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Abstract—In this paper, we study two measures of classification complexity based on feature space partitioning: “purity” and

“neighborhood separability.” The new measures of complexity are compared with probabilistic distance measures and a number of

other nonparametric estimates of classification complexity on a total of 10 databases from the University of Calfornia, Irvine, (UCI)

repository.
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1 INTRODUCTION

Anumber of approaches have been used to compute the
classification complexity of data sets with two or more

classes [18] as such analysis can be used for several pattern
recognition applications. An example application includes
feature selection, where the aim is to select a subset of
features that minimizes the overall classification complex-
ity. A bibliography of studies on the study of misclassifica-
tion error estimation appears in Toussaint [42] and for the
effects of dimensionality, sample size, and structure of
classification algorithm on misclassification see [34], [40].
The approaches include

1. Bayes error-based parametric and nonparametric
approaches [15] (use of probability distance measure
bounds [7], [45], entropy measures [4], [47], non-
parametric estimation including k nearest neighbor
[6], [10], [25], [46], and Parzen estimation [28],
interclass distance measures [9], [13], [41], [47],
probability distances such as Bhattacharya [2],
Chernoff [5], etc., for multiclass problems [1], [14]).
See [13], [43] for a criticism of such approaches;

2. scatter matrices [7], [13];
3. information-theory-based approaches [26], [44];
4. boundary methods [30], [31], [32], [35], [36];
5. correlation-based approaches [33];
6. nonparametric methods [17], [20]; and
7. feature space partitioning methods [24].

The above approaches to estimating class separability are

very different to each other in terms of their methodology,

assumptions, and computational complexities. The main

emphasis for practical purposes is on selecting those

approaches that best correlate with classifier test errors

[19]. It is important to note that it is not unreasonable to

assume that more than one measure may be needed to fully

quantify the true classification complexity of a problem and

how to combine such information on a given data set
remains a research problem.

2 MULTIRESOLUTION ESTIMATES OF DATA

SEPARABILITY

In this paper, we propose a novel set of classification
complexity measures that complement the established set of
measures. These measures have been discussed in greater
detail in [39] under the acronym of Pattern Recognition
using Information slicing Method (PRISM) that is based on
the concept of feature space partitioning. Data partitioning
has been of interest in pattern recognition, computer
graphics, parallel computing, databases, and other fields
for estimating data density [8], modeling 3D objects
including texture [29], indexing [3], etc. A number of
approaches for feature space partitioning have been
suggested in the past including Octrees [11], [21], [22],
[27], hyperboxes [24], specification of decision boundaries
using decision trees and Simpson’s min-max approach [37]
and fuzzy ART/ARTMAP approaches, and pyramid
strategy [3]. Our partitioning algorithm assigns each data
point uniquely to a cell. The partitioning algorithm is based
on a simple scheme of generating hypercuboids in
d dimensional space. The data points are assigned to the
bins by simple integer division (or rounding with the ceiling
or floor functions). The main reasons for choosing this
simple yet efficient scheme are: 1) The partitioning scheme
does not need to be optimized for a given problem such that
results are uniformly comparable across different problems
and 2) The scheme does not require any parameter setting
and does not introduce experimenter bias. A note on the
difference between multiresolution partitioning used here
and partitioning with decision trees is in order here. The
multiresolution separability approach uses regular parti-
tioning as opposed to decision trees that are based on
adaptive partitioning. Decision tree based partitioning itself
can be based on optimizing measures of impurity such as
entropy, variance, gini, or misclassification [8]. In decision
trees, one of the main research issues is how to control the
complexity (size) of the tree. The stopping criteria for
splitting may be based on cross-validation, change in
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impurity, or trading complexity for test accuracy. This
would finally lead to a set of cells that differ in size and each
would mostly contain pure data of only one class. It will be
of benefit to study our multiresolution estimates of
classification complexity with each resolution, which
instead of being defined regularly, is defined by a decision
tree split. For future work, we acknowledge that more
sophisticated schemes including those based on kernel
methods, meshes, and decision trees must be compared.

