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Abstract—Comprehensibility is very important for any

machine learning technique to be used in computer-aided
medical diagnosis. Since an artificial neural network
ensemble is composed of multiple artificial neural networks,
its comprehensibility is worse than that of a single artificial
neural network. In this paper, C4.5 Rule-PANE which
combines artificial neural network ensemble with rule
induction by regarding the former as a pre-process of the
latter, is proposed. At first, an artificial neural network
ensemble is trained. Then, a new training data set is
generated by feeding the feature vectors of the original
training instances to the trained ensemble and replacing
the expected class labels of the original training instances
with the class labels output from the ensemble. Additional
training data may also be appended by randomly
generating feature vectors and combining them with their
corresponding class labels output from the ensemble.
Finally, a specific rule induction approach, i.e. C4.5 Rule, is
used to learn rules from the new training data set. Case
studies on diabetes, hepatitis, and breast cancer show that
C4.5 Rule-PANE could generate rules with strong
generalization ability, which profits from artificial neural
network ensemble, and strong comprehensibility, which
profits from rule induction.

Index Terms—Artificial neural networks, Ensemble learning,
Rule induction, Machine learning.

I. INTRODUCTION

ACHINE learning techniques suiting computer-aided
medical diagnosis should have good comprehensibility,

i.e. the transparency of diagnostic knowledge and the
explanation ability. This is because medical diagnosis,
requiring reliable performance, can be profited if the diagnostic
process can be checked and adequately explained.

In general, machine learning techniques can be categorized
into two classes, that is, symbolic or connectionist learning
techniques. Symbolic learning techniques such as rule
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induction are usually regarded as comprehensible techniques
because the learned knowledge is expressed in forms such as
production rules that are easy to be understood by the user.
Rule induction has already been widely applied in medical
diagnosis [5], [8], [22]. On the other hand, most connectionist
learning techniques such as artificial neural networks are
regarded as incomprehensible techniques because the learned
knowledge is concealed in a lot of connections and is not
transparent to the user. Although artificial neural networks
have already been tried in several medical tasks [16], they have
not yet been widely accepted in medicine [15]. Fortunately,
during the last decade much work has addressed the issue of
improving the comprehensibility of artificial neural networks
[1], [30], and some results have already been applied to medical
tasks [13], [25], [26].

Artificial neural network ensemble is a learning technique
where multiple artificial neural networks are trained to solve
the same problem. Since the generalization ability of learning
systems based on artificial neural networks can be significantly
improved with this technique, it has become a hot topic in both
machine learning and neural computing communities [27] and
has already been tried in several medical tasks [6], [28], [31].
However, since an ensemble is composed of multiple artificial
neural networks, its comprehensibility is even worse than that
of a single artificial neural network, which may hinder the wide
acceptance of this technique in medicine.

In this paper, a novel learning approach named C4.5 Rule-
PANE, i.e. C4.5 Rule Preceded by Artificial Neural Ensemble,
is proposed. This approach is helpful for utilizing the power of
artificial neural network ensembles in reliable applications
where the comprehensibility is as important as the
generalization ability. It should be mentioned that C4.5 Rule-
PANE does not try to directly improve the comprehensibility of
the artificial neural network ensembles. Instead, it employs
artificial neural network ensemble as a pre-process for a
specific rule induction approach, i.e. C4.5 Rule [20]. Case
studies show that C4.5 Rule-PANE could generate rules with
strong generalization ability and strong comprehensibility.

The rest of this paper is organized as follows. In Section 2,
C4.5 Rule-PANE is proposed after the brief introduction of
artificial neural network ensemble and C4.5 Rule. In Section 3,
case studies on diabetes, hepatitis, and breast cancer are
presented. In Section 4, some issues of C4.5 Rule-PANE that
should be further investigated are discussed. Finally in Section
5, the main contribution of this paper is summarized.

Medical Diagnosis with C4.5 Rule Preceded by
Artificial Neural Network Ensemble

Zhi-Hua Zhou, Member, IEEE, and Yuan Jiang

M



IEEE Transactions on Information Technology in Biomedicine 2

II. METHODOLOGY

A. Artificial Neural Network Ensemble
In the beginning of the 1990s, Hansen and Salamon [12]

showed that the generalization ability of learning systems based
on artificial neural networks can be significantly improved
through ensembling artificial neural networks, i.e. training
multiple artificial neural networks and combining their
predictions. Subsequently there appears a hot wave in
investigating artificial neural network ensembles [27], and this
technique has already been successfully applied to diverse
domains such as optical character recognition [7], [11], [17],
face recognition [10], [14], scientific image analysis [4],
seismic signals classification [29], etc.

