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Abstract
Error based pruning can be used to prune a decision tree and

it does not require the use of validation data. It is implemented in
the widely used C4.5 decision tree software. It uses a parameter,
the certainty factor, that affects the size of the pruned tree. Several
researchers have compared error based pruning with other approaches,
and have shown results that suggest that error based pruning results
in larger trees that give no increase in accuracy. They further suggest
that as more data is added to the training set, the tree size after
applying error based pruning continues to grow even though there is
no increase in accuracy. It appears that these results were obtained
with the default certainty factor value. Here, we show that varying the
certainty factor allows significantly smaller trees to be obtained with
minimal or no accuracy loss. Also, the growth of tree size with added
data can be halted with an appropriate choice of certainty factor.
Methods of determining the certainty factor are discussed for both
small and large data sets. Experimental results support the conclusion
that error based pruning can be used to produce appropriately sized
trees with good accuracy when compared with reduced error pruning.

Keywords: decision tree, pruning, error based pruning, reduced error pruning.

1. Introduction

In general, a decision tree can be grown so as to have zero error on the
training set. Also, in general, “over-fitting” occurs and the tree needs to
be pruned in order to generalize well on the test set. There are various ap-
proaches to pruning decision trees, including error-based pruning, reduced-
error pruning, minimum description length pruning, and others 1,2,3,4,5. Sev-
eral studies have examined cases in which decision tree pruning methods
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did not prune hard enough 6,7,8,9,3. That is, pruning left structure in the
tree which did not contribute to its generalization ability and was, therefore,
unnecessary.

In particular, error-based pruning, which is a simple method that does
not require a validation set, has been criticized on this count. For exam-
ple, Esposito et al. performed an empirical study of decision-tree pruning
methods and reported that error-based pruning (EBP) under-prunes on all
datasets that they tested — “... EBP performs well on average and shows
a certain stability on different domains, but its bias toward under-pruning
presents some drawbacks...” 6.

More recently, Oates and Jensen have studied decision tree pruning for
large data sets 7,8,9. They also conclude that pruning methods generally do
not work as desired, and summarize the problem as follows — “Despite the
use of pruning algorithms to control tree growth, increasing the amount of
data used to build a decision tree, even when there is no structure in the data,
often yields a larger tree that is no more accurate than a tree built with fewer
data” 9. As one illustration of the problem, Oates and Jensen present a graph
of results for tree size versus training set size using a synthetic training set
with examples from two classes that have random labels. Their data show
that tree size grows approximately linearly with training set size, regardless of
whether error-based, reduced-error, or minimum-description-length pruning
is used. They also present a modification to reduced-error pruning that
at least partially addresses the problem 7. Later, Frank 3 argues that the
modification leads to significantly higher error on 12 of 27 data sets though
it does significantly decrease the tree size for all 27. The characterization
of EBP as a method that inherently under-prunes has continued in a new
analysis of reduced error pruning by Elomaa, et.al. 2.

Current evaluations of error based pruning in the literature 6,7,8,9,10,3 ap-
pear to have only worked with the default certainty factor. The default
certainty factor as determined by Quinlan on a particular set of data sets is
25 1. Experiments with parameter setting in C4.5 release 8 have been done by
others 11. However, the experimentation was done with the certainty factor
and two other parameters. So, a search for a set of the best three parameters
was undertaken. It did result in smaller trees when compared to C4.5 release
7 and they were maximizing accuracy in tuning the parameters. One cannot
evaluate the effect of changing only the certainty factor from this experi-
ment, but it does show that parameter tuning could be done automatically,
and that it could result in smaller trees and increased accuracy.

2



The results presented in this paper are obtained using USFC4.5, which
is our modification of C4.5 release 8. We show that when the certainty
factor parameter for error-based pruning is appropriately set, the pathological
behavior noted by Oates and Jensen disappears. We also provide a summary
comparison with the results obtained by Esposito, showing that when the
certainty factor is appropriately set, EBP does not under prune. We briefly
discuss a methodology that can be utilized to appropriately set the certainty
factor for small data sets. For large data sets, we show that a validation set
can be used to set the certainty factor and we discuss how EBP relates to
reduced error pruning (REP) in this case.

2. Error-Based Pruning

Error-based pruning considers the E errors among the N training examples
at a leaf of the tree to give an estimate of the error probability for that node.
The assumption is that these are E events in N independent trials which is,
of course, not perfectly true. We want to know what the observed result tells
us about the probability of an error over the entire population of examples
that will end up at the leaf. Using the binomial theorem, confidence limits
can be calculated for the probability of error for a given confidence level. The
confidence level is the certainty factor parameter, CF, of C4.5. The upper
limit of the probability is found. Given this value the predicted number
of errors for each leaf of a test node being considered for pruning can be
calculated by multiplying the number of examples at the leaf by the upper
limit of the probability confidence limit. The predicted number of errors if a
node was a leaf can be calculated from the observed number of errors after its
leaves are collapsed. The leaves are pruned if the number of predicted errors
after pruning is less than the sum of predicted errors across the leaves. The
smaller the CF becomes the more certain we are that the confidence interval
contains the true probability of error. That is, the confidence interval is
wider, and the upper limit on the probability that a particular example is
in error is higher, making an example more likely to be incorrect and hence
more pruning will be done. With a CF=100 we have no confidence that the
true error is in the interval and would simply take the observed error rate at
the leaf 1.

