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Abstract

Data mining (DM) techniques are being increasingly used in many modern organizations to retrieve valu-
able knowledge structures from organizational databases, including data warehouses. An important knowledge
structure that can result from data mining activities is the decision tree (DT) that is used for the classi3cation
of future events. The induction of the decision tree is done using a supervised knowledge discovery process
in which prior knowledge regarding classes in the database is used to guide the discovery. The generation
of a DT is a relatively easy task but in order to select the most appropriate DT it is necessary for the DM
project team to generate and analyze a signi3cant number of DTs based on multiple performance measures.
We propose a multi-criteria decision analysis based process that would empower DM project teams to do
thorough experimentation and analysis without being overwhelmed by the task of analyzing a signi3cant num-
ber of DTs would o7er a positive contribution to the DM process. We also o7er some new approaches for
measuring some of the performance criteria.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Data mining (DM) techniques are being increasingly used in many modern organizations to re-
trieve valuable knowledge structures from organizational databases, including data warehouses. An
important knowledge structure that can result from data mining activities is the decision tree (DT)
that is used for the classi3cation of future events. The induction of the DT is done using a su-
pervised knowledge discovery process in which prior knowledge regarding classes in the database
is used to guide the discovery. The generation of a DT is a relatively easy task but in order to
select the most appropriate DT, it is necessary for the DM project team to generate and analyze a
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signi3cant number of DTs based on multiple performance measures. Many DM software packages
(e.g. C5.0, SAS Enterprise Miner, IBM Intelligent Miner) provide facilities that make the generation
of DTs a relatively easy task. However, in using these DM software the DM analyst has to make
decisions on various parameter values (e.g. Minimum Number of Cases per Leaf, Splitting Criterion,
Minimum Number of Cases for a Split, Maximum Number of Branches from a Node, Maximum
Depth of Tree) that could determine the DT that is generated. Even in those situations when some
major objectives of the DM project are known (e.g. accuracy of top events in the 3rst quartile), the
choice of the parameter values may not be obvious. The DM analyst may thus have to experiment
with many di7erent sets of parameter values thus resulting in a signi3cant number di7erent DTs
that must be evaluated. Although one may be concerned that the selected DT should give the best
performance with regards to Accuracy, there are other criteria (e.g. Simplicity, Stability, Lift) could
also be important in determining the most appropriate DT. It should be noted that although the data
mining software may generate a single DT as its choice, some software permit the accessing of other
DTs without additional computational costs. Most of these DTs would have been rejected during the
pruning phase of DT construction when the primary objective was to identify the DT that provided
the highest accuracy rate. However, if other performance measures are also important then some of
these rejected DTs might actually be worthy of consideration.

The use of multiple performance criteria adds some complexity to the problem of selecting the
most appropriate DT. In the case when one of these DTs outperforms all other DTs with regards
to all relevant performance measures then the choice of the most appropriate DT is obvious. When
this is not the case, he DM analyst and other members of the DM project team would need a good
approach for selecting the most appropriate DT given conCicting performance values.

Most previous approaches to comparing decision trees have focused on a single performance
measure, typically some measure of accuracy (e.g. [1]), although it is usually acknowledged that
multiple factors are important for evaluating DTs (e.g. [2]). Many commercial applications focus
on both accuracy and lift (e.g. [3,4]). Han and Kamber [5] in discussing the issue of whether the
accuracy criterion is suFcient for evaluating DTs state that “in addition to accuracy, classi3ers
(DTs) can be compared with respect to their speed, robustness, scalability, and interpretability”. Lim
et al. [6] used accuracy, complexity and training time to compare the performance of DT induction
algorithms and thus the DTs that they generated. Garofalakis et al. [7] indirectly addressed the issue
of accommodating multiple performance measures by preventing the generation of DTs that would
violate performance measure constraints. While there is debate about which performance measure is
the best (e.g. [1,8]) little attention has been paid to developing a formal approach for comparing DTs
that could accommodate multiple performance measures, although DM project teams have to make
such comparisons routinely. For as noted by [9] with regards to setting parameter values, there is
no “no practicable approach to select ... the most promising combinations early in the process” and
as such “it is necessary to experiment with di7erent combinations” but “it is very hard to compare
that many models and pick the optimal one reliably”. Thus, it is necessary for the DM project team
to generate and analyze a signi3cant number of DTs.

