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Abstract 
 

It has been asserted that, using traditional pruning 
methods, growing decision trees with increasingly 
larger amounts of training data will result in larger 
tree sizes even when accuracy does not increase.  With 
regard to error-based pruning, the experimental data 
used to illustrate this assertion have apparently been 
obtained using the default setting for pruning strength; 
in particular, using the default certainty factor of 25 in 
the C4.5 decision tree implementation.  We show that, 
in general, an appropriate setting of the certainty 
factor for error-based pruning will cause decision tree 
size to plateau when accuracy is not increasing with 
more training data. 

 
1. Introduction 
 
In general, a decision tree can be grown so as to 

have zero error on the training set.  If there is any noise 
in the data set or it does not completely cover the 
decision space, then over fitting occurs and the tree 
needs to be pruned in order to generalize well to the 
test set.  There are various approaches to pruning 
decision trees, including error-based pruning, reduced-
error pruning, minimum description length pruning, 
and others [1,10].  One well-known element of 
machine learning folklore is that decision tree pruning 
methods generally do not prune hard enough.  In 

particular, error-based pruning, which is a simple 
method that does not require a validation set, has been 
criticized on this count.  For example, Esposito et al. 
performed an empirical study of decision-tree pruning 
methods and reported that error-based pruning (EBP) 
underprunes on all datasets that they tested – “… EBP 
performs well on average and shows a certain stability 
on different domains, but its bias toward underpruning 
presents some drawbacks …”  [1]. 

More recently, Oates and Jensen have studied 
decision tree pruning for large data sets [2,3,4].  They 
also conclude that pruning methods generally do not 
work as desired, and summarize the problem as follows 
– “Despite the use of pruning algorithms to control tree 
growth, increasing the amount of data used to build a 
decision tree, even when there is no structure in the 
data, often yields a larger tree that is no more accurate 
than a tree built with fewer data” [4].  As one 
illustration of the problem, Oates and Jensen present a 
graph of results for tree size versus training set size 
using a synthetic training set with examples from two 
classes that have random labels.  Their data show that 
tree size grows approximately linearly with training set 
size, regardless of whether error-based, reduced-error, 
or minimum-description-length pruning is used.  They 
also present a modification to reduced-error pruning 
that at least partially addresses the problem [4]. 

Error-based pruning (EBP) uses the error that is 
made at a node of the tree on the training data in an 
estimate of the test set error at that node.  EBP assumes 
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that the error rate follows a binomial distribution, and 
the certainty factor (CF) parameter then controls the 
pruning.  The CF is used to estimate the upper limit of 
the probability that an error occurs over the population 
at a leaf.  This is done by using the CF as a confidence 
limit for a binomial distribution.  This entails the 
questionable assumption that the errors at a node with 
N examples are events in a sequence of trials.  
Predictions of how many errors would really be made 
at a leaf can then be made.  The higher the CF, the 
more likely the current error rate is accepted and no 
pruning will be done (after all, the decision tree 
decided this was a good split with the given data).  A 
lower CF means more errors than occurred in the train 
data will be predicted and hence there is more chance 
for pruning because we overestimate the error rate at 
the leaf. Thus a certainty factor of 100 indicates no 
pruning, and smaller values of the certainty factor 
indicate greater pruning because progressively more 
errors are predicted to occur at a leaf for the same 
number of training examples [5].  This is the pruning 
method used in, for example, C4.5 release 8 [5]. 

The default setting of the certainty factor in C.4.5 
release 8 is 25.  We show that when the certainty factor 
parameter for error-based pruning is appropriately set, 
the pathological behavior noted by Oates and Jensen 
disappears.  Thus error-based pruning can in fact work 
appropriately for large or small datasets. 

We do not explicitly address how to set the CF in 
this paper.  Instead, an examination of whether any 
setting of the CF exists which will halt the growth in 
size of trees when there is no increase in accuracy.  
Current evaluations of error based pruning in the 
literature [1,2,4] appear to have only worked with the 
default certainly factor. The evaluation of error based 
pruning as inadequate appears commonly accepted (see 
[8] for example) 

 
2.  Experimental Results 

 
2.1 “Structure-less” Data 

 
One of the more striking results shown by Oates and 

Jensen involves the creation of decision trees with C4.5 
for a family of “structure-less” training sets of 
difference sizes.  This data consists of elements with 
“30 binary attributes and a binary class label, all with 
values assigned randomly from a uniform distribution” 
[4].  The appropriate result for this type of data would 
be a single-node tree that assigns elements the label of 
the most frequently occurring class.  However, the 
results obtained with C4.5 using the default value for 
the certainty factor show that tree size grows linearly 
with the size of the training set.  In other words, when 

given a larger training set the tree becomes larger, even 
when accuracy cannot increase. 

 
a) 
 

 
b) 

Figure 1.  Tree growth with error-based pruning 
and two class examples given a random class 
label.  In a) we plot no pruning vs. default and cf = 
10 and b) shows no growth for low cf. 