We introduce two new measures of classification com-
plexity called “Purity” and “Neighborhood Separability.”
The basic idea is to compute these measures cumulatively
by partitioning data space at various resolutions where each
resolution is defined by the number of partitions per
feature. If we partition the data space for resolutions
B ¼ 0 . . . y, where y � 0 is a user-set parameter, we find
that as the resolution increases, the data space contains
many more cells than at the lower resolution, and each cell
has less amount of data than before. For most practical
problems, we find that, at the highest resolution, most cells
contain a single data point. In our experiments, computa-
tion is performed at different resolutions from B ¼ 0 (no
partitioning) to a higher resolution of up to B ¼ 31 (up to
32 cells per axis).The basis of the proposed separability
measures is that for each resolution we compute how
separable data within each cell is. These cell measurements
are then linearly weight summed for a single estimate. The
weight applied to estimates of a cell is proportional to the
number of elements in it. Also, the overall measurement
across all cells at a given resolution is exponentially
weighted to give more weight at less number of partitions.
For each measure, the area under the curve (separability
versus resolution) defines the overall data separability that
is well bounded within the [0,1] range; for purity and
neighborhood separability, the higher the measure the more
separable the data is. The proposed measures are concep-
tually uncorrelated to the number of features, classes, or
number of data points in a given data set. Therefore, two
classification tasks with different values for these para-
meters can be directly compared.

The measure purity defines how pure the data is. If a cell
contains data from only one class, then it is totally pure and
if it contains data from a number of classes in equal
amounts it is then totally impure. The basic idea is to
determine the probability of all classes ci, 1 � i � K‘ in a
cell H‘, as

pi‘ ¼
�i‘PK‘

i¼1 �i‘

;

where �i‘ is the number of data points of class ci available in
that cell. The purity of the cell is defined as

SHð‘Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K‘

K‘ � 1

� �XK‘

i¼1

ðpi‘ � 1=K‘Þ2
vuut ;

where K‘ is the number of classes in cell H‘. If cell H‘

contains N‘ points out of a total of N , then the overall purity
of the classification problem can be estimated as a weighted
average of the purity of different cells. This is given as:

SH ¼
XHtotal

‘¼1

SHð‘Þ �
N‘

N
:

If this measure is being computed at a resolution B, then it
is weighted by a factor of w ¼ 1

2ðBÞ
, for B ¼ ð0; 1; . . . ; 31Þ. This

is to give larger weights to lower resolutions. We can plot
SH versus normalized resolution curve and compute the
area under the curve as the purity of the classification
problem. A detailed algorithm and discussion on its
properties is available in [39].

The main limitation of the purity measure is that it does
not reflect classification complexity in the context of class
boundaries. Singh [39] introduced another measure of
estimating classification complexity called “nearest neigh-
bor separability.” The basic idea is to find, for each data
point in a cell, the proportion of its nearest neighbors that
come from the same class. We have for cellH‘, 1 < ‘ � Htotal,
for class ci, 1 � i � K‘ a total of �i‘ data points given by
ðx1; x2; . . . ; x�i‘

Þ. Let the total number of data points be N‘ of
all classes in the cell H‘ and N in total. Say, for example, if
we wish to find the proportion pkj of neighbors of data point
xj 2 ci, within a neighborhood of k data points. We find that
pkj will decrease with increasing k. We can estimate �j as the
area under the curve that plots pkj against k for sample xj.
An average proportion �̂� for all data points is now
computed and their weight averaged across cells to give
an overall nearest neighborhood separability at a given
resolution. This estimate at multiresolutions is then treated
as earlier with purity (by defining the area under the curve
of multiple resolution estimates) to obtain a final estimate of
the complexity of the problem. An algorithm and discussion
on its properties is available in [39].