In the implementation of EBP in USFC4.5, as in C4.5 release 8, a certainty
factor of 100 still results in a fixed addition of 0.5 errors to the observed errors
at the leaf. We have introduced a flag to prevent this.
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EBP also performs subtree raising. In the case of subtree raising, an
internal node can be replaced by the subtree of one of its children rather
than a leaf.

In USFC4.5 the decision tree can be pruned on a validation set using EBP.
In this case, the error estimates at each leaf come from the examples in the
validation data that end up at that leaf. It is possible that a leaf will have
no examples, in which case it is ignored when deciding to prune the subtree.
If the entire subtree has no validation examples, then it will be pruned.

EBP on a validation set differs from REP pruning as defined by Elomaa 2

(which we believe is the most common implementation) in the utilization
of the certainty factor to increase the error rate at a leaf, and in subtree
raising. If the certainty factor is 100 and the automatic 0.5 error addition
is turned off, then the only difference between the two decision tree pruning
methods is subtree raising. USFC4.5 also allows subtree raising to be turned
off in which case bottom up REP pruning will be applied to the tree with a
certainty factor of 100 and no automatic error addition.

EBP will estimate that more errors are made than actually observed on
the validation set for certainty factors lower than 100. Hence, if we ignore
subtree raising, then EBP applied to a validation set will tend to prune more
than REP for all CF < 100 and will certainly prune more of the tree for
smaller CFs.

3. Experimental results

Results of experiments shown in this section answer the question, “Can
EBP produce trees that do not grow with increasing training data unless
their predictive accuracy is increasing?” We defer to the next section the
question of how to automatically set the certainty factor to obtain pruned
trees which are as small and general as possible while retaining predictive
accuracy.

3.1. “Structure-less” Data

One of the more striking results shown by Oates and Jensen involves the
creation of decision trees with C4.5 for a family of “structure-less” training
sets of difference sizes. This data consists of elements with “30 binary at-
tributes and a binary class label, all with values assigned randomly from a
uniform distribution” 7. The appropriate result for this type of data would
be a single-node tree that assigns elements the label of the most frequently
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(a)

(b)

Figure 1: Tree growth with increasing training set size for two-class,
“structure-less” data. For clarity, the data for lower certainty factors is
plotted separately in part (b). Note that for low certainty factor, there is no
growth in tree size.

occurring class. However, the results obtained with C4.5 using the default
value for the certainty factor show that tree size grows linearly with the size
of the training set. In other words, when given a larger training set the tree
becomes larger, even though accuracy cannot increase.

Figure 1 shows results obtained with the same sort of structure-less data
set as used by Oates and Jensen. The training set size is varied from 250
to 5000 examples, in increments of 250. Data is plotted as the CF is varied
across values of 100 (minimal pruning), 25 (the default), and 10 in Figure 1a
and 1, 0.1, 0.01 and 0.001 in Figure 1b. The curve for the default CF value
mimics the results presented by Oates and Jensen 9. However, the family of
curves clearly shows that the behavior depends on the CF value. If the CF is
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set as low as 0.01, then the average tree size varies between one (a “stump”)
and four over all training set sizes. That is, the tree size is minimal and
constant, just as desired.

3.2. Comparisons on 19 data sets used by Oates and Jensen

In previous work 9, 19 data sets taken from the UC Irvine repository 12

were used to examine how decision tree size changed as the training set size
was increased. These experiments looked at increasing the training set size in
increments of 5%. They compared five different pruning methods including
EBP and REP. The other three were a minimum description length (MDL)
pruning approach, cost-complexity pruning with the 1-SE rule (CCP1SE)
and cost complexity pruning without the 1SE rule 4. The latter two pruning
approaches come from the CART decision tree learning approach. Two runs
of ten-fold cross validation were done at each level of training set size. Those
runs were averaged to produce an accuracy versus size curve.

It was decided that accuracy ceased to grow when the mean of three
adjacent accuracy estimates was no more than 1% less than the accuracy of
the tree based on all available training data. The means were searched from
the smallest three data set sizes to the largest three. They then recorded the
percent kept for each of the pruning approaches to reach acceptable accuracy.
Then they looked at the points on the tree size curve to the right of the
training set size where accuracy ceased to grow, and used linear regression
on those points to predict tree size from training set size. They report the
significance of this regression fit (p and R2). They also report the difference
in size between the tree at which accuracy stops increasing and the final tree
built on all the data as well as the difference in classification accuracy.

