I. Parameters for Training

Parameters

Sex
Age
Progress of pain
Duration of pain
Type of pain
Severity of pain
Location of pain now
Location of pain at onset
Previously similar complains
Previous abdominal operation on appendix
Distended abdomen
Tenderness
Severity of tenderness
Movement of abdominal wall
Rigidity
Rectal tenderness
Rebound tenderness
Leukocytes

that came in the current node are used for setting the subintervals of the continuous
attributes.

Data Collection

To compare the databases we concentrated on 18 parameters from history-taking
and clinical examination, which could be identified in all three databases (Table I).
Only clinical parameters with a missing value rate of less than 10% were included.
Since we were focusing on the problem of separating acute appendicitis (class: “ap-
pendicitis”) from other diseases that cause acute abdominal pain, these other diag-
noses fall into one common class (class: “other diseases”). The clinical parameters in
the investigation are sex, age, progress of pain, duration of pain, type of pain, severity
of pain, location of pain now, location of pain at onset, previously similar complains,
previous abdominal operation on appendix, distended abdomen, tenderness, sever-
ity of tenderness, movement of abdominal wall, rigidity, rectal tenderness, rebound
tenderness, and leukocytes.

Databases of Acute Abdominal Pain

1. AAP I (n = 1254): This prospective clinical database of AAP was built-
up in the framework of a Concerted Action of the European Community
(COMAC-BME-European Community Concerted Action on Objective
Medical Decision Making in Patients with Acute Abdominal Pain; project
leader: F. T. de Dombal (Leeds, UK).(12) The data came from six surgical de-
partments in Germany, which participated in the study. Included in the study
were all patients with acute abdominal pain of less than 1 week duration. A
structured and standardized history and clinical examination were performed
in every patient and the data were documented prospectively using a form
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suitable for computer use. This form was based on the original abdominal
pain chart of the World Organization of Gastroenterology (OMGE). Termi-
nology and definitions were taken from the European Community Concerted
Action.(12) Final diagnosis was based on operative findings, special investiga-
tions, and the course of the disease during hospital stay. In cases of patients
with nonspecific abdominal pain, data from readmission and telephone in-
terviews were used. The prevalence of appendicitis in this database is 16.8%
(n = 211).

2. AAP II (n = 2286): This prospective database was built-up during the
German MEDWIS project A70 “Expert System for Acute Abdominal Pain,”
(project leader: C. Ohmann).(13) Data came from 14 centres in Germany. In-
cluded in the study were all patients with acute abdominal pain of less than
1 week duration. For data collection a computer program with revised and
enhanced forms of AAP I(12) was used. The final diagnosis was based on di-
agnosis at discharge. The prevalence of appendicitis in this database is 22.7%
(n = 519). This data set contained a lot of special (more complicated) cases
where patients were sent from ordinary hospitals for treatment in the univer-
sity hospitals.

3. AAP III (n = 4020): This prospective database was built-up during an Conce-
rted Action funded by the European Commission during the COPERNICUS
programme no.: 555 (project leader: C. Ohmann): “Information Technology
for the Quality Assurance in Acute Abdominal Pain.” Data was collected in
16 centres from Central and Eastern Europe. For data collection the com-
puter program developed in the MEDWIS programme was used. Medical
terminology was translated into 10 different languages, so that the partici-
pating centres could be provided with national versions of the software.(14)

The final diagnosis was based on the diagnosis at discharge. The prevalence
of appendicitis in this database is 40.5% (n = 1628).

In all the three databases we additionally filtered out the cases (objects) for which
more than 90% of parameters were not known. As a result of this action, the number
of cases in the AAP I reduced for 3 objects (from 1254 to 1251), the number of cases
in the AAP II reduced for 7 cases (from 2286 to 2279), and the number of cases in
the AAP III remained the same.

Training Sets

For the training purposes we decided not to use training objects with more than
10 missing values. By that we did our best to increase the quality of knowledge stored
in the decision trees. Let us call the data sets which contained objects with no more
than 10 missing values as “cleaned data sets.”

