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Abstract

We define an optimal class association rule set to be the minimum rule set with the same predictive power of the complete class association

rule set. Using this rule set instead of the complete class association rule set we can avoid redundant computation that would otherwise be

required for mining predictive association rules and hence improve the efficiency of the mining process significantly. We present an efficient

algorithm for mining the optimal class association rule set using an upward closure property of pruning weak rules before they are actually

generated. We have implemented the algorithm and our experimental results show that our algorithm generates the optimal class association

rule set, whose size is smaller than 1/17 of the complete class association rule set on average, in significantly less rime than generating the

complete class association rule set. Our proposed criterion has been shown very effective for pruning weak rules in dense databases. q 2002

Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Predictive association rules

The goal of association rule mining is to find all rules

satisfying some basic requirement, such as the minimum

support and the minimum confidence. It was initially

proposed to solve market basket problem in transaction

databases, and has then been extended to solve many other

problems such as classification problem. A set of association

rules for the purpose of classification is called predictive

association rule set. Usually, predictive association rules

are based on relational databases, and the consequences of

rules are in pre-specified column, class attribute. Clearly, a

relational database can be mapped to a transaction database

when an attribute and attribute value pair is considered as an

item. After having mapped a relational database into a

transaction database, a class association rule set is a subset

of association rules with the specified classes as their

consequences, and a predictive association rule set is a small

subset of class association rule set. Generally, mining

predictive association rules undergoes the following two

steps.

1. Find all class association rules from a database, and then

2. Prune and organize the found class association rules and

return a sequence of predictive association rules.

In this paper, we focus on the first step. There are two

problems in finding all class association rules.

† It may be hard to find the all class association rule set in

dense databases due to the huge number of class

association rules. For example, many databases support

more than 80,000 class association rules as in Ref. [1].

† Too many class association rules will reduce the overall

efficiency of mining predictive association rule set. This

is because the set of found class association rules is the

input of the second step processing whose efficiency is

mainly determined by the number of input rules.

To avoid the above problems, it is therefore necessary to

find a small subset of a class association rule set that makes

predictions as accurately as the class association rule set

does, so that this subset can replace the class association rule

set. Our proposed optimal class association rule set is the

smallest subset with the same predictive power, which will

be formally defined in Section 2, of the complete class

association rule set. We present an efficient algorithm to

directly generate the optimal class association rule set by

taking the advantage of upward closure properties of weak
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rules that will be discussed in this paper. A clear usefulness

of the work is that we can obtain predictive association rules

from the optimal class association rule set instead the class

association rule set that may not be available because of its

expensive computational cost from dense databases.

1.2. Related work

Mining association rules [2] is a central task of data

mining and has shown applications in various areas [1,3,4].

Currently most algorithms for mining association rules are

based on Apriori [5], and used the so-called ‘downward

closure’ property which states that all subsets of a frequent

itemset must be frequent. Example of these algorithms can

be found in Refs. [6–8]. A symmetric expression of

downward closure property is upward closure property—

all supersets of an infrequent itemset must be infrequent. We

will use this term throughout the paper.

Finding classification rules has been an important

research focus in the machine learning community [9,10].

Mining classification rules can be viewed as a special form

of mining association rules, since a set of association rules

with pre-specified consequences (classes) can be used for

classification. Techniques for mining association rules have

already been applied to mining classification rules [1,4].

Particularly, results in Ref. [1] are very encouraging, since it

can build more accurate classifiers than those from C4.5 [9].

However, the algorithm in Ref. [1] is not very efficient since

it uses Apriori-like algorithm to generate the class

association rules, which may be very large when the

minimum support is small. This paper will show that we can

use a much smaller class association rule set to replace this

set while not losing accuracy (predictive power).

Generally speaking, class association rule set is a type of

target-constraint association rules. Constraint rule sets [11]

and interesting rule sets [12] belong to this type. Problems

with these rule sets are that they either exclude some useful

predictive association rules, or contain many redundant

rules that are of no use for prediction. Moreover, algorithms

for mining these rule sets handle only one target at one time

(building one enumeration tree), so they cannot be

efficiently used for mining class association rules that are

on multiple classes, especially when the number of classes is

large. Our optimal class association rule set differs from

these rule sets at that it is minimal in size and keeps all

predictive power. We propose an algorithm that finds this

rule set with respect to all classes at once.