In general, an artificial neural network ensemble is built in
two steps, that is, generating component artificial neural
networks and then combining their predictions. As for
generating component networks, Breiman’s Bagging [3] and
Schapire’s Boosting [24] are prevailing approaches. Bagging
generates multiple training data sets from the original training
data set via bootstrap sampling [9] and then trains a component
network using each of those training data sets. Boosting
generates a series of component networks whose training data
sets are determined by the performance of the former networks.
Training instances that are wrongly predicted by the former
networks will play more important roles in the training of the
later networks. As for combining component predictions,
voting [12] is prevailing for classification while averaging [18],
[19] is prevailing for regression. Voting regards the class label
receiving the most number of votes as the final output of the
ensemble. Averaging regards the average output of the
component networks as the final output of the ensemble. Note
that during the latest years much work has addressed the issue
of designing effective and efficient ensemble approaches,
which has been reviewed in some recent literature [32].

B. C4.5 Rule
C4.5 Rule [20] is a rule induction approach derived from

Quinlan’s famous C4.5 decision tree [20]. The rules generated
by this approach is in conjunctive form such as “if A and B then
C” where both A and B are the rule antecedents while C is the
rule consequence. The rules are generated as follows.

At first, a C4.5 decision tree is trained. Then, every path from
the root to a leaf is converted to an initial rule by regarding all
the test conditions appearing in the path as the conjunctive rule
antecedents while regarding the class label held by the leaf as
the rule consequence. After that, each initial rule is generalized
by removing antecedents that do not seem helpful for
distinguishing a specific class from other classes, which is
performed by a pessimistic estimate of the accuracy of the rule.
In detail, the accuracy of the initial rule and that of its variant
where an antecedent is removed are estimated. If the latter is
not worse than the former then the initial rule is replaced by the
variant of it. It is worth noting that usually there are several rule
antecedents that could be removed. In such cases, C4.5 Rule
carries out a greedy elimination, that is, the removal of the

antecedent that produces the lowest pessimistic error rate of the
generalized rule is kept, and such kind of removal is repeatedly
performed until the rule could not be generalized further. After
all the initial rules are generalized, they are grouped into rule
sets corresponding to the classes respectively. All rule sets are
polished with the help of the Minimum Description Length
(MDL) Principle [21] so that rules that do not contribute to the
accuracy of a rule set are removed. Then, the rule sets are sorted
according to the ascending order of their false positive error
rates. Finally, a default rule is created for dealing with instances
that are not covered by any of the generated rules. The default
rule has no antecedent and its consequence is the class that
contains the most training instances not covered by any rule.

Note that with the above process, the comprehensibility of
the rules generated by C4.5 Rule is better than that of the C4.5
decision tree. This is because the number of rules is usually less
than the number of leaves in the tree, and the number of rule
antecedents of a rule is usually less than the number of the test
conditions appearing in the corresponding path in the tree.
Moreover, in some cases the generalization ability of the rules
may even be better than that of the tree [20].

C. C4.5 Rule-PANE
C4.5 Rule-PANE is helpful for utilizing artificial neural

network ensemble in reliable applications such as computer-
aided medical diagnosis where the comprehensibility is as
important as the generalization ability. The motivation of this
approach is the desire of combining the strong generalization
ability of artificial neural network ensemble and the strong
comprehensibility of rule induction. In detail, C4.5 Rule-PANE
employs artificial neural network ensemble as a pre-process of
C4.5 Rule. This is the reason why it is called as C4.5 Rule
preceded by artificial neural ensemble.

Suppose we have a training data set S = {(x1, y1), (x2, y2), …,
(xn, yn)}, where xi and yi are the feature vector and the expected
class label of the i-th training instance, respectively. An
artificial neural network ensemble is trained with S. Here
Bagging is employed to generate the ensemble but note that
other kinds of ensemble approaches such as Boosting can also
be used. The pseudo-code of Bagging is shown in Fig. 1, where
T bootstrap samples S1, S2, …, ST are generated from the
original training data set and a component artificial neural
network Nt is trained using each St, an ensemble N* is built
from N1, N2, …, NT whose output is the class label receiving the
most number of votes.