We propose a multi-criteria decision analysis (MCDA) based process to provide support to the
DM project team in its e7ort to select the most appropriate DT. This MCDA based process incor-
porates subjective opinion about the relative importance of the di7erent performance measures while
permitting the team to generate as many DTs as may be necessary to determine the most appropri-
ate DT without being overwhelmed by the information overload that might lead to the consideration
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of an insuFcient number of DTs. We also o7er some new approaches for measuring some of the
performance criteria.

2. Overview on decision trees

A DT is a tree structure representation of the given decision problem such that each non-leaf node
is associated with one of the decision variables, each branch from a non-leaf node is associated with
a subset of the values of the corresponding decision variable, and each leaf node is associated with
a value of the target (or dependent) variable. There are two main types of DTs: (1) classi3cation
trees and (2) regression trees. For a classi3cation tree, the target variable takes its values from a
discrete domain, and for each leaf node the DT associates a probability (and in some cases a value)
for each class (i.e. value of the target variable). The class that is assigned to a given leaf node of the
classi3cation tree results from a form of majority voting in which the winning class is the one that
provides the largest class probability even if that probability is less than 50%. In this paper we will
focus on the classi3cation tree, which is the most commonly used type of DT, and so henceforth in
the paper whenever we use the term decision tree we will be referring to a classi3cation tree.

The generation of a DT involves partitioning the model data set into at least two parts: the training
data set and the validation data set (commonly referred to as the test data set). There are two major
phases of the DT generation process: the growth phase and the pruning phase (e.g. [10]). The
growth phase involves inducting a DT from the training data such that either each leaf node is
associated with a single class or further partitioning of the given leaf would result in the number of
cases in one or both child nodes being below some speci3ed threshold. The pruning phase aims to
generalize the DT that was generated in the growth phase in order to avoid over 3tting. Therefore
in this phase, the DT is evaluated against the test (or validation) data set in order to generate a
subtree of the DT generated in the growth phase that has the lowest error rate against the validation
data set. It follows that this DT is not independent of the training data set or the validation data set
(i.e. commonly called test data set). For this reason it is important that the distribution of cases in
the validation data set correspond to the overall distribution of the cases.

3. Overview on performance measures for evaluating decision trees

The most commonly used performance criterion for a DT is the predictive accuracy rate (i.e.
correct classi3cation rate). For DTs with binary target variables and a speci3ed target event, various
combinations of sensitivity (i.e True Positives/Actual Positives) and speci5city (i.e True Nega-
tives/Actual Negatives) have also been considered as measures of accuracy (e.g. [1]). As noted by
Han and Kamber [5], accuracy rate is a function of sensitivity and speci5city.

Tree simplicity has also been considered by many researchers. For some, a measure of tree
simplicity has been limited to the number of leaves in the DT (e.g. [11]) while others have also
suggested that the sizes of the corresponding rules (i.e. number of conjuncts of decision variables)
are also relevant, particularly when the rules are to be applied by human beings rather than computers
(e.g. [5]). Both of these measures have implications for the interpretability of the DT.
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Another measure that could a7ect the interpretability of the DT is the degree of discriminating
power of the leaves. Ideally, one would like to have leaves that are totally pure (i.e. for each leaf
all classes except one has zero probability) but that is unlikely occur and so as was previously
mentioned the class that is associated with the leaf is simply the class with the largest frequency for
the given leaf based on the training data set. However, for a human being a given rule might not
be considered to be particularly useful if the probability of the assigned class is less than 50%. In
general, for many users of a DT, the rule that is associated with a given leaf is only useful if the
probability of the majority class is at least some speci3ed cut-o7 value �(¿ 0:50). Thus for some
situations a Discriminatory Power performance measure might also be appropriate for evaluating
the performance of the DT. We will de3ne one such measure later in the paper.

