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Abstract

Regularized linear classifiers have been successfully applied in undersampled, i.e. small sample size/high dimensionality biomedical
classification problems. Additionally, a design of data complexity measures was proposed in order to assess the competence of a classifier
in a particular context. Our work was motivated by the analysis of ill-posed regression problems by Elden and the interpretation of linear
discriminant analysis as a mean square error classifier. Using Singular Value Decomposition analysis, we define a discriminatory power
spectrum and show that it provides useful means of data complexity assessment for undersampled classification problems.

In five real-life biomedical data sets of increasing difficulty we demonstrate how the data complexity of a classification problem can be
related to the performance of regularized linear classifiers. We show that the concentration of the discriminatory power manifested in the
discriminatory power spectrum is a deciding factor for the success of the regularized linear classifiers in undersampled classification prob-
lems. As a practical outcome of our work, the proposed data complexity assessment may facilitate the choice of a classifier for a given
undersampled problem.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Regularized linear discriminants have been successfully
applied in undersampled, (i.e. small sample size combined
with high dimensionality), biomedical classification prob-
lems e.g., for gene microarrays or biomedical spectra. They
are often competitive with other (nonlinear) state-of-art
algorithms (Tibshirani et al., 2002). In the small sample
size–high dimensionality scenario, overfitting is a major
issue (Somorjai et al., 2003a; Simon et al., 2004; Ambroise
and McLachlan, 2002). Due to their limited capacity, the
use of linear classifiers in undersampled biomedical prob-
lems has been advocated (Simon et al., 2004). There are
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numerous successful applications of regularized linear clas-
sifiers in undersampled, and in particular, biomedical prob-
lems; they include partial least squares (PLS) (Nguyen and
Rocke, 2002), support vector machines (SVM) (Guyon
et al., 2002), pseudoinverse linear discriminant analysis
(LDA) (Ye et al., 2004), shrunken centroids (Tibshirani
et al., 2002) etc.

Data complexity measures for classification have been
proposed by Ho and Basu (2002) in order to discern the
behavior of the classification algorithms in a given context.

Motivated by the analysis of (Elden, 2004) linear regres-
sion problems, we developed an approach to estimate data
complexity in the small sample size/high dimensionality
classification problems, using singular value decomposition
(SVD) analysis and the minimum square error (MSE) for-
mulation of the linear discriminant analysis. Using five
real-life biomedical datasets of increasing difficulty, we
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show how the data complexity measures of a given classifi-
cation problem can be related to the performance of linear
classifiers.
2. Theoretical background

2.1. Linear regression and the singular value

decomposition

Let X be a centered data matrix with dimensions
(n,pdim). Consider the singular value decomposition
(SVD) of X:

X ¼ USV T ¼ TV T; ð1Þ
where U is an n · n matrix of left singular vectors as col-
umns, V is a pdim · pdim matrix of right singular vectors
as columns, S is an n · pdim matrix, T is an n · pdim matrix.

The columns of U (or T), corresponding to the nonzero
singular values of X, form a new set of eigenfeatures, which
are usually referred to as principal components (Elden,
2004; Phatak and De Jong, 1997; Jollife, 1986). In the more
specific context of microarray data analysis, they are also
called eigengenes (Bair et al., 2005). They represent new
coordinates in the space spanned by right singular vector
of the data matrix (columns of the matrix V), or equiva-
lently, to the eigenvectors of the matrix XTX and the co-
variance matrix 1

n�1
ðX TX Þ. Traditionally, the principal

components are ordered according to the magnitude of
the singular values of the matrix X (also the eigenvalues of
matrix XTX or the eigenvalues of the sample covariance
matrix 1

n�1
ðX TX Þ). The directions of right singular vectors

of the matrix X (or the eigenvectors of the covariance
matrix) correspond geometrically to the directions of the
maximum variance of the data (Jollife, 1986). Note, that
the ordering based on the magnitude of the singular
values of X is given solely by the properties of the data
matrix X. Hence, selecting the principal components accord-
ing to this criterion is done in an unsupervised manner and
corresponds to traditional principal component regression.