We have repeated these experiments with C4.5 release 8. The data sets
used are highlighted in bold in Table 2. Our numbers vary somewhat with the
default certainty factor, but are similar to those in previous work 9. In looking
at the data from the experiments, we decided that it is more fair to look at
the window of three means whose average is highest. In our experiments,
we noted that it is possible to decide that growth had stopped under the
criteria above, but find that a particular window would have distinctly higher
accuracy, sometimes higher than the tree built on all data. In Table 1 we
repeat the results from 9 and add two new lines for error based pruning with a
certainty factor of 0.001. This low certainty factor will cause strong pruning.
Utilizing our definition for percent kept, it is clear that EBP is actually doing
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Pruning % Kept Mean Mean Mean
Method < 100 p < 0.1 R2 ∆size ∆ accuracy

EBP 16 16 0.90 38.29 - 0.14
REP 17 17 0.75 39.32 - 0.32
MDL 18 17 0.88 44.03 - 0.37

CCP1SE 19 10 0.62 30.11 -0.06
CCP0SE 17 11 0.58 47.40 -0.06

EBP* (CF = 0.001) 15 9 0.36 11.50 0.59
EBP (CF = 0.001) 10 6 0.28 9.54 0.69

Table 1: Summary of the effects of random data reduction for all of the
pruning methods. The first five lines are repeated from Oates and Jensen
1997. EBP* is reporting %kept in the same way they did.

the best among all approaches in not increasing tree size without increasing
accuracy. We also show EBP* in the table for which we report percent kept
as reported in the original experiment. EBP remained the best at preventing
growth without accuracy increase.

Clearly, even with strong pruning, EBP does not stop tree growth without
accuracy increase in all cases under the definitions used in the prior study
9. Let us examine more closely two of the data sets for which the most
tree growth occurs without an accuracy increase. The accuracy and size at
different certainty factor values for the trees incrementally built from the
Cleveland data set are shown in Figure 2. Interestingly, the best accuracy
comes from a subset of the data. However, we can see that the tree growth
is quite small in numbers of nodes, even though it is about 50% (from an
average of 3.7 nodes to 5.6 nodes with CF = 0.001). The hypothyroid data set
is another example for which we plot accuracy and size at different certainty
factor values as data is incrementally given to the tree building/pruning
program. The graph is shown in Figure 3. In this case, it does appear
that accuracy again peaks early. However, the overall trend is upward with
more examples. While the tree grows 23%, from an average of 7 nodes to an
average of 8.6, the number of nodes added is again small. Also, the accuracy
does increase, though only by 0.15%, with CF = 0.001. In the case of both
the Cleveland and the hypothyroid data set, at least with heavy pruning, the
tree growth is actually quite mild.
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Figure 2: Tree growth vs. accuracy with error-based pruning for the Cleve-
land data set.
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Figure 3: Tree growth vs. accuracy with error-based pruning for the Hy-
pothyroid data set.
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Figure 4: Certainty Factor At Which Increase In Error Is Statistically Sig-
nificant.

3.3. Effects of Changing the Certainty Factor

Performance over a number of real datasets may give a more useful view
of practical performance when changing the certainty factor. Therefore, ex-
periments were also performed using the first thirty-two data sets described
in Table 2. Most of these data sets come from the UCI Machine Learning
repository 12. One, the “Jones train1” dataset, comes from the problem of
predicting the secondary structure of proteins at each amino acid position.
This particular dataset was used in constructing the classifier that won the
Fourth Critical Assessment of Techniques for Protein Structure Prediction
contest (“CASP-4”) 13.

A ten-fold cross-validation experiment was done with C4.5 for each of the
first thirty-two data sets in Table 2. Each data set was divided into ten
randomly selected one-tenths, and ten times C4.5 was trained on 90% of the
data and tested on the other 10% of the data. The results recorded for each
tree are the size of the tree, measured in number of nodes 14 and accuracy on
the test set. The average accuracy on the test set and the average size were
computed across the ten test sets. This was done for each of fifteen different
values of the certainty factor: 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 10, 1,
0.1, 0.01.