The stability performance criterion concerns our interest that there should not be much variation
in this predictive accuracy rate when a DT is applied to di7erent data sets. Thus, at a minimum
one might expect that there should not be much variation in predictive accuracy of the DT on the
validation data set when compared to that for the training data set. Typically, there is no numeric
performance measure for the stability property that is provided by the DT induction algorithm and
so often an estimate is made of the stability of the DT based on visual inspection of a lift chart,
an approach that is impractical if a large number of DTs are to be compared. For one type of a lift
chart, the Percentage Response Chart, the cases are sorted by the predicted probability of the target
event (i.e. desired value of the target variable), the cases are grouped into deciles, and the actual
probability of each decile is computed. The lift chart thus consists of a set of line segments, such
that each line segment corresponds to a leaf of the DT. Instability shows up in the form of a jagged
curve, where dips indicate that the accuracy of the given DT is worse than a random guess (e.g.
[4]). As noted previously visual inspection of a signi3cant number of DTs in order to assess their
stability could be a daunting task.

4. De�nition of some performance measures

In this section, we will provide an approach to measuring the performance of DTs with regard
to some of the performance criteria. The reader should note that we do not claim that this set of
performance measures is exhaustive or that each performance measure of this set is relevant in
every situation. Rather our objective is to show how values for some of these measures could be
determined, often based on data that is normally generated by the DT induction algorithm.

4.1. Stability (STAB)

One coarse measure of stability is given by STABC = Min{ACCT=ACCV, ACCV=ACCT} where
ACCV, ACCT are the accuracy rates for training and validation, respectively. It follows that
STABC ∈ (0; 1], with higher values of STABC indicating higher stability. A 3ner measure would
focus on the relative class frequencies of each leaf based on the validation and training data sets.
Given a leaf “k”: let ’Vk be the proportion of the validation data set cases that are associated with
this leaf; let �Vk be the corresponding posterior probability of the validation data set cases that are
positive with regards to the decision event (i.e. target event with the maximum posterior probability
for leaf k); let �Tk be the corresponding proportion of the training data set cases that are positive
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with regards to the target event. The stability of leaf k based on the training and validation data
sets can be de3ned as 	VTk = Min{�Vk =�Tk , �Tk =�Vk}, where 	VTk ∈ (0; 1], with higher values of
	VTk indicating higher stability. Given this measure the stability of the DT with regards to its per-
formance on the training and validation data sets can be de3ned as STABF =

∑
k ’Vk 	’Vk

VTk , where
STABF ∈ (0; 1], with higher values of STABF indicating higher stability. The reader may note that
STABF that is just the weighted sum of the stability of the individual leaves.

4.2. Simplicity (SIMPL)

In some situations where the DT is to be used as both an explanatory and predictive model, it
is important that the DT should be as simple as possible. Simplicity, or equivalently complexity, is
often considered to be a function of the number of leaves in the DT, and the rule length. Below we
describe approaches to measuring both.

4.2.1. Simplicity based on number of leaves (SIMPLLEAF)
Although it is often stated with all else being approximately equal, the fewer the leaves the better

one should include a caveat with that statement as we are often not interested in a DT with only a
single leaf and for other situations even a DT with two leaves might not be useful. In other words for
di7erent DT problem instances there may be di7erent utility functions that map the number of leaves
to the simplicity measure. Let us assume that we have such a function such that the complexity
SIMPLLEAF = fLEAF(|K |), where K is the index set of the leaves in the DT, and fLEAF(|K |), is a
non-increasing function such that SIMPLLEAF ∈ (0; 1], with higher values of SIMPLLEAF indicating
higher simplicity.