In this paper, we only address the first step of mining

predictive association rules. Related work on pruning and

organizing the found class association rules can be referred

to Ref. [13–15].

1.3. Contributions

Contributions in this paper are the following.

We propose the concept of optimal class association rule set

for predictive association rule mining. It is the minimum

subset of complete class association rule set with the same

predictive power as the complete class rule set, and can be used

as a substitute of the complete class association rule set.

We present an efficient algorithm for mining the optimal

class association rule set. This algorithm is different from

Apriori at that (1) it uses an additional upward closure

property for forward pruning weak rules (pruning before

they are generated), and (2) it integrates frequent sets

mining and rule finding together. Unlike the existing

constraint and interesting rule mining algorithms, our

algorithm finds strong (optimal) rules with all possible

classes at one time.

2. Optimal class association rule set

Given a relational database D with n attribute domains. A

record of D is a n-tuple. For the convenience of description,

we consider a record as a set of attribute and value pairs,

denoted by T. A pattern is a subset of a record. We say a

pattern is a k-pattern if it contains k attribute and value pairs.

An implication in database D is A ) c; where A is a pattern,

called antecedent, and c is a class (a value of pre-specified

class attribute), named consequence. Exactly, the conse-

quence is an attribute and value pair, but in class association

rule mining, the class attribute is usually specified, so we

can use its value directly without confusing. The support of

pattern A is defined to be the ratio of the number of records

containing A to the number of all records in D, denoted by

sup(A ). The support of implication A ) c is defined to be

the ratio of the number of records containing both A and c to

the number of all records in D, denoted by supðA ) cÞ: The

confidence of the implication A ) c is defined to be the ratio

of supðA ) cÞ to sup(A ), represented by confðA ) cÞ:
A class association rule is defined to be an implication

with a class as its consequence and its support and

confidence are above the given thresholds from a database,

respectively. Given a class attribute, the minimum support s

and the minimum confidence c, a complete class association

rule set is a set of all class association rules, denoted by

Rcðs;cÞ:
Our goal in this section is to find the minimum subset of

the complete class association rule set that has the same

predictive power as the complete class association rule set.

To begin with, let us have a look at how a rule makes

prediction. Given a rule r, we use condðrÞ to represent its

antecedent (conditions), and consðrÞ to denote its conse-

quence. Given a record T in a database D, we say rule r can

make prediction on T if condðrÞ # t; denoted by rðTÞ!

consðrÞ: If consðrÞ is the class of record T, then this is a

correct prediction; otherwise, a wrong prediction.

Then we consider the accuracy of a prediction. We begin

by defining the accuracy of a rule. Confidence is not the

accuracy of a rule, or more precisely, not the predictive

accuracy of a rule, but the sample accuracy, since it is
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obtained from the sampling (training) data. Suppose that all

instances in a database are independent of one another.

Statistical theory supports the following assertion [16]:

acctðrÞ ¼ accs ^ zN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
accsð1 2 accsÞ=n

p
; where acct is the

true (predictive) accuracy, accs is the accuracy over

sampling data, n is the number of sample data

(n $ 30), and zN is a constant relating to confidence

interval. For example, zN ¼ 1:96 if confidence interval

is 95%. We use pessimistic estimation as the predictive

accuracy of a rule. That is accðrÞ ¼ confðrÞ2

zN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
confðrÞð1 2 confðrÞÞ=lcovðrÞl

p
; where cov(r ) is the

covered set of rule r that is defined in Section 3. We note

that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
confðrÞð1 2 confðrÞÞ=n

p
is symmetry about confðrÞ ¼

0:5: Hence, we expect that the minimum confidence is at

least 0.5 by using this definition. This minimum confidence

is reasonably low in most applications. If n , 30, then we

use Laplace accuracy instead [10], that is accðrÞ ¼

supðrÞ p lDlþ 1=lcovðrÞlþ p; where p is the number of

classes.

After we have obtained the predictive accuracy of a rule,

we can estimate the accuracy of a prediction as follows: the

accuracy of a prediction equals to the predictive accuracy of

the rule making such prediction, denoted by accðrðTÞ! cÞ:
In the following part, we will discuss predictions made

by a rule set, and how to compare the predictive power of

two rule sets.