During our preliminary tests we found out that the percentage of appendicitis
cases in all the three data sets was substantially lower than 50% and therefore influ-
enced the decision trees in such way that they learned more about the other diseases
than about appendicitis. In order to improve the power of classifiers we reduced the
number of objects in the sets by removing the objects classified as “other diagnosis”
that had the most missing values. Let us call such data sets as “reduced data sets.”
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For each data set we built two training sets. For the first training set (marked
as “Training set 50:50” in Tables II–IV) we took approximately 2/3rd of the cleaned
data set. The remaining 1/3rd of the data set was saved for the testing purposes as the
test set. Then we reduced the 2/3rd training set so that it contained approximately
the same number of appendicitis cases and cases marked as other diagnosis.

The second training set was our reduced data set (marked as “Full set 50:50”
in Tables II–IV)—the original data set with an approximate ratio of half of objects
classified as appendicitis cases and the other half classified as other diagnoses.

The number of training objects in the “training sets 50:50” was 274 for AAP I
(137 classified as appendicitis, 137 classified as other diagnoses), 763 for AAP II (363
classified as appendicitis, 400 classified as other diagnoses), and 2186 for AAP III
(1086 classified as appendicitis, 1100 classified as other diagnoses).

The number of training objects in the “full sets 50:50” was 422 for AAP I (211
classified as appendicitis, 211 classified as other diagnoses), 1119 for AAP II (519
classified as appendicitis, 600 classified as other diagnoses), and 3330 for AAP III
(1628 classified as appendicitis, 1702 classified as other diagnoses).

Test Sets

Similar as for training sets, we also built two test sets for each data set. The
first test set (marked in Tables II–IV as “Test set”) was the remaining 1/3rd of the
“cleaned data set,” which meant that we did not have the approximate 50:50 ratio
of the appendicitis and other diagnoses in the test set. The same was true for the
second test set, which was actually a “cleaned data set” (marked in Tables II–IV as
“Full set”).

The number of test objects in “test sets” was 414 for AAP I (74 classified as
appendicitis, 340 classified as other diagnoses), 731 for AAP II (156 classified as
appendicitis, 575 classified as other diagnoses), and 1340 for AAP III (542 classified
as appendicitis, 798 classified as other diagnoses).

The number of test objects in “full sets” was 1251 for AAP I (211 classified as
appendicitis, 1040 classified as other diagnoses), 2279 for AAP II (519 classified as
appendicitis, 1760 classified as other diagnoses), and 4020 for AAP III (1628 classified
as appendicitis, 2329 classified as other diagnoses).

RESULTS

For each AAP data set we built two types of decision trees: one for each type of
training set. We tested each of those decision trees on each possible test set, except
on its own full set (for decision trees built on training set) and its own full and testing
set (for decision trees built on reduced data set). Reason for latter was that training
sets contained also a few objects that were in the test sets and the results would not
be objective.

Each part of Tables II–IV at intersection between the training and test set con-
tains cells with the following data: number of nodes in the decision tree, settings for
the decision tree (prepruning percentage, type of discretization technique), overall
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Size of the Settings for the
decision tree decision tree

Overall accuracy

Sensitivity to
SpecificityAppendicitis Fig. 2. Cell map.

accuracy, sensitivity to appendicitis, and specificity (see cell map in Fig. 2). Types
of discretization techniques used in Tables II–IV, are quartiles (Q) and dynamic
discretization in the current node with different settings (DC40-2).(11)

In Table II gives the best results of the decision trees built on the AAP I data
set and tested on each possible data set, except on the full AAP I set. It is interesting
that the best accuracy was not achieved on the AAP I test set, but on the AAP III
test and full sets.

In Table III gives the best results of the decision trees built on the AAP II data
set. Using the training set we got the best results on the AAP II test set. To our
surprise the best results for the decision tree built with full AAP II set were achieved
on the AAP I test and full sets. Despite that, no decision trees built on AAP II
could be described as useful, since in the majority of case the best accuracy hardly
exceeded 50%.