4.2.2. Simplicity based on rule size (SIMPLRULE)
For a given rule, its length (i.e. the number of conjuncts in the rule) provides a measure of the

complexity of the rule then another simplicity measure for the DT could be based on the mean rule
length of the rules in the DT. Let xk be the rule length for rule k ∈K . The mean rule length of the
DT could be de3ned as xMean =

∑
k ’Vkxk , which is just the weighted sum of the length of each rule.

The corresponding rule length based simplicity measure is de3ned as SIMPLRULE = fRULE(xMean),
where fRULE(xMean) is a non-increasing function such that SIMPLRULE ∈ (0; 1], with higher values
of SIMPLRULE indicating higher simplicity. We will provide an example of such a function in our
illustrative example.

4.3. Discriminatory power (DSCPWR)

A measure of the usefullness of the DT could be based on the discriminatory power of the leaves,
with leaf nodes that have low ambiguity with regards to the class to which a case is to be assigned
being more desirable. Recall that we are focusing on DTs that generate the posterior probabilities
for each value of the target variable, and that the decision for a given leave is the target event (i.e.
value of the target variable) that has the maximum posterior probability for that leaf. For a given
predictive modeling problem, let � be the cut-o7 value for the posterior probability such that the user
would be comfortable with the decision associated with that leaf only if the posterior probability of
the decision event (i.e. target event with the largest posterior probability based on the training data)
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was greater than or equal to �. Let �(k) = 1 if �Tk¿ �; and �(k) = 0 if �Tk ¡ �, where �Tk is the
posterior probability of the decision event; and let ’Vk be the proportion of the validation cases that
are associated with leaf k. A 3ne measure of accuracy could be de3ned as: DSCPWR=

∑
k ’Vk�(k),

where DSCPWR ∈ [0; 1], with higher values of DSCPWR indicating higher discriminatory power.
The rationale here is that predictions of those leaves whose maximum posterior probability is less
than the user de3ned cut-o7 values are questionable.

5. Formulating the evaluation problem

5.1. Approach to ranking the decision trees

Given for each of the DTs we have values for the set of performance measures, the question
still remains as to how we will go about selecting the most appropriate DT. Given that we are
dealing with multiple performance criteria then our evaluation problem is in fact a multiple criteria
decision-making (MCDM) problem. In formal terms, MCDM problems are said to involve the pri-
oritization of a set of alternatives in situations that involve multiple, sometimes conCicting criteria.
Various formal techniques have been proposed including the weighing model and outranking meth-
ods. In this paper, we will focus on the weighing model because of its popularity, relative simplicity
and intuitive appeal.

Each DT has a performance vector DTivi = (vi1; vi2; : : : ; vi|J |) where vij is DTi’s score with regards
to performance measure j, and J is the index set of the performance measures. An intuitively
appealing approach for comparing the overall performance of the DTs would be to compute each
DT’s composite score as the weighted sum of its performance with regards to the individual measures.
Thus for DT “i” the composite score would be si=

∑
j∈J vijwj, where wj is the weight of performance

“j” for the given evaluation problem. Given a pair of DTs and our set of weights, DTh would
be preferable to DTi if sh ¿ si. There are some preference relationships that are independent of
the weights. For example DTh would be said to dominate DTi if vh = (vh1; vh2; : : : ; vh|J |)¿ vi =
(vi1; vi2; : : : ; vi|J |) and DTh outperforms DTi with respect at least one of the performance measures
(i.e. vhj ¿ vij for at least one j∈ J ). It should be noted that if DTh dominates DTi, then sh ¿ si no
matter which set of weights is used. A DT that is not dominated by any other DT is said to be
non-dominated.