In particular, if we define Sr = diag(r1,r2, . . . ,rr), where

r1 P r2 P � � � rr > 0; are the singular values of X ; and

r ¼ rankðX Þ 6 minðn; pdimÞ is the rank of X

(in exact arithmetic),

then the matrix S can be written as

S ¼
Sr 0

0 0

� �
.

Furthermore, let ki ¼ r2
i be the ith eigenvalue of the matrix

XTX; then the amount of variance explained by the ith
principal component is given by ki, so that the normalized
amount of variance explained by ith principal component
is given by

ki

Xr

j¼1

kj.

,
ð2Þ
Consider now the least-squares fitting problem:

y � Xw;

w ¼ arg min R2 ¼ arg min ky � Xwk2; ð3Þ
where y is a n · 1 vector of target values, k k2 denotes L2

norm; R2 is also referred to as the residual of the least
square problem (Elden, 2004).

The solution of (3) is given by the solution of the normal
equations:

X TXw ¼ X Ty. ð4Þ
As shown, e.g., in (Elden, 2004), given k singular values
with their corresponding singular vectors, the objective
function of (2) (i.e. the residual R2

k), can be expressed using
the SVD of X as follows:

R2
k ¼

Xn

i¼kþ1

ðuT
i yÞ2. ð5Þ

Thus, to obtain the minimum R2
k , one should order the

principal components according to the magnitudes of the
components UTy, as has been proposed for principal com-
ponent regression (PCR) (Jollife, 1986). This ordering was
also suggested for the modified truncated SVD in (Elden,
2004). Note, that in contrast to the ordering of the princi-
pal components by the magnitudes of the singular values of
the data matrix X, this ordering is based not only on the
properties of the data, but it also takes into account the
vector of target values (y). Therefore, this ordering is done
in a supervised manner and it can be understood as a
supervised version of the PCR (Jollife, 1986; Elden, 2004).

If pdim > n(rank(X) = rank(XTX) 6 n), then the problem
(3) is undersampled or ill-posed, and some form of regular-
ization is desirable to obtain a unique and stable solution
(Hansen, 1998; Vapnik, 1999).

2.2. Linear discriminant analysis (LDA) as a mean

square error classifier

Consider the formulation of the LDA as a MSE classi-
fier. In particular, if we consider a 2-class problem, with
the n1 samples of class 1 as rows of the matrix X1 and
the n2 samples of class 2 as rows of the matrix X2, then
we can define the data matrix X as

X ¼
X 1

X 2

� �
and the target vector y as y ¼

n
n1

en1

� n
n2

en2

0
B@

1
CA;

where eni is the ni · 1 vector with elements 1.
Then we can formulate the Fisher linear discriminant as

a solution of the problem given by Eq. (3). This formula-
tion is also referred to as a minimum square error (MSE)
formulation of the LDA (Duda et al., 2000).

Thus, the mass of the vector y along the ith left singular
vector ui gives the degree of discriminatory power of ith
principal component. Therefore, if we keep the commonly
used ordering of the components, based on the singular



Table 1
Description of the datasets (pdim—dimensionality of the data, n1, n2—
number of samples in class 1 and class 2, respectively)

pdim/n1 + n2

Dataset 1 1500/104 + 75
Dataset 2 1500/104 + 93
Dataset 3 1500/175 + 129
Dataset 4 300/61 + 79
Dataset 5 7129/47 + 25
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values of the matrix X as given above, but we attribute to
each component ui the magnitude of uT

i y, we obtain the
‘‘discriminatory’’ power spectrum for the dataset under
study. As it is the case for the normalized amount of vari-
ance explained by the ith principal component in the unsu-
pervised case given by Eq. (2), we define the normalized
amount of the discriminatory information carried by the
ith principal component by

juT
i yj

Xr

j¼1

juT
j yj.