 
Figure 1 shows results obtained with the same sort 

of structure-less data set used by Oates and Jensen.  
The training set size is varied from 250 to 5000, in 
increments of 250. Data is plotted as the C4.5 certainty 
parameter is varied across values of 100 (no pruning), 
25 (the default), 10 in Figure 1a and  1, 0.1, 0.01 and 
0.001 in Figure 1b.  The curve for the default certainty 
factor value mimics the results presented by Oates and 
Jensen [4].  However, the family of curves clearly 
shows that the behavior depends on the value of the 
certainty factor.  If the certainty factor is set as low as 
0.01, then the average tree size varies between one (a 
“stump”) and four over all training set sizes.  That is, 
the tree size is minimal and constant, just as desired. 

 
2.2 Structured Data 

 
The structure-less data set is of course an extreme 

example.  Performance over a number of real datasets 
may give a more useful view of practical performance.  
Therefore, experiments were also performed using the 
thirty-two data sets described in Table 1.  Most of these 
data sets come from the UCI Machine Learning 

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02) 
1082-3409/02 $17.00 © 2002 IEEE 



  

repository [6].  One, the “Jones Protein Prediction” 
dataset, comes from the problem of predicting the 
secondary structure of proteins at each amino acid 
position.  This particular dataset was used in 
constructing the classifier that won the Fourth Critical 
Assessment of Techniques for Protein Structure 
Prediction contest (“CASP-4”) [7]. 

A ten-fold cross-validation experiment was done 
with C4.5 for each of the thirty-two data sets in Table 
1.  Each data set was divided into ten randomly 
selected one-tenths, and ten times C4.5 was trained on 
90% of the data and tested on the other 10% of the 
data.   The results recorded for each tree are the size of 
the tree, measured in number of nodes [9] and accuracy 
on the test set.  The accuracy on the test set, and the 
average size and accuracy was computed across the ten 
test sets.  This was done for each of fifteen different 
values of the certainty factor: 100, 90, 80, 70, 60, 50, 
40, 30, 25, 20, 10, 1, 0.1, 0.01. 
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Figure 2 – Certainty Factor At Which Increase 

In Error Is Statistically Significant. 
 
 

In all of the thirty-two data sets tested, the certainty 
factor can be set smaller than the default value, and so 
the size of the tree decreased, without a statistically 
significant increase in the error rate.  Figure 2 shows a 
histogram of the smallest reasonable value of the 
certainty factor for the thirty-two data sets.  Here, 
"smallest reasonable value" refers to the smallest value, 
less than the default of twenty-five, for which the error 
rate on the test set is not statistically significantly 
increased. In twenty-three of the thirty-two datasets, 
there was no statistically significant change in the error 
rate even with the certainty factor reduced to 0.01.   

For each CF value, the null hypothesis that the error 
level of the tree at the given CF is less than or equal to 

the error level of the tree at the default level (25) is 
tested.  A one-sided paired t-test is used to compare the  
variations across the tenfold cross validation with the 
significance level set as 0.05α = . 

Rather than looking at certainty factor relative to the 
default value, we can also ask what value for the 
certainty factor would produce the lowest error on the 
test set.  The histogram for this result appears in Figure 
3.  There are actually seven of the thirty-two datasets in 
Table 1 for which the certainty factor that results in the 
lowest error is greater than the default value, with the 
highest such setting being seventy.  However, there are 
also eight datasets at which the best value of the 
certainty factor is 0.01 or lower.  It should not be 
surprising that the accuracy of a decision tree technique 
is dependent on a parameter that controls the pruning 
strength. But it may be somewhat surprising that the 
ideal value of the parameter can vary so widely across 
different datasets, and that such a low certainty value 
can be appropriate so frequently.  
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Figure 3 – Certainty Factor Value That 

Yields Smallest Error on the Test Set. 
 

Next, we focus on the tree size, rather than tree 
accuracy.  As the certainty factor varies from 25 to 
0.01 across all thirty-two datasets, tree size decreases 
an average of 56.7% while error rate increases an 
average of 0.7%.  The maximum decrease in size is 
99.1%, which occurs for the German dataset, and the 
minimum decrease in tree size is zero, which occurred 
for the Glass and Mushroom datasets.  The maximum 
decrease in error rate is 6.3%, which occurred for the 
Jones Protein Prediction Dataset, and the maximum 
increase in error rate was 10.35%, which occurs for the 
Tic Tac Toe dataset.  The error increase is significant 
in only nine of the thirty-two datasets. 