5.1.1. Generating weights
Various approaches are available for generating weights wj from the subjective inputs of evaluators,

both for individual and group decision-making contexts, and for situations when the inputs are precise
or imprecise (e.g. [12–15]). The application of those techniques requires estimates of the relative
importance of pairs of performance measures, and result in a weight vector that is a synthesis of
the input pairwise comparison information. While some of these techniques require that pairwise
comparison information be provided for each pair of performance measures, for others it is not
necessary that estimates be provided for all pairs of measures (e.g. [13–15]). Given the nature
of our evaluation problem, we will assume that initially the evaluator is not certain about the
numeric estimate of the pairwise comparisons and as such we will provide for the evaluator to make
imprecise numeric estimates in the form of numeric intervals. For situations involving an individual
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evaluator, techniques described in [14] can be used to generate the corresponding interval weight
vector, while for situations involving a group of evaluators, techniques described in [15] can be used
to generate a set of consistent weights the corresponding normalized interval weight vector. Thus, the
evaluator speci3es the imprecise numeric estimate of the relative importance of performance measure
j compared to performance measure k as ajk=[aL:jk ; aU:jk]. The weight generation technique produces:
(a) a complete imprecise, consistent pairwise comparison matrix C = {cjk = [cLjk ; cUjk]}; and (b) a
consistency indicator that provides a measure of the consistency of the input pairwise comparison
data. The reader may refer to [14] for details of these techniques.

5.1.2. Linear programming formulation
Based on our MCDM model, determining if DT “h” could be the most appropriate DT would

involve computing its best score given the set of weights that are consistent with the subjective
opinion on the relative importance of the performance measures. This involves solving the following
linear programming problem:

PDTh : Max sh

(1)
∑

j∈J vijwj − si = 0 ∀i∈#,
(2) wj − cLjkwk¿ 0 ∀j; k ∈ J; j �= k,
(3) wj − cUjkwk6 0 ∀j; k ∈ J; j �= k,
(4)

∑
j∈J wj = 1

(5) wj¿ 0 ∀j∈ J ,

where J is the set of performance measures; constraint 1 is used to compute the score (i.e. si) for
each DTi as a weighted sum of the relevant performance measures; constraints 2 and 3 ensure that
the set of weights that are used to compute the scores of the DTs is consistent with the subjective
opinion on the relative importance of the performance measures (i.e. (wj=wk)¿ cLjk ; (wj=wk)6 cUjk);
and constraints 4 and 5 ensure that the weights are non-negative and normalized to sum to 1, thus
ensuring that each si ∈ [0; 1].

5.2. Description of the procedure for evaluating decision trees

Let $SPLTCRT be the set of selected splitting methods (e.g. Entropy, Chi-Square, Gini), $MINLF

be the set of selected values for the Minimum Number of Cases per Leaf, $MINSPLT be the set of
selected values for the Minimum Number of Cases for a Split, $MAXBRN be the set of selected values
for the Maximum Number of Branches from a Node, $MAXDPTH be the set of selected values for
the Maximum Depth of Tree.

Step 1: Preparation

(a) Specify the set of performance measures J .
(b) Specify the sets $SPLTCRT, $MINLF, $MINSPLT, $MAXBRN, $MAXDPTH.
(c) If Discriminatory Power (DSCPWR) is one of the selected performance measure, specify the

cut-o7 value � for leaf ambiguity.
(d) Specify threshold values for accuracy %ACC V, stability %STAB, and any other performance mea-

sure.
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(e) Specify the utility function for Simplicity based on the Number of Leaves, and the utility
function for Simplicity based on the Chain Lengths of the Rules.

Step 2: Generate weights for performance measures

(a) The evaluator(s) from the DM project team specify numeric pairwise comparison data on rele-
vant importance of pairs of performance measures. It is not necessary that a pairwise comparison
entry be made for each pair of performance measures but each performance measure must be
included in at least one pairwise comparison.

(b) Generate the corresponding normalized weight vector and consistency indicator using a weight
vector generation technique (e.g. [14,15]).

(c) If the consistency indicator value is acceptable then go to Step 3, otherwise repeat Step 2.