,
ð6Þ
3. Data

The first four datasets we used comprised samples of
magnetic resonance (MR) spectra. An MR spectrum is a
collection of intensity peaks and valleys that carry discrim-
inatory information due to the physical/chemical basis of
the class separation (Lean et al., 2002). A typical MR spec-
trum (taken from dataset 2) is shown in Fig. 1a. Datasets
Fig. 1. (a) Representative MR spectrum. (b) Representative sample of a
gene microarray profile.
1–3 derive from the fast identification of pathogenic yeasts,
using MR spectra (Himmelreich et al., 2003). Dataset 4
comprises MR spectra of biofluids obtained from normal
subjects and cancer patients (Somorjai et al., 2003b).

The fifth dataset we used is a well-known benchmark of
DNA microarray leukemia profiling. Samples in this data-
set contain a vector of gene expressions from a number of
subjects with two different types of leukemia (Golub et al.,
1999). A typical sample from this dataset is shown in
Fig. 1b.

The dimensionality and the sample size of each dataset
are given in Table 1.

4. Classifiers and evaluation

We used two representatives of regularized linear classi-
fiers in our experiments. As a realization of the regularized
MSE LDA, we used PLS. We employed the NIPALS
(Wold et al., 1984) algorithm as implemented in Matlab
toobox PLSTOOLS (Eigenvector) for calculating the linear
discriminant solution. We chose PLS, because it has been
successfully applied in undersampled biomedical problems
(Bennett and Embrechts, 2003) and also because of its rela-
tionship to the SVD analysis in regression (Elden, 2004).
Furthermore, PLS-related Krylov subspace methods are
successfully used for solution of ill-posed inverse problems
in other fields, such as numerical analysis and engineering.
For examples see e.g. (Bjorck, 2004).

We also employed in our experiments linear SVM, cur-
rently considered a powerful state-of-art classifier (Vapnik,
1999). We used the SVM as implemented in Matlab tool-
box PRTOOLS (Van der Heijden et al., 2004).

We split the data k times (k = 10) into a training set and
an independent test set. We trained the classifier of choice
on the training set. To avoid overoptimistic assessment of
the classification error, we evaluated the classifier on the
independent test set (Simon et al., 2004; Ambroise and
McLachlan, 2002). As an estimate of the classification
error, we used the average and standard deviation over
all data splits. The data split proportions were 2/3 for the
training set and 1/3 for test set. We split the data in a strat-
ified way.

5. Results

The classification errors for the SVM and PLS classifiers
are given in Table 2. The PLS and SVM classifiers show



Table 2
Classification error for the five datasets (averaged over 10 test sets) using
SVM and PLS

SVM mean (std. deviation) PLS mean (std. deviation)

Dataset 1 0.08 (0.06) 0.08 (0.03)
Dataset 2 0.04 (0.02) 0.06 (0.02)
Dataset 3 0.21 (0.05) 0.18 (0.03)
Dataset 4 0.30 (0.05) 0.29 (0.05)
Dataset 5 0.03 (0.03) 0.04 (0.03)

1386 R. Baumgartner, R.L. Somorjai / Pattern Recognition Letters 27 (2006) 1383–1389
comparable performance for all five datasets. The lowest
classification error was achieved in Dataset 5 and the high-
est in Dataset 4, whereas moderate classification error was
found for datasets 1, 2 and 3. Therefore, according to the
classification error obtained by the two classifiers under
consideration, Dataset 5 is the ‘‘easiest’’ and Dataset 4 is
the ‘‘most difficult’’.

The means of discriminatory power spectra (over all
data splits) from the five datasets under investigation are
given in Fig. 2a–e. For all datasets, there is clearly a dom-
inant component, which carries most of the discriminatory
Fig. 2. Discriminatory power s
information. From the discriminatory power spectrum one
can also see that the ranking of the discriminatory compo-
nents does not necessarily coincide with the ranking based
on the variance explained. In all datasets however, the dis-
criminatory components are located at the beginning of the
spectrum, corresponding to higher singular values of X
(eigenvalues of the sample covariance matrix).