Given a rule set R and an input T, there may be more than

one rule in R that can make prediction, such as,

r1(T ) ! c1,r2(T ) ! c2,…. We say that the prediction

made by R is the same as the prediction made by r if r is

the rule with the highest predictive accuracy of all ri where

cond(ri) # t. The accuracy of such prediction equals to the

accuracy of rule r. In case, if there are more than one rule

with the same highest predictive accuracy, we choose the

one with the highest support among them. When the

predicting rules have the same accuracy and support, then

we choose the one with the shortest antecedent. If there is no

prediction made by R, then we say the rule set gives

arbitrary prediction with the accuracy of zero.

To compare predictive power of two rule sets, we define

Definition 1 (Predictive power). Given rule sets R1 and R2

from database D, we say that R2 has at least the same power

as R1 iff, for all possible input, both R1 and R2 give the same

prediction and predictive accuracy of R2 is at least the same

as that of R1.

It is clear that not all rule sets are comparable in their

predictive power. Suppose that rule set R2 has more power

than rule set R1. Then for all input T, if there is rule r1 [ R1

giving prediction c with accuracy k1, then there must be

another rule r2 [ R2 so that r2(T ) ! c with accuracy

k2 $ k1.

We represent that rule set R2 has at least the same power

as rule set R1 by R2 $ R1. It is clear that R2 has the same

power as R1 iff R2 $ R1 and R1 $ R2.

Now, we can define our optimal class association rule set.

Given two rules r1 and r2, we say that r2 is stronger than

r1 iff r2 , r1 ^ accðr2Þ $ accðr1Þ; denoted by r2 . r1.

Specifically, we mean condðr2Þ , condðr1Þ and consðr2Þ ¼

consðr1Þ when we say r2 , r1. Given a rule set R, we say a

rule in R is (maximal) strong if there is no other rule in R

that is stronger than it is. Otherwise, the rule is weak. Thus,

we call the set of all strong rules as optimal class association

rule set. More specifically,

Definition 2 (Optimal class association rule set). Rule set Ro

is optimal for class association over database D iff (1) ;r [
Ro; ’6 r0 [ Ro such that r , r0 and (2) ;r0 [ Rc 2 Ro; ’r [
Ro such that r . r0:

It is not hard to prove that the optimal class association

rule set is unique at given minimum support and minimum

confidence from a database. Let Roðs;cÞ stand for the

optimal class association rule set on database D at given

minimum support s and minimum confidence c. Then

Roðs;cÞ contains all strong rules from the complete class

association rule set Rcðs;cÞ:
Finally, we consider the predictive power of the optimal

class association rule set we are concerned with.

Theorem 1. The optimal class association rule set is the

minimum subset of rules with the same predictive power as

the complete class association rule set.

Proof. For simplicity, let Rc stand for Rc(s,c ) and Ro for

Ro(s,c ).

First, it is clear that Rc $ Ro: Since Ro consists of all strong

rules, for any input, Ro give the same prediction as Rc does

with at least the same predictive accuracy. Hence, Ro $ Rc:
As a result, the optimal class association rule set has the

same predictive power as the complete class association rule

set has.

Secondly, we prove the minimum property of optimal class

association rule set. Suppose that we leave out rule r from

the optimal class association rule set Ro, R0
o ¼ Ro\r; and R0

o

has the same predictive power as Rc has. From the

definition, we know that there is no rule being stronger

than rule r, so for a record that is fitted best by rule r, R0
o

cannot give the prediction on it as accurately as Ro does. As

a result, R0
o cannot have the same predictive power as Rc,

leading to contradiction. Hence, Ro is the minimum rule set

with the property of with the same predictive power as the

complete class association rule set. A

The fact that the optimal class association rule set has the

same predictive power as the complete class association rule

set is because it contains all strong rules. Even though the

class association rule set is usually much larger than the

optimal class association rule set, it contains many weak

rules that cannot provide more predictive power than their

strong rules do. In other words, the optimal class association
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rule set is totally equivalent to the complete class

association rule set in terms of predictive power. Thus, it

is not necessary to keep a rule set that is larger than the

optimal class association rule set, and we can find all

predictive association rules from the optimal class associ-

ation rule set.

In Section 3, we will present an efficient algorithm to

mine the optimal class association rule set.