Step 3: Generate candidate decision trees and compute performance measures
For each combination of parameter values from the sets $SPLTCRT, $MINLF, $MINSPLT, $MAXBRN,

$MAXDPTH, generate the corresponding DTi and calculate the performance measures (e.g. ACC Vi,
STABi).

Let # be the set of all DTs that were generated in this step.
Step 4: Determine set of relevant decision trees

(a) Exclude DTs which violate any of the threshold values for the performance criteria from #.
(b) Identify and exclude dominated DTs from #. At this step # now only contains those non-

dominated DTs that satisfy all threshold constraints.

Step 5: Determine the ‘most appropriate’ decision tree

(a) Let # be the set of non-dominated DTs that satisfy all threshold constraints. Formulate and
solve problem PDTh for each h∈#.

(b) Order the DTs in # in descending sequence based on their values of sh.

6. Illustrative example

Our illustrative example involves ten decision trees (DT01–DT10) that were generated by the SAS
Enterprise Miner from the HMEQ data set. Table 1 displays data from the 3rst two DTs (DT01,
DT02) that will be used to generate values for the performance measures which we will assume to
be: Validation Classi3cation Rate (ACC V), Fine Stability (STABF), discriminatory power on the
ambiguity of the leaves (i.e. DSCPWR), simplicity based on the number of leaves (SIMPLLEAF),
simplicity based on the rule lengths (SIMPLRULE).

Step 1: Preparation
In discussion with the end-users the DM analyst was able to determine that: (a) the cut-o7 value

for leaf ambiguity be �= 0:75; (b) the threshold value for validation accuracy was %ACC = 0:80; the
threshold value for discriminatory power was %DSCPWR = 0:75, and the threshold value for stability
was %STAB = 0:90; (c) if a DT did not have a positive value for SIMPLLEAF then it should be
excluded.
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Table 1
Data on 3rst two DTs

DT01 DT02

Classi3cation rate: 0.885; Number of leaves: 25 Classi3cation rate: 0.860; Number of leaves: 7

LEAF ID Training Validation Chain Validation Training Validation Chain Validation
proportion frequency proportion cases proportion frequency proportion cases

1 0.792 0.917 5 12 0.620 0.617 1 433
2 0.600 0.429 5 7 0.957 0.931 1 743
3 0.923 0.833 5 6 0.932 0.944 2 642
4 0.773 0.718 4 39 0.829 0.870 2 100
5 0.900 0.600 4 5 0.885 0.909 2 11
6 0.960 0.583 4 12 0.722 0.364 2 11
7 0.850 0.846 4 13 0.964 0.963 1 27
8 0.733 0.667 4 6
9 0.609 0.481 5 27

10 0.917 0.875 5 8
11 0.655 0.308 4 13
12 0.813 1.000 4 1
13 0.656 0.654 5 26
14 0.818 0.500 5 2
15 0.792 0.714 4 35
16 0.615 0.800 5 10
17 0.895 0.800 5 5
18 0.636 0.556 5 9
19 0.740 0.625 3 32
20 0.730 0.824 2 125
21 0.937 0.794 2 34
22 1.000 1.000 2 6
23 0.957 0.931 1 743
24 0.908 0.929 1 764
25 0.964 0.963 1 27

The DM analyst was also able to determine from these discussions that for the end-users the ideal
DT would have between four through eight leaves; that a DT with less than two leaves or more than
twenty leaves was unacceptable; and that value of other acceptable DTs would be based on how
well they compared with an ideal DT with regard to the number of leaves. Based on this information
the utility function for the simplicity based on the number of leaves was de3ned as follows:

fLEAF(|K |) = 0 if |K |¡ 2 or |K |¿ 20;

fLEAF(|K |) = (4 − |K |)=(4 − 2) if 26 |K |¡ 4;

fLEAF(|K |) = 1 if 46 |K |6 8;

fLEAF(|K |) = (20 − |K |)=(20 − 8) if 8¡ |K |6 20:
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Table 2
Pairwise comparisons of relative importance of performance measures