The main intuitive appeal behind the proposed set of
measures is the manner in which they are derived through
recursive feature space partitioning. In addition to deter-
mining the boundary-based complexity of data using a
nearest neighbor approach (as measured by boundary
methods and minimum spanning trees), they also implicitly
measure data compactness and distance between distribu-
tions (as measured by inter/intracluster distance ratios)
under a unified framework. In addition, the proposed
methods have a very few parameters setting and, therefore,
form a more generic framework for different classes of data.
Fig. 1 shows these measurements on random data. We
create a total of 50 data sets containing two features and two
classes. Each dataset has 100 observations; 50 for each class.
The results show that for all data sets, the purity is quite
low (< 0.2), and the nearest neighbor separability is around
0.5 which is as expected since data points are randomly
assigned to one of the two classes. For a well-separated two-
class classification problem, these measurements would
take a value of 1.0.

3 BASELINE METHODS

In this paper, we compare the multiresolution separability-
based classification complexity measures with well-known
and established measures including the probability distance
based measures including Bhattacharya BD, Chernoff CD,
Divergence DD, Mahalanobis MD, Matusita mD, Class
Discriminability Measure (CDM) [24], and those suggested
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in [20] including the Fisher discriminant ratio (F1), Volume

of Overlap (F2), Feature Efficiency (F3) [16], Minimum

spanning Tree (MST ) [12], Inter/Intra cluster distance

(SW=SB), and Space Covered by Epsilon Neighborhoods

(SE2) [18]. Pairwise estimates for the above techniques are

weighted by class sizes and averaged.

4 EXPERIMENTAL SET-UP

We consider a total of 10 databases from the University of

California, Irvine, (UCI) repository (http://www.ics.uci.

edu/~mlearn/MLRepository.html)—see Table 1. For each

data set, we compute the two proposed measures of

“purity” and “neighborhood separability.” Figs. 2 and 3

show their computation as the area beneath the curve after

each point on the curve is weighted. It is important to note

that there is no relationship between the proposed measures

and the number of classes or features in the UCI data sets

used. The correlation between the number of classes and

ASH is equal to .017 (p ¼ :96) and between number of

classes and ASNN is equal to .20 (p ¼ :57). The correlation

between the number of features and ASH is equal to .497

(p ¼ :14) and between number of features and ASNN is

equal to .161 (p ¼ :66).

For each data set, we also compute baseline estimates of

classification complexity. In order to determine the relative

efficiency of different classification complexity measures,

we compute the correlation between the classification of

four well-known classifiers with all of the above ap-

proaches. The classifiers considered in this study include

the Least mean square Linear Discriminant Analysis (LDA),

Quadratic Discriminant Classifier (QDC), k nearest neigh-

bor classifier (kNN), and Decision Tree (C5.0) classifier. The

separability measure with the highest correlation with these

errors is best representative of the complexity of the

classification task.

5 RESULTS

In Table 1, we show the five probabilistic separability

measurements on the 10 databases (columns 3-7). It should

be remembered that the larger the value of the distance

measure, the more separable data is. We also show seven

more baseline measures for comparison (columns 8-14) and

our proposed measures (columns 15-16). The interpretation

of these measures is as follows: For measures F1, F3, MST ,

SC2, ASH , and ASNN , the higher the measure, the more

separable the data is. On the other hand, for measures F2,

SW=SB, and CDM, the lower the measure, the more

separable the data is. These measures have been originally

defined to show separability between two classes. For a

multiclass problem, we use a weighted average across

different class combinations as our estimate. We next

perform leave-one-out cross validation with our chosen

four classifiers. Linear and quadratic discriminant analyses

are extended for multiclass problem by defining c dis-

criminant functions for c classes [8]. The best reported rates

are only available for the following data sets at the UCI

repository webpage: Abalone: 65 percent, Wisconsin:

94 percent, Ecoli: 81 percent, Pima: 76 percent, Wine:

100 percent, and Yeast: 55 percent.

In Table 2, we show the correlation between the

classification errors of these four classifiers with the five

probability-based class separability measures, seven non-

parametric baseline measures, and the proposed two

measures of “purity” and “neighborhood separability.”