3. Mining algorithm

A straightforward method to obtain the optimal class

association rule set Ro is to first generate the complete class

association rule set Rc and then prune all weak rules from it.

Clearly mining complete class association rule set Rc is very

expensive and almost impossible when the minimum

support is low. In this section, we present an efficient

algorithm that can find the optimal class association rule set

directly without generating Rc first.

Most efficient association rule mining algorithms use the

upward closure property of infrequency of pattern: if a

pattern is infrequent, so are all its super patterns. If we can

find a similar property for weak rules, then we can avoid

generating many weak rules, hence making the algorithm

more efficient. In the following, we will discuss upward

closure properties for pruning weak rules

Let us begin with some definitions. We say that r1 is a sub

rule of r2 if condðr1Þ , condðr2Þ ^ consðr1Þ ¼ consðr2Þ: On

the opposite, r2 is a supper rule of r1. We define the covered

set of rule r to be the set of records containing antecedent of

the rule, denoted by cov(r ). Covered set of a pattern A is

defined to be the set of records containing the pattern,

denoted by cov(A ). It is clear that the covered set of a supper

rule is a subset of the covered set of its sub rule.

Suppose that X and Y are two patterns in database D, and

XY is the abbreviation of X < Y. We have the following two

properties of covered set.

Property 1. covðXÞ # covðYÞ iff supðXÞ ¼ supðXYÞ:

Property 2. covðXÞ # covðYÞ if Y # X:

Now we discuss an upward closure property for pruning

weak rules. Given database D and a class c in class attribute

C, we have

Lemma 1. If covðX : cÞ # covðY : cÞ; then XY ) c and

all its supper rules must be weak.

Proof. We rewrite the confidence of rule A ) c as

supðAcÞ=supðAcÞ þ supðA : cÞ: We know that function

f ðuÞ ¼ u=u þ v is monotonically increasing with u when v

is a constant. Since covðX : cÞ # covðY : cÞ; we have

supðX : cÞ ¼ supðXY : cÞ: Noticing supðXcÞ $ supðXYcÞ;
we obtain confðX ) cÞ $ confðXY ) cÞ: Using relation

lcovðX ) cÞl $ lcovðXY ) cÞl; we have accðX ) cÞ $

accðXY ) cÞ: As a result, X ) c . XY ) c:
Since covðXZ : cÞ # covðYZ : cÞ for all Z if covðX : cÞ #
covðY : cÞ; we have XZ ) c . XYZ ) c for all Z.

Consequently, XY ) c and all its supper rules are weak. A

We can perceive the lemma as follows: adding a pattern

to the conditions of a rule is to make the rule more precise

(with less negative examples), and we shall omit the pattern

that fails to do so.

Corollary 1. If covðXÞ # covðYÞ; then XY ) c and all its

supper rules must be weak for all c [ C:

Proof. This can be proved by noticing that covðX : cÞ #
covðY : cÞ for all c [ C if covðXÞ # covðYÞ: A

We can understand the corollary in the following way:

we cannot combine a super concept with a sub concept to

make the sub concept more precise.

Lemma 1 and Corollary 1 are very helpful for searching

strong rules, since we can remove a set of weak rules as soon

as we find that one satisfies the above lemma and corollary.

Hence, the searching space for strong rules is reduced.

To find those patterns satisfying Lemma 1 and Corollary

1 efficiently, we need to use Properties 1 and 2. Property 1

enables us to find subset relation by comparing supports of

two patterns. This is very convenient and easy to implement

since we always have support information. By Property 2,

the covered set of a pattern (e.g. X ) is a subset of that of its

lXl 2 1 cardinality sub pattern. So, we can always compare

the support of a k-pattern with that of its (k 2 1)-sub

patterns in order to decide whether the k-pattern should be

removed.

Since both Lemma 1 and Corollary 1 state upward

closure property of weak rules, we can have an efficient

algorithm to find all strong rules.

3.1. Basic idea of the proposed algorithm

We use a level-wise algorithm to mine the optimal class

association rule set. We search strong rules from antecedent

of 1-pattern to antecedent of k-pattern level by level. In each

level, we select strong rules and prune weak rules. The

efficiency of the proposed algorithm is based on the fact that

a number of weak rules are removed once satisfaction of the

lemma or the corollary is found. Hence, searching space is

reduced after each level’s pruning. The number of phases of

reading a database is bounded by the length of the longest

rule in the optimal class association rule set.