Input: training set S, learner L, number of bootstrap samples T
Output: ensemble N*
Process:

for t = 1 to T {
St = bootstrap sample from S
Nt = L(St)

}

( )
( ):

* arg max 1
t

y Y t N x y
N x

∈ =

= ∑

Fig. 1.  The Bagging approach



IEEE Transactions on Information Technology in Biomedicine 3

For each feature vector xi (i = 1, 2, …, n), if it is fed to the
trained artificial neural network ensemble N*, a class label yi’ is
the output from the ensemble. Note that yi’ may not be identical
to the expected class label, i.e. yi. By combining xi and yi’, a
new instance (xi, yi’) is generated. Here we call the data set S’ =
{(x1, y1’), (x2, y2’), …, (xn, yn’)} as the training data set
processed by N*. Since artificial neural network ensembles
usually have strong generalization ability, we believe that some
bad ingredients of S, such as the noise, may be depressed by the
process of N*. In other words, S’ may be better than S for rule
induction. This is one of the reasons why C4.5 Rule-PANE
regards artificial neural network ensemble as a pre-process of
C4.5 Rule.

Another reason for regarding artificial neural network
ensemble as a pre-process of C4.5 Rule is that after obtaining a
trained ensemble, more training data can be generated from the
ensemble for the later rule induction so that the resource for
rule induction is enriched. This is done by randomly generating
some feature vectors and then feeding them to the ensemble.
For each randomly generated feature vector xj’ (j = 1, 2, …, m),
if it is fed to N*, a class label yi’’ is the output from the
ensemble. By combining xi’ and yi’’, a new instance (xi’, yi’’) is
generated. Here we call the data set S’’ = {(x1’, y1’’), (x2’,
y2’’), …, (xm’, ym’’)} as the additional training data set
generated by N*. Since artificial neural network ensembles
usually have strong generalization ability, we believe that some
important characteristics of the problem to be solved, which has
been encoded in S, may be captured by N*. So, the additional
training data set S’’ generated by N* may be useful in
complementing S for rule induction.

After S’ and S’’ are obtained, they are united and used as the
training data set for C4.5 Rule. It is obvious that the size of S’ is
equal to that of the original training data set, i.e. S. But the size
of S’’ is not certain. From the case studies presented in Section
3, we found that when the size of S’’ is roughly treble of that of
S, C4.5 Rule-PANE is able to achieve excellent performance.

In summary, the pseudo-code of C4.5 Rule-PANE is shown
in Fig. 2.

III. CASE STUDIES

Three case studies, on diabetes, hepatitis, and breast cancer,
respectively, have been analyzed. The data set of diabetes is
from the National Institute of Diabetes and Digestive and
Kidney Diseases. There are 768 instances belonging to two
classes, i.e. positive or negative for diabetes, described by 8
attributes among which 7 attributes are continuous and the
remaining one attribute is categorical. The data set of hepatitis
contains 80 instances belonging to two classes, i.e. positive or
negative for hepatitis, described by 19 attributes among which
6 attributes are continuous and the remaining 13 attributes are
categorical. The data set of breast cancer contains 683
instances belonging to two classes, i.e. malignant or benign,
described by 10 attributes among which 9 attributes are
categorical and the remaining one attribute is continuous. All
the data sets are publicly available at the UCI machine learning
repository [2]. Note that instances with missing values have
been removed from the data sets of hepatitis and breast cancer.

10-fold cross validation is performed in each case study. In
detail, the raw data set is divided into ten subsets with similar
sizes and similar distribution of classes. Then, tests for the ten
folds are performed, each with a different subset as the test data
set and with the union of the other nine subsets as the training
data set. In each fold, ten runs are performed and the average
result of those ten runs is regarded as the result of the fold. The
average result of those ten folds is recorded as the final result.
In each fold, an artificial neural network ensemble comprising
five BP networks, i.e. artificial neural networks trained with the
Backpropagation algorithm [23], with one hidden layer
containing ten hidden units is generated via Bagging. It should
be mentioned that the architecture of the networks has not been
finely tuned. The training data sets of the BP networks are
bootstrap sampled from the training data set of the fold. Note
that bootstrap sampling uses about 63% instances of an original
data set to generate a new data set [3]. Therefore for each BP
network, the instances that are not in its training data set but in
the training data set of the fold can be used as its validation data.
During the training process, the generalization error of the
network is estimated in each epoch on its validation data set. If
the validation error does not change in consecutive five epochs,
the training of the network is terminated in order to avoid
overfitting.

The predictive error rate and the number of the rules
generated by C4.5 Rule-PANE are shown in Table 1. For
comparison, Table 1 also shows the predictive error rate and the
number of the rules generated by C4.5 Rule, and the predictive
error rate of the artificial neural network ensemble. Note that
here the size of the additional training data set employed by
C4.5 Rule-PANE is treble of that of the original training data
set. In other words, m in Fig. 2 is roughly equal to 3n.