We only show the magnitude of the correlation and the
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Fig. 1. The estimates of “purity” and “neighborhood separability”

measures on 50 randomly generated data sets.

TABLE 1
The UCI Data Composition (Property Is Defined as Features (Classes)-Samples) and

Nonparametric Classification Complexity Measures for UCI Data



statistical significance. All correlations found to be statisti-

cally significant at the 5-percent-level have been high-

lighted. The results show that the two proposed measures

correlate best with linear and quadratic classifier’s training

and test errors compared to any other measure. For

Gaussian classifier errors, ASNN correlates the best followed

by ASH and MST . Finally, for the kNN generalization error,

MST correlates the best followed by ASNN and SC2. The

MST method is likely to fail in those cases where data of

two classes is separated by narrow margins which was not

the case with our data sets. We also find that all of these

correlations are statistically significant. Finally, for the

decision tree C5.0 training error, ASNN is best correlated

followed by MST and SC2. For decision tree C5.0 test

errors, the SW=SB metric best correlates followed by SC2,
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Fig. 2. The calculation of the measure “purity” as the area under the

curve of SH versus the resolution for the 10 UCI classification tasks.
Fig. 3. The calculation of the measure “neighborhood separability” as the

area under the curve of SNN versus the resolution for the 10 UCI

classification tasks.

TABLE 2
The Correlation Across the Different Measures of Classification Complexity



MST , and ASNN . In general, we find that the following

baseline methods perform reasonably well: MST , SW=SB,

and SC2. The results of the probabilistic distance measures

is rather disappointing with those of F1, F2, F3, and CDM.
It is important to comment on the generalizability of the

results given a small sample size of 10 samples for the

correlation study. The high correlation coefficients with

significance level below 5 percent show that the result is not

a fluke. The results quoted in Table 2 are based on Pearson’s

correlation coefficient which is mostly used on normally

distributed data and is a preferred choice in most studies

due to its higher accuracy in measuring correlations. We

also measured Spearman’s rank correlation (preferred for

small samples, i.e., data with little knowledge of its

distribution and assumed nonparametric) and found that

the correlations follow the same order as listed in Table 2

but tend to be more pessimistic (lower) across the board.

For further studies, we recommend the use of parametric

statistics if the number of samples is greater ðn > 100Þ.
From Table 2, the most important inference one can draw is

that there is a strong relationship between some of the

classification complexity measures and classifier errors.

Also, our results show that the order of such correlations is

preserved with nonparametric rank-order statistical corre-

lation. For further work, a comprehensive analysis of a large

number of synthetic data sets can reveal true differences in

classification complexity estimates with parametric statis-

tics—for smaller data sets one must rely on nonparametric

statistics and have a cautious approach in interpreting

results (e.g., more emphasis should be placed in rank

differences rather than absolute measurement differences).

Finally, in Table 3, we show how much each of the

measurements correlate among themselves, i.e., measure

similar characteristics of data. Undoubtedly, some of the

measures adopt a similar methodology and, therefore,

measure similar things. For example, those methods based

on probabilistic distances correlate well among themselves.

Similarly, measures based on the concept of using nearest

neighbor information and data compactness, such as MST ,

SW=SB, CDM, SCin, ASH , and ASNN , correlate well with

each other. Measures such as F2 and F3 describe how

much each feature contributes to the separation of two

classes in a very gross manner but they do not consider the

joint effects of features. These measures do not seem to

correlate well with any of the other measures. Our

recommendation would be to use measures such as MST

when computational cheapness is required and, otherwise,

use proposed multiresolution estimates.

6 CONCLUSION

Our suggested measures can be used for maximization in a

feature selection task and used to study the behavior of

classifiers. In addition, the previous study by Kishore et al.

[23] suggests that feature space partitioning can also be

used for using multiple classifiers in subspaces. The use of

multiresolution schemes for data, therefore, present a

framework within which one can perform localized learn-

ing, feature selection, and outlier removal [38].
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