ACC V DSCPWR STABF SIMPLRULE SIMPLLEAF

ACC V I: [0.80, 1.00]
O: [0.80, 1.00]

DSCPWR I: [0.80, 1.00] I:
O: [0.80, 1.00] O: [0.77, 0.83]

STABF

SIMPLRULE I: [0.50, 0.80] I: [0.50, 0.80] I: [0.50, 0.80] I: [0.90,1.11]
O: [0.52, 0.77] O: [0.63, 0.80] O: [0.50, 0.58] O: [0.90,1.11]

SIMPLLEAF I: I: I: I: [0.90,1.11]
O: [0.58, 0.69] O: [0.69, 0.72] O: [0.56, 0.58] O: [0.90,1.11]

I: input entries; O: consistent output entries.

The DM analyst was able to determine that the ideal DT would have an average chain length
(xMean) that was no greater than 2; that a DT with an average chain length (xMean) more than 6 was
unacceptable; and that value of other acceptable DTs would be based on how well they compared
with an ideal DT with regard to the average chain length. Based on this information the utility
function for the simplicity based on the average chain length was de3ned as follows:

fRULE(xMean) = 1 if xMean6 2;

fRULE(xMean) = (6 − xMean)=(6 − 2) if 2¡xMean6 6;

fRULE(xMean) = 0 if xMean ¿ 6:

Step 2: Generate weights for performance measures
The DM project team did pairwise comparisons on the relative importance of the 5 performance

measures. Table 2 displays in the Input Pairwise comparison data that was provided and the output
consistent pairwise comparison data that was generated by the Inner Interval Weight Generation
Procedure [14]. The reader may observe that pairwise comparisons were not o7ered for each possible
pair of performance measures but that consistent output pairwise comparison data was generated for
each distinct pair of performance measures by Inner Interval Weight Generation Procedure.

Step 3: Generate candidate decision trees and compute performance measures
Using formulas for calculating each performance measure, and data collected on each of the 10

DTs that are similar for that displayed in Table 1, the values of our performance measures were
generated for the 10 DTs. Table 3 displays a list of the DTs ordered in descending sequence based
on validation Classi3cation Accuracy (i.e. ACC V).

Step 4: Determine set of relevant decision trees
We can see that all our DTs satisfy the thresholds for validation accuracy, and ambiguity, stability,

and rule simplicity but that one of them (i.e. DT01) violates the threshold for SIMPLLEAF although
it is one of the top three DTs based on accuracy. Further DT03 is dominated by DT04 since DT03
never outperforms DT04 on any performance measure while DT04’s outperforms DT03 for some of
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Table 3
Performance measures for DTs ordered by validation accuracy

DT# ACC V DSCPWR STABF SIMPLRULE SIMPLLEAF

07 0.888 0.799 0.995 0.930 0.417
09 0.887 0.816 0.976 1.000 0.750
01 0.885 0.870 0.951 1.000 0.000
10 0.885 0.800 0.975 1.000 1.000
06 0.884 0.800 0.978 1.000 0.917
04 0.883 0.810 0.972 1.000 0.833
03 0.881 0.800 0.961 1.000 0.833
08 0.862 0.780 0.997 1.000 1.000
02 0.860 0.774 0.979 1.000 1.000
05 0.833 0.800 0.984 1.000 1.000

Table 4
Non-dominated DTs ordered by validation accuracy

DT# ACC V DSCPWR STABF SIMPLRULE SIMPLLEAF

07 0.888 0.799 0.995 0.930 0.417
09 0.887 0.816 0.976 1.000 0.750
10 0.885 0.800 0.975 1.000 1.000
06 0.884 0.800 0.978 1.000 0.917
04 0.883 0.810 0.972 1.000 0.833
08 0.862 0.780 0.997 1.000 1.000
05 0.833 0.800 0.984 1.000 1.000

the performance measures (i.e. ACC V, DSCPWR, STABF). Similarly DT08 dominates DT02. We
can therefore exclude DT01, DT03 and DT02 from further consideration.