Although C4.5 Rule-PANE is expected to be more accurate
than C4.5 Rule as it profits from the generalization ability of the

Input: training set S, the number of additional training instance m
Output: rule set R
Process:

N* = Bagging (S) /* generate an artificial neural network
ensemble N* from S via Bagging */

S’ = ∅
S’’ = ∅
for i = 1 to n { /* process the original training data set by

the trained ensemble */
yi’ = N*(xi: (xi, yi)∈ S)
S’ = S’ ∪  {( xi, yi’)}

}
for j =1 to m { /* generate additional training data set by

the trained ensemble */
xj’ = Random( ) /* generate a random feature vector */
yj’’ = N*(xj’)
S’’ = S’’ ∪  {( xi’, yi’’)}

}
SR = S’ ∪  S’’ /* obtain the training data set for rule induction */
R = C4.5Rule (SR)

Fig. 2.  The C4.5 Rule-PANE approach
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artificial neural network ensemble, it is still impressive that
Table 1 indicates the generalization ability of C4.5 Rule-PANE
is about 23% (((.2726-.2306)/.2726 + (.1581-.1034)/.1581 +
(.0567-.0460)/.0567) / 3 = .2296) better than that of the well-
established method C4.5 Rule on these three case studies. More
amazingly, the generalization ability of C4.5 Rule-PANE is
even better than that of the artificial neural network ensemble
on diabetes and hepatitis. On the other hand, although the
comprehensibility of C4.5 Rule-PANE is worse than that of
C4.5 Rule since it generates more rules than C4.5 Rule does, its
comprehensibility is obviously better than that of the artificial
neural network ensemble because symbolic rules are easier to
be understood than artificial neural networks.

For further exploring the performance of C4.5 Rule-PANE,
more experiments are performed on it with different size of
additional training data sets. The 10-fold cross validation
results on diabetes, hepatitis, and breast cancer, are shown in
Fig. 3 to Fig. 5, respectively. Note that the reported results of
C4.5 Rule-PANE have been normalized according to that of
C4.5 Rule. In detail, the relative predictive error rate (or
number of rules) of C4.5 Rule-PANE shown in each figure is in
fact the ratio against that of C4.5 Rule shown in Table 1 which
is regarded as 1.0. Moreover, the size of the additional training
data set is also shown in the form of the ratio against that of the
original training data set.

Fig. 3a and Fig. 4a show that on both diabetes and hepatitis,
even when there is no additional training data, the
generalization ability of C4.5 Rule-PANE is better than that of
C4.5 Rule. Such an improvement on the relative predictive
error rate (about 10%) should owe to that the artificial neural
network ensemble has depressed some bad ingredients of the
original training data set in the way of correcting class labels.
This observation supports our claim that the training data set
processed by the artificial neural network ensemble may be
better for rule induction than the original training data set. Fig.
5a shows that on breast cancer, when there is no additional
training data, the generalization ability of C4.5 Rule-PANE is
slightly worse than that of C4.5 Rule. We guess the reason may
be that the artificial neural network ensemble has wrongly
switched the class labels of some outliers so that some useful
information has been lost.

Fig. 3a, Fig. 4a, and Fig. 5a also show that the generalization
ability of C4.5 Rule-PANE can be improved further by utilizing
additional training data. This observation supports our claim
that the data generated by the artificial neural network
ensemble may be useful in complementing the original training
data set for rule induction. However, it should be noted that

improvement on the generalization ability introduced by the
additional training data is not consistent, which will be
discussed in the next section.

Fig. 3b, Fig. 4b, and Fig. 5b show that the number of rules
generated by C4.5 Rule-PANE increases nearly linearly as the
size of the training data set used for rule induction increases.
However, when no additional training data is used, the number
of rules generated by C4.5 Rule-PANE is roughly equal to or
even less than that of C4.5 Rule. This means that the
comprehensibility of C4.5 Rule-PANE may be better than C4.5
Rule when the size of the training data set is fixed. This also
supports our claim that the training data set processed by the
artificial neural network ensemble may be better for rule
induction than the original training data set. Moreover, even
when C4.5 Rule-PANE generates many rules due to the
utilization of much additional training data, its
comprehensibility is sure to be better than artificial neural
network ensemble because symbolic rules are easier to be
understood than artificial neural networks.

In summary, Table 1 and Fig. 3 to Fig. 5 reveal that C4.5
Rule-PANE could generate rules with strong generalization
ability and strong comprehensibility on all the three case
studies.

IV. DISCUSSION

Case studies presented in Section 3 show that C4.5 Rule-
PANE can achieve good performance, but they also show that
the performance of C4.5 Rule-PANE is not very stable. The
instability is exhibited in two aspects.