For each data set with CF= 0.01, the null hypothesis 
that the error level of the tree is less than or equal to 

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02) 
1082-3409/02 $17.00 © 2002 IEEE 



  

the error level of the tree at the default level (25) is 
tested.  A one-sided paired t-test is used to compare the 
variations across the tenfold cross validation with the 
significance level set as 0.05α = . 

For datasets that represent “simple enough” pattern 
recognition problems, using a smaller certainty factor 
value does in fact cause tree size to become essentially 
constant as the training set size grows.  Two examples 
of this are shown in Figure 4.  A “simple enough” 
problem is one for which the classifier can achieve the 
greatest test accuracy possible using less than all of the 
available training data. 

 

 

 
 

Figure 4 –Low Certainty Factor Can Give 
Constant Tree Size With Added Training Data. 
 
3.  Summary and Discussion 
 
Error-based pruning is a simple method of pruning 

decision trees.  It uses the training set error at a node 
and does not require a validation set.  The degree of 
pruning is controlled by the certainty factor parameter.  
One objection to error-based pruning is that it has the 
general effect of under-pruning [1].  A related but more 
specific objection is that, for large datasets, error-based 
pruning results in trees that continue to increase in size 

as the amount of training data increases, even when the 
resulting trees give no increased accuracy [4]. 

Our results show that these objections are valid only 
if one restricts attention to the default value for the 
certainty factor.  When the certainty factor value is 
appropriately tuned for the data set, error-based 
pruning can give trees that are essentially constant in 
size regardless of the amount of training data.  This 
generally requires values of the certainty factor much 
smaller than the default value in C4.5. 

One could object to having to tune a parameter 
value for effective pruning, on the basis that, other 
things being equal, a parameter-free method is better.  
However, essentially all pruning methods are 
controlled by a parameter of some sort.  For example, 
any method that requires a split of the available labeled 
data into a training set and a validation set effectively 
requires a parameter that is the split ratio and is 
vulnerable to an unfortunate group of examples in the 
validation set even with a good choice of split ratio.  
Thus an argument for one pruning method being better 
than another would have to be based on relative ease of 
tuning. 

We have not addressed how to choose the CF. One 
possibility is to use a validation set.  A learned tree can 
be pruned, successively, to different levels and tested 
with the most accurate tree retained.  For large labeled 
data sets, there is no major drawback in using a 
validation set.  For small data sets the current default 
CF appears adequate. 

Error-based pruning has perhaps been too readily 
dismissed.  For small datasets, it has the advantage that 
it does not require a split into train and validation data.  
For large datasets, as we have shown, it is able to 
produce trees that are essentially constant in size in the 
face of increasingly larger training sets.  There is not 
yet a clear demonstration of a true problem with error-
based pruning that is successfully addressed by some 
more sophisticated pruning technique. 
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Table 1.  Description of real world data sets used. 
 
 

 
 

Dataset Name 
Data 
Instances 

Continuous 
Features 

Discrete 
Features 

 
Classes 

Majority 
Class 
Proportion 

Protein Structure 
Prediction 

209539 340 0 3 44.48% 

Adult 32652 6 8 2 75.92% 
Hyperthyroid 2800 7 22 4 92.14% 

Australian 690 6 8 2 55.50% 
Page Blocks 5473 10 0 5 89.77% 

Breast Cancer Wisconsin 699 1 9 2 65.52% 
Census Income 48845 6 8 2 54.12% 

Cleveland 303 13 0 2 70.00% 
German 1000 7 13 2 35.51% 

Glass 214 10 0 7 55.56% 
Heart 270 5 8 2 79.35% 

Hepatitis 155 19 0 2 63.95% 
Hungarian 294 13 0 2 64.10% 
Ionoshpere 351 34 0 2 33.33% 

Iris 150 4 0 3 33.33% 
Kr vs Kp 3196 0 36 2 52.22% 

Labor Negotiations 40 8 8 2 65.00% 
LED 1000 0 7 10 10.90% 
Letter 20000 16 0 26 4.07% 

Long Beach 200 13 0 2 74.50% 
Mushroom 8124 0 22 2 51.80% 
PenDigits 10992 19 0 10 10.41% 
Phoneme 5404 5 0 2 70.65% 

Pima 768 8 0 2 65.10% 
Promoter Gene 106 0 57 2 50.00% 
Segmentation 2310 19 0 7 14.29% 

Shuttle 43500 9 0 7 78.41% 
Sick Euthyroid 3163 7 18 2 90.74% 

Swiss 123 13 0 2 93.50% 
Tic Tac Toe 958 0 9 2 65.34% 

Congress Voting Record 435 0 16 2 61.38% 
Congress Voting Record –  

Best Feature Removed 
435 0 15 2 61.38% 
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