Table 4 displays the set of non-dominated DTs that satisfy the threshold constraints.

• Since DT07, DT04 and DT08 provide the best values for ACC V, DSCPWR, and STABF,
respectively, then they are not dominated by any other DT.

• DT09 provides the second highest value of ACC V to DT07 but DT09 outperforms DT07 with
regards to DSCPWR, SIMPLRULE, and SIMPLLEAF. It follows that DT09 is non-dominated.

• DT10 provides the third highest value of ACC V (after DT07, DT09) but DT10 outperforms both
DT07 and DT09 with regards to SIMPLLEAF. It follows that DT10 is non-dominated.

• DT06 could only be dominated by DT07, DT09, and DT10 but DT06 outperforms DT07 and with
regards to SIMPLLEAF, DT06 outperforms DT09 and with regards to STABF and SIMPLLEAF, and
DT06 outperforms DT10 and with regards to STABF. It follows that DT06 is also non-dominated.

• DT05 provides the third highest value of STABF but DT05 outperforms DT07 and DT08 with
regards to ambiguity of leaves (DSCPWR). It follows that DT05 is also non-dominated.

Step 5: Determine ‘most appropriate’ decision tree
Problem PDTh was formulated and solved for each our non-dominated DTs that do not violate any

of the threshold constraints. Table 5 displays the ranking of the DTs and for each DT its optimal
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Table 5
Composite performance scores for non-dominated DTs

DT# si Best weight vector
(ACC V, DSCPWR, STABF, SIMPLRULE, SIMPLLEAF)

10 0.927 (0.221016, 0.205590, 0.266447, 0.153473, 0.153473)
8 0.923 (0.216054, 0.208354, 0.270028, 0.155536, 0.150028)
5 0.918 (0.216054, 0.208354, 0.270028, 0.155536, 0.150028)
6 0.915 (0.216054, 0.208354, 0.270028, 0.155536, 0.150028)
4 0.903 (0.216054, 0.208354, 0.270028, 0.155536, 0.150028)
9 0.893 (0.216054, 0.208354, 0.270028, 0.155536, 0.150028)
7 0.836 (0.249385, 0.199508, 0.258542, 0.148920, 0.143646)

weight vector, where the optimal weight vector is consistent with the output consistent pairwise
comparison data generated in Step 2. We can see that DT10 is the top ranked DT while DT07 is the
lowest ranked DT even though DT07 had the highest accuracy rate. It should be noted that given
the set of possible weights that even if DT07 had accuracy rate (ACC V) of 0.95 and discriminatory
power (DSCPWR) of 0.90 but its values for all other performance measures were unchanged that
its best composite score would be 0.872 and so it still would not be the top ranked DT.

The reader in observing that for each of these DTs the weight for stability is greater than that
of accuracy, may raise the point that it is unreasonable to expect that stability would be considered
more important than accuracy by the project team. However, it should be noted that given the fact
that the accuracy rate of each DT surpassed the speci3ed threshold then stability would be considered
to be more important than accuracy but that improvement in accuracy above the threshold was still
important.

7. Conclusion

In this paper, we have investigated the problem of selecting the most appropriate decision tree
(DT), and have presented an MCDA based process that could be used to provide support to the
DM project team that are faced with the task of selecting the most appropriate DT given the
need to accommodate all signi3cant performance measures in their selection and experimentation
process. We have also provided more sophisticated approaches for measuring DT performance with
regard to some of the performance criteria (i.e. stability, discriminating power, simplicity). Given the
increasing use and importance of DT induction, a technique that would empower DM project teams
to do thorough experimentation and analysis without being overwhelmed by the task of analyzing a
signi3cant number of DTs would o7er a positive contribution to the DM process.
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