3.2. Storage structure

In this proposed algorithm, we use an extended prefix

tree {V, E }, called candidate tree. V ¼ ½r; v1; v2;…; vn	 is a

J. Li et al. / Knowledge-Based Systems 15 (2002) 399–405402



sorted set where r is the root and vi , vj if i , j: For all

{vi; vj} [ E; there is vi , vj:
In our algorithm, V is a set of all attribute and value pairs,

and sorted by their first references. A node of the candidate

tree consists of {A, Z, Q}. A is a set of attribute and value

pairs in the path from the root to the node, and is the

antecedent of a possible rule. Since A is unique in a

candidate tree, we use it as identity of the node. The

potential target set Z is a set of classes that may be

consequences of A. Q a supset of possible attribute and

value pair sets, for each class (e.g. zj) in Z, there is a set of

possible attribute and value pairs which may be conjunct

with A to form more accurate rules, Qj [ Q:
Our algorithm is given as follows.

Algorithm: optimal class association rule set miner

Input: database D with class attribute C, the minimum

support s and the minimum confidence c.

Output: optimal class association rule set R.

Set optimal class association rule set R ¼ Y
Count support of 1-patterns

Initialize candidate tree T

Select strong rules from T and include them in R

Generate new candidates as leaves of T

While (new candidate set is non-empty)

Count support of the new candidates

Prune the new candidate set

Select strong rules from T and include them in R

Generate new candidates as leaves of T

Return rule set R

In the following, we present and explain two unique

functions in the proposed algorithm.

Function: candidate generating

This function generates candidates for strong rules. Let ni

denotes a node of the candidate tree, Ai be the pattern of

node ni, Z(Ai) be the potential target set of Ai, and QqðAiÞ be

a set of potential attribute value pairs of Ai with respect to

target zq. We use P
p(Ak) to denote the set of all p-subsets of

Ak.

for each node ni at the pth layer

for each sibling node ni and njðvnj
. vni

Þ

generate a new candidate nk as a son of ni such

that // combining

Ak ¼ Ai < Aj

ZðAkÞ ¼ ZðAiÞ> ZðAjÞ

QqðAkÞ ¼ QqðAiÞ> QqðAjÞ for all zq [ ZðAkÞ

for each z [ Z (Ak) // testing

if ’A [ P
p(Ak) such that supðA < zÞ # s

then Z(Ak) ¼ Z(Ak)-z

if Zk ¼ Y then remove node nk

We generate the ( p þ 1)-layer candidates from the p

layer in the candidate tree. First, we combine a pair of

sibling nodes and insert their combination as a new node in

the next layer. We initialize the new node by manipulating

information from the two nodes. Next, we prune unqualified

candidate. If any of its p-sub patterns cannot get enough

support with any of the possible targets (classes), then we

remove the class from the target set. When there is no

possible target left, remove the new candidate.

Function: pruning

This function prunes weak rules and infrequent candi-

dates in the ( p þ 1)th layer of candidate tree. Let Tpþ1 be

the ( p þ 1)-layer of the candidate tree.

for each ni [ Tpþ1

for each A [ P
p(Ai) // A is a p-sub pattern of Ai

if supðAÞ ¼ supðAiÞ then remove node ni //Corollary 1

else for each zj [ Z(Ai)

if supðAi < zjÞ , s then ZðAiÞ ¼ ZðAiÞ2 zj

// the minimum support requirement

else if supðA< : zjÞ ¼ supðAj< : zjÞ

then ZðAiÞ ¼ ZðAiÞ\zj

// Lemma 1

if ZðAÞ ¼ Y then remove node ni

This is the most important part of the algorithm, as it

dominates the efficiency of the algorithm. We prune a leaf

from two aspects, frequent rule requirement and strong rule

requirement.

Let us consider a candidate ni in the ( p þ 1)th layer of

tree. To examine satisfaction of Corollary 1, we test support

of pattern Ai stored in the leaf with the support of its sub

patterns by Property 1. There may be many such sub

patterns when size of Ai is large. However, we only need to

compare its p-sub patterns since upward closure property of

weak rules. Hence, the number of such comparisons is

bounded by p þ 1. Once we find that the support of Ai

equals to the support of any of its p sub pattern A, we remove

the leaf from the candidate tree. So all its super patterns will

not be generated in all deeper layers. In this way, the number

of removed weak rules may increase at an exponential rate.