Firstly, on one hand, the generalization ability of C4.5
Rule-PANE on diabetes and hepatitis is better than that of C4.5
Rule even when no additional training data is used, but on
breast cancer this does not hold. On the other hand, the
generalization ability of C4.5 Rule-PANE can be improved by
utilizing additional training data in all the three case studies.
This suggests that for the first two case studies, the artificial
neural network ensemble simultaneously contributes to the
generalization ability of C4.5 Rule-PANE in two manners, that
is, processing the original training data and generating the
additional training data, but for the third case study, the
artificial neural network ensemble only contributes in the
second manner. It is worth noting that when the ensemble
contributes in both manners (as on diabetes or hepatitis), the
generalization ability of C4.5 Rule-PANE is even better than
that of the ensemble. We believe that whether the ensemble can
contribute to the generalization ability of C4.5 Rule-PANE in

TABLE I
TEST RESULTS ON DIABETES, HEPATITIS, AND BREAST CANCER

C4.5 RULE-PANE C4.5 RULE ENSEMBLE

ERROR RATE NUMBER OF RULES ERROR RATE NUMBER OF RULES ERROR RATE

DIABETES 23.06% 57.3 27.26% 22.4 24.00%
HEPATITIS 10.34%  9.3 15.81%  4.5 14.96%
BREAST CANCER  4.60% 46.8  5.67% 21.4  2.96%
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both manners or not depends on some properties of the problem
to be solved, the most possible one of which may be the
abundance of outliers. Finding out those properties is an
interesting issue for future work.

Secondly, the improvement on the generalization ability of
C4.5 Rule-PANE introduced by additional training data is not
consistent. This may owe to two reasons.

The first reason may be that the generalization ability could
not be infinitely improved through utilizing more additional
training data. So, the generalization ability of C4.5 Rule-PANE
may increase as the size of the additional training data set
approaching some certain point, but decrease after that point. It

is obvious that the ideal choice of the size of the additional
training data set is just the size at the turning point. Exploring
how to determine the turning point is another interesting issue
for future work. It is likely that the turning point may not be
independent of the problem to be solved. If it is the truth, we
hope to devise some feasible approaches that could help the
user to tune the performance of C4.5 Rule-PANE for specific
problems.

The second reason for the inconsistency of the improvement
of the generalization ability may be that at present the feature
vectors of the additional training data are randomly generated.
Ideal additional training data should serve to fill the gap
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Fig. 3.  The test results of C4.5 Rule-PANE with different size of additional training data set on diabetes
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between the actual distribution and the training data at hand,
but random generation of feature vectors may create unrealistic
cases of data. Thus, both the predictive error rate and the
number of rules generated by C4.5 Rule-PANE may abruptly
change as the additional training data changes. So, an important
issue for future work is to develop some kind of guideline for
the generation of the feature vectors of the additional training
data so that unrealistic data will not be created. Note that such
kind of guideline may not be obtained without the help of
domain knowledge.

In addition, in the case studies presented in Section 3, the
generalization ability of the artificial neural network ensemble
is always better than that of the C4.5 Rule. Exploring the
performance of C4.5 Rule-PANE when the generalization
ability of the artificial neural network ensemble is not better
than that of C4.5 Rule is also an interesting issue for future
work.

V. CONCLUSION

Artificial neural network ensemble is a powerful learning
technique that could significantly improve the generalization
ability of neural learning systems, but its comprehensibility is
even worse than that of a single artificial neural network, which
may hinder the wide acceptance of this technique in medicine.
In this paper, an approach named C4.5 Rule-PANE is proposed,
which gracefully combines the advantages of artificial neural
network ensemble and rule induction. Case studies show that
C4.5 Rule-PANE could benefit medical diagnosis because it
could generate rules with strong generalization ability and
strong comprehensibility.

A prominent advantage of C4.5 Rule-PANE is that it is very
easy to be used. This is because there are code or tools that
could be easily obtained for C4.5 Rule and artificial neural
networks (the code of C4.5 has been presented in Quinlan’s
book [20], and the software package C4.5 Release 8 is available
at http://www.cse.unsw.edu.au/~quinlan/. Codes or tools of
artificial neural networks could be easily obtained from the
Internet, as indicated by ftp://ftp.sas.com/pub/neural/FAQ5.
html#A_source), and the ensemble approaches such as Bagging
is quite easy to be programmed. However, as discussed in
Section 4, there are several problems on C4.5 Rule-PANE that
should be investigated in the future. Exploring those problems
may not only help us to finely tune C4.5 Rule-PANE, but also
torch the way of designing novel learning approaches with
strong comprehensibility as well as strong generalization
ability.
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