We were interested in how the dominant peak influences
the classification error. From the mean discriminatory
power spectrum we calculated the normalized discrimina-
tory power of the dominant component according to Eq.
(6). We take this number as a useful, rough characteristic
of a given classification problem. The graph of the normal-
ized discriminatory power of the first dominant discrimina-
tory component vs. the mean classification error for the
PLS classifier is displayed in Fig. 3. (For the SVM we
obtained essentially the same graph.) The greater the dis-
criminatory power of the dominant component, the lower
the (mean) classification error. Thus, the ‘‘easier’’ classifica-
tion problems (e.g. Dataset 5) and the ‘‘more difficult’’ clas-
sification problems (e.g. Dataset 4) reside in the lower, the
pectra for the five datasets.



Fig. 3. Normalized discriminatory power of the dominant discriminatory
component vs. (mean) classification error for the PLS classifier. Note, that
the larger the normalized discriminatory power of the dominant compo-
nent, the lower the classification error.

Fig. 4. The number of removed discriminatory components (with highest
discriminatory power) vs. (mean) classification error for the PLS classifier.
Note, that the classification error exhibits the same trend for all datasets.
It generally increases with the number of removed discriminatory
components.
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right corner and upper left corner of this display, res-
pectively. Note, that the discriminatory power of the first
discriminatory component for Datasets 3 and 4 is approx-
imately the same. The superior classification performance
obtained for Dataset 3 is due to the contribution of addi-
tional, strong discriminatory components in its discrimina-
tory spectrum.

Using the interpretation of the linear decomposition:

X ¼ TV T ¼
Pr

i¼1tivT
i in Eq. (1), as a sum of outer products

(Phatak and De Jong, 1997; Jollife, 1986), one can remove
(project out, deflate) any of the components and obtain a
new matrix Xproj:

X proj ¼ X � tivT
i ;

where ti, vi are the columns of the matrices T and V,
respectively.

Next, we removed the dominant discriminatory compo-
nent in the training set and then assessed how the classifi-
cation error changed for the test set. We have performed
this procedure for all datasets over all splits. The mean
increases (with standard deviations) in the classification
error for the five datasets and for the PLS and SVM clas-
sifiers are given in Table 3. For Dataset 5, with a clearly
dominant peak, its removal was detrimental and resulted
in a dramatic increase of the classification error. The
increase of the classification error for Datasets 1–4 was
large, but it was not detrimental. Looking at the corre-
Table 3
Classification accuracies for the five datasets (averaged over 10 test sets)
using SVM and PLS after the removal of the most discriminatory feature

SVM mean (std. deviation) PLS mean (std. deviation)

Dataset 1 0.21 (0.10) 0.16 (0.04)
Dataset 2 0.21 (0.14) 0.18 (0.05)
Dataset 3 0.32 (0.05) 0.27 (0.05)
Dataset 4 0.37 (0.05) 0.39 (0.03)
Dataset 5 0.38 (0.08) 0.28 (0.08)
sponding discriminatory spectra, for all four data sets the
next most discriminatory components carry considerable
discriminatory power and therefore, even after removal
of the most dominant component, they prevent a larger
increase in the classification error.

To investigate the influence of removing additional dis-
criminatory components with high discriminatory power,
we successively eliminated the first 10 discriminatory com-
ponents and measured the change in classification error
over the 10 data splits. The graphs for all datasets and
for the PLS classifier are shown in Fig. 4. As expected,
the more discriminatory components were removed, the
larger was the increase of the classification error in all five
datasets. Depending on the magnitude of the successive
Fig. 5. The number of removed discriminatory components (with highest
discriminatory power) vs. (mean) classification error for the SVM
classifier. Note that again, the classification error generally increases with
the number of discriminatory components removed.