Examination of satisfaction of Lemma 1 is in the similar

way, but it is with respect to a particular target (class). That

is, we only remove a target (class) from the potential target

set in the leaf. Pruning those infrequent patterns is the same

as that in other association rule mining algorithms. In our

experiments, we will show how effective the weak rule

pruning is in dense databases.

4. Experimental results

We have implemented the proposed algorithms and

evaluated them on six real world databases from UCI ML
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repository [17]. For those databases having continuous

attributes, we use discretizer in Ref. [18] to discretize them.

We have mined the complete class association rule set

and the optimal class association rule set of all testing

databases with the minimum confidence of 0.5 and the

minimum support of 0.1. Here the support is specified as

local support that is defined to be the ratio of the support of a

rule to the support of the rule’s consequence, since

significance of a rule depends much on how much

proportion of occurrences of its consequence it accounts

for. We generate the complete class association rule set by

the same algorithm without weak rule pruning and strong

rule selecting. We restrict the maximum layer of candidate

trees to four because of the observation that too specific

rules (with many conditions) usually have very limited

predictive power in practice. In fact, the proposed algorithm

performs more efficiently when there is no such restriction,

and this is clear from the second part of our experiment. We

do so in order to present competitive results, since rule

length constraint is an effective way to avoid combinatorial

explosion. Similar constraints have been used in practice,

for example, Ref. [1] restricts the maximum size of the

found rule set.

The comparisons of rule set size and time to generate

between the complete class association rule set and optimal

class association rule set are listed in Fig. 1. It is easy to see

that the size of an optimal class association rule set is much

smaller than that of the corresponding complete rule set, on

the average less than 1/17 of that. Because the optimal class

association rule set has the same predictive power as the

complete class association rule set has, so this rule set size

reduction is very impressive. Similarly, the time for

generating rules is much shorter as well. We have obtained

more than 3/4 reduction of mining time on average.

Moreover, using a smaller optimal class association rule

set instead of a larger complete class association rule set as

Fig. 1. Overall comparisons of rule size and generating time between Roand Rc (in the ratio of Ro to Rc).

Fig. 2. Comparison of the number of candidates before and after weak rule pruning.
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the input for finding predictive association rules, we will

have more efficiency improvement for other data mining

tasks too.

The core of our proposed algorithm is to prune weak

rules. To demonstrate the efficiency of pruning stated in

Lemma 1 and Corollary 1 on dense databases, we have

illustrated the number of nodes in each layer of the

candidate trees of two databases in Fig. 2. In this

experiment, we lift the restriction of maximum number of

layers. We can see that the tree nodes explode at a sharp

exponential rate without weak rule pruning. In contrast, tree

nodes increase slowly with weak rule pruning, reach a low

maximum quickly, and then decrease gradually. When a

pruning tree (weak rule pruning) stops growing, its

corresponding un-pruned tree just passes its maximum. In

the deep tree level, after four in our case, the nodes being

pruned are more than 99%. This shows how much

redundancy we have eliminated. In our experiment, more

than 95% time is used for such redundant computing when

there is no maximum layer restriction. Considering that how

much time it will take if we compute strong rules after

obtaining all class association rules, we can see how

effective our proposed weak rule pruning criterion is.

Besides, from this detailed illustration of candidate tree

growing without length restriction, we can understand that

the proposed algorithm will perform more efficiently when

there is no maximum layer number restriction in comparison

with mining the complete class association sets.

5. Conclusion

In the paper, we studied the problem of efficiently mining

optimal class association rules. We defined the optimal class

association rule set, which preserves all predictive power of

the complete class association rule set and hence can be

used as a replacement of the complete class association rule

set for finding predictive association rules. We developed a

criterion to prune weak rules before they are actually

generated, and presented an efficient algorithm to mine the

optimal class association rule set. Our algorithm avoids

much redundant computation required in mining the

complete class association rule set, and hence improves

efficiency of the mining process significantly. We

implemented the proposed algorithm and evaluated it on

some real world databases. Our experimental results show

that the optimal class association rule set has a much smaller

size and requires much less time to generate than the

complete class association rule set. It was also shown that

the proposed criterion is very effective for pruning weak

rules in dense databases.
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