The results of testing decision trees, built on AAP III training and full sets
(Table IV), indicate that this data set is capable of providing more knowledge as
the AAP II data set (Table III). The highest accuracy of the decision tree built on
AAP III training and full sets (Table II) matched the highest accuracy of the one
built on the AAP I training and full sets. But if we look at the average accuracy,
AAP I (Table II) still gave a bit better results.

From the results of comparison of different data sets we can see that the best
average accuracy has been achieved by the decision tree, built on the small reduced
data set AAP I (marked as “Full set 50:50” in Table II), followed closely by the
decision trees built on the large AAP III data set (Table IV), which is, considering
the data set background and sizes, quite a surprise to us.

DISCUSSION

By knowing the background and methods used to collect those three data sets,
we did not expect the decision trees built on medium data set AAP II to present
themselves in such a negative sense. The worse results were achieved on AAP II test
sets and with the decision trees that were built on the training sets of AAP II data set.
The only reason for this which arise at the moment is that AAP II contains a large
number of special cases and that the decision tree learning method does not exploit
the training set as it should. The overall accuracy of the remaining comparisons
between AAP I and AAP III is so high that some of those decision trees could be of
a practical use to clinicians.



P1: GCP/GAY P2: GCR

Journal of Medical Systems [joms] pp525-joms-375644 June 26, 2002 19:52 Style file version June 5th, 2002

Ta
bl

e
II

.
R

es
ul

ts
of

th
e

D
ec

is
io

n
Tr

ee
s

B
ui

lt
on

th
e

A
A

P
I

D
at

a
Se

t

Te
st

Se
ts

Sm
al

l
Sm

al
l(

A
A

P
I)

M
ed

iu
m

(A
A

P
II

)
L

ar
ge

(A
A

P
II

I)
tr

ai
ni

ng
se

t
(A

A
P

I)
Te

st
se

t
Te

st
se

t
F

ul
ls

et
Te

st
se

t
F

ul
ls

et

Tr
ai

ni
ng

se
t5

0:
50

69
N

od
es

25
%

D
C

40
-2

69
N

od
es

25
%

D
C

40
-2

69
N

od
es

25
%

D
C

40
-2

69
N

od
es

25
%

D
C

40
-2

69
N

od
es

25
%

D
C

40
-2

73
.6

7%
56

.7
7%

54
.7

6%
75

.5
2%

75
.6

7%
74

.3
2%

73
.5

3%
42

.9
5%

60
.5

2%
39

.1
1%

59
.3

8%
65

.8
7%

82
.0

8%
64

.9
9%

82
.9

4%

F
ul

ls
et

50
:5

0
23

N
od

es
30

%
D

C
40

-2
23

N
od

es
30

%
D

C
40

-2
23

N
od

es
30

%
D

C
40

-2
23

N
od

es
30

%
D

C
40

-2
55

.8
1%

52
.8

7%
82

.3
1%

81
.9

9%
49

.3
6%

57
.5

7%
42

.7
7%

55
.8

5%
82

.2
9%

82
.3

3%
81

.8
8%

82
.0

7%

473



P1: GCP/GAY P2: GCR

Journal of Medical Systems [joms] pp525-joms-375644 June 26, 2002 19:52 Style file version June 5th, 2002

Ta
bl

e
II

I.
R

es
ul

ts
of

th
e

D
ec

is
io

n
Tr

ee
s

B
ui

lt
on

th
e

A
A

P
II

D
at

a
Se

t

Te
st

Se
ts

M
ed

iu
m

Sm
al

l(
A

A
P

I)
M

ed
iu

m
(A

A
P

II
)