1388 R. Baumgartner, R.L. Somorjai / Pattern Recognition Letters 27 (2006) 1383–1389
discriminatory components, the increase of the classifica-
tion error was more or less abrupt for different datasets.
For example, for Dataset 5, as an extreme case, the increase
of classification error was abrupt, as it could have already
been seen from the removal of the first dominant discrim-
inatory component. The corresponding graphs for all data-
sets and for the SVM classifier are shown in Fig. 5. They
exhibit a trend similar to those obtained for the PLS
classifier, although the SVM does not explicitly solve the
least-squares problem as given by Eq. (3). However, for
datasets 3 and 5, the classification error stabilizes after
removal of the first discriminatory component.

6. Discussion

The PLS classifier is competitive with the SVM for all
datasets. This performance of the PLS is in agreement with
similar results obtained, e.g. by (Bennett and Embrechts,
2003; Elden, 2004). However, the main goal of our study
was not the quest for the best classifier, but a better under-
standing of classifier behavior in specific real-life settings.

For all five datasets, the concentration of the discrimina-
tory information is quite high, as manifested by dominat-
ing discriminatory peaks in the discriminatory power
spectrum; they determine classifier performance. In fact,
for all datasets, we created non-informative versions by
randomly permuting the class labels (Ambroise and
McLachlan, 2002). We obtained the discriminatory power
spectra in the same way as described in the Results section.
The discriminatory power spectra of these datasets were
flat, with no clearly dominating peaks. This further sup-
ports the importance of the concentration of discrimina-
tory information as expressed in the SVD representation.

Ranking the discriminatory components based on the
amount of discriminatory information, one can carry out
supervised principal component analysis using the spaces
generated by the SVD of the data matrix (Jollife, 1986;
Elden, 2004). An interesting alternative for supervised prin-
cipal components was proposed in (Bair et al., 2005). There,
the data are screened in the data space for ‘‘interesting’’ fea-
tures (in this case gene expressions) and then submitted to
the PCA. A criterion similar to Eq. (6) (with the ith column
of matrix X instead of the left singular vector ui) is used to
identify the relevant features. Provided such features exist in
the data (as it is likely in gene expression profiling) this is a
reasonable approach and it can be interpreted using our
notion of discriminatory spectrum. Excluding the original
features, i.e. those with low covariance with the target y,
one enhances the amount of discriminatory information
of the features with high covariance with the target. The
corresponding peak in the discriminatory spectrum will be
more pronounced and the new data configuration will be
more suited for the success of a linear classifier.

Interpreting the columns of the matrix T as coordinates
of the data in the basis given by the right singular vectors of
the matrix X, (or the eigenvectors of the sample covariance
matrix), concentration of the discriminatory information in
a small number of components suggests that the high-
dimensional data for biomedical classification problems
often lies near a low-dimensional linear manifold, well
approximated by a subset of the right singular vectors of
the matrix X (i.e. a subset of the eigenbasis of the sample
covariance matrix).

In conclusion, we have shown that the MSE formulation
of the LDA and the related notion of discriminatory power
spectrum provide valuable insight into the properties of
undersampled (biomedical) classification problems. In all
datasets in our study, the discriminatory components iden-
tified using the MSE-LDA-derived criterion were also rele-
vant for the state-of-art Support Vector Machine classifier.
Using the discriminatory spectrum, it was possible to link
classifier performance data configuration for a given classi-
fication problem. Moreover, data complexity assessment
supports previous findings of the high degree of compe-
tence of regularized linear classifiers for undersampled bio-
medical classification problems (Simon et al., 2004). It also
provides means for deciding the appropriateness of a regu-
larized linear classifier for a particular undersampled clas-
sification problem.

We are currently investigating the applicability of our
approach to the elucidation of data complexity for regular-
ized linear classifiers in nonlinear (kernel) feature spaces.
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