L
ar

ge
(A

A
P

II
I)

tr
ai

ni
ng

se
t

(A
A

P
II

)
Te

st
se

t
F

ul
ls

et
Te

st
se

t
Te

st
se

t
F

ul
ls

et

Tr
ai

ni
ng

se
t5

0:
50

46
4

N
od

es
30

%
Q

46
4

N
od

es
30

%
Q

47
N

od
es

40
%

D
C

40
-2

46
4

N
od

es
30

%
Q

46
4

N
od

es
30

%
Q

42
.7

5%
43

.7
3%

52
.3

9%
46

.7
9%

43
.7

3%
43

.2
4%

42
.6

5%
38

.8
6%

44
.7

1%
51

.2
8%

52
.7

0%
39

.3
0%

51
.8

8%
36

.1
2%

48
.9

1%

F
ul

ls
et

50
:5

0
16

2
N

od
es

40
%

D
C

40
-2

16
2

N
od

es
40

%
D

C
40

-2
16

2
N

od
es

40
%

D
C

40
-2

16
2

N
od

es
40

%
D

C
40

-2
68

.8
4%

69
.3

0%
56

.7
9%

55
.4

7%
54

.0
5%

72
.0

6%
44

.0
8%

74
.4

2%
32

.8
4%

73
.0

6%
31

.2
7%

71
.9

5%

474



P1: GCP/GAY P2: GCR

Journal of Medical Systems [joms] pp525-joms-375644 June 26, 2002 19:52 Style file version June 5th, 2002

Ta
bl

e
IV

.
R

es
ul

ts
of

th
e

D
ec

is
io

n
Tr

ee
s

B
ui

lt
on

th
e

A
A

P
II

I
D

at
a

Se
t

Te
st

Se
ts

L
ar

ge
Sm

al
l(

A
A

P
I)

M
ed

iu
m

(A
A

P
II

)
L

ar
ge

(A
A

P
II

I)
tr

ai
ni

ng
se

t
(A

A
P

II
I)

Te
st

se
t

F
ul

ls
et

Te
st

se
t

F
ul

ls
et

Te
st

se
t

Tr
ai

ni
ng

se
t5

0:
50

48
N

od
es

40
%

D
C

40
-2

48
N

od
es

40
%

D
C

40
-2

48
N

od
es

40
%

D
C

40
-2

48
N

od
es

40
%

D
C

40
-2

48
N

od
es

40
%

D
C

40
-2

64
.7

3%
63

.3
9%

53
.2

1%
50

.5
9%

83
.8

1%
86

.4
9%

60
.0

%
88

.6
3%

58
.2

7%
52

.5
6%

53
.3

9%
45

.8
6%

51
.9

9%
89

.4
8%

79
.9

5%

F
ul

ls
et

50
:5

0
43

N
od

es
40

%
D

C
40

-2
43

N
od

es
40

%
D

C
40

-2
43

N
od

es
40

%
D

C
40

-2
43

N
od

es
40

%
D

C
40

-2
66

.6
7%

65
.8

7%
54

.1
7%

51
.7

3%
86

.4
9%

62
.3

5%
88

.1
5%

61
.3

5%
51

.9
2%

54
.7

8%
45

.0
9%

53
.6

9%

475



P1: GCP/GAY P2: GCR

Journal of Medical Systems [joms] pp525-joms-375644 June 26, 2002 19:52 Style file version June 5th, 2002

476 Zorman, Eich, Stiglic, Ohmann, and Lenic

The accuracy we achieved during our experiments is substantially higher than
the accuracy other authors reported on approaches like neural networks(15) or case
based reasoning.(16)

Nevertheless the overall results are good and the impression that even more
knowledge can be extracted from the three data sets makes us plan new experiments
with different training set combination and different machine learning approaches.

CONCLUSION

The presented results show that we are on the right way to solve the acute appen-
dicitis problem with the use of machine learning techniques, but many problems still
remain to be solved. In our experiments we have shown that the gathering data from
different types of sources can substantially influence the performance of classifiers,
even though the methods for data gathering were almost the same. We have also
shown, that larger size of the training sets does not necessary guarantee the higher
accuracy in comparison to smaller training sets.

Currently we are testing improved machine learning methods such as genetic
decision trees and hybrid neural decision trees on all the three AAP databases and
preliminary results seem to be even a bit better than results presented in this paper.
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