In all of the thirty-two data sets tested, the certainty factor can be set
smaller than the default value, and so the size of the tree decreased, without
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Table 2: Description of real world data sets used.
Dataset Name Data Continuous Discrete Classes Majority

Instances Features Features Class
Proportion

Jones train1 209539 315 0 3 44.48%
Adult 32652 6 8 2 75.92%

Hyperthyroid 2800 7 22 4 92.14%
Australian 690 6 8 2 55.50%
Page Blocks 5473 10 0 5 89.77%

Breast Cancer Wisconsin 699 1 9 2 65.52%
Census Income 48845 6 8 2 54.12%

Cleveland 303 13 0 2 70.00%
German 1000 7 13 2 35.51%
Glass 214 10 0 7 55.56%
Heart 270 5 8 2 79.35%

Hepatitis 155 19 0 2 63.95%
Hungarian 294 13 0 2 64.10%
Ionoshpere 351 34 0 2 33.33%

Iris 150 4 0 3 33.33%
Kr vs Kp 3196 0 36 2 52.22%

Labor Negotiations 40 8 8 2 65.00%
LED 1000 0 7 10 10.90%
Letter 20000 16 0 26 4.07%

Long Beach 200 13 0 2 74.50%
Mushroom 8124 0 22 2 51.80%
PenDigits 10992 19 0 10 10.41%
Phoneme 5404 5 0 2 70.65%
Pima 768 8 0 2 65.10%

Promoter Gene 106 0 57 2 50.00%
Segmentation 2310 19 0 7 14.29%

Shuttle 43500 9 0 7 78.41%
Sick Euthyroid 3163 7 18 2 90.74%

Swiss 123 13 0 2 93.50%
Tic Tac Toe 958 0 9 2 65.34%

Congress Voting Record 435 0 16 2 61.38%
Congress Voting record - 435 0 15 2 61.38%
Best Feature Removed

Breast Cancer 286 0 9 2 70.00%
Lymphography 148 2 17 2 54.70%
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Figure 5: Certainty Factor Value That Yields Smallest Error on the Test Set.

any statistically significant decrease in accuracy. Figure 4 shows a histogram
of the smallest reasonable value of the certainty factor for the thirty-two data
sets. Here, “smallest reasonable value” refers to the smallest value, less than
the default certainty factor of twenty-five, for which there is no statistically
significant decrease in accuracy. In twenty-three of the thirty-two datasets,
there was no statistically significant change in accuracy with the certainty
factor reduced to 0.01.

For each CF value, we tested the null hypothesis that the error level of the
tree at the given CF is less than or equal to the error level of the tree at the
default level. A one-sided paired-t test was used to compare the variations
across the tenfold cross validation with the significance level set as α = 0.05.

Rather than looking at the certainty factor relative to the default value,
we can also ask what value would produce the lowest error on the test set.
The histogram for this result appears in Figure 5. There are actually seven of
the thirty-two datasets in Table 2 for which the certainty factor that results
in the lowest error is greater than the default value, with the highest such
setting being seventy. However, there are also eight datasets at which the
best value of the certainty factor is 0.01 or lower. It should not be surprising
that the accuracy of a decision tree technique is dependent on a parameter
that controls the pruning strength. But it may be somewhat surprising that
the ideal value of the parameter can vary so widely across different datasets,
and that such a low certainty value can be appropriate so frequently.
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Next, we focus on the tree size, rather than tree accuracy. As the cer-
tainty factor decreases from 25 to 0.01 across all thirty-two datasets, tree
size decreases an average of 56.7% while error rate increases an average of
0.7%. The maximum decrease in size is 99.1%, which occurs for the German
dataset, and the minimum decrease in tree size is zero, which occurred for
the Glass and Mushroom datasets.

We also consider the change in accuracy going from CF = 25 to CF =
0.01. The maximum decrease in error rate is 8.3%, which occurred for the
Jones train1 Dataset, and the maximum increase in error rate was 10.35%,
which occurs for the Tic Tac Toe dataset. For each data set, we test the
null hypothesis that accuracy with CF= 0.01 is less than or equal to the size
with the default CF (25). A one-sided paired t-test is used to compare the
variations across the tenfold cross validation with the significance level set as
α = 0.05. The error increase is significant in nine of the thirty-two datasets.

Given the results presented in this subsection, it is clear that changing
the certainty factor for EBP has a strong effect on both the size of the tree
and the accuracy of the tree. It seems clear that the default choice of 25
is reasonable for a number of the data sets tested here, however a smaller
certainty factor can often be used. The smaller value will result in a smaller
tree which is often at least as accurate as the tree obtained with default
pruning.

3.4. Comparison of results on under-pruning

Esposito et al. performed an empirical study of decision-tree pruning
methods and reported that EBP under-prunes on all datasets that they
tested 6. When assessing EBP, Esposito et al. define under-pruning as
pruning a tree to a size that is larger than the “optimally pruned trained
tree” (OPTT) and has a higher error on the test set. The OPTT is derived
as follows:

• Grow a tree on 70% of the dataset using C4.5.

• Use reduced error pruning (REP) to prune the tree using the remaining
30% of the data as the prune set.

• Evaluate the tree using the same 30% used to prune the tree (with
REP) as the test set.

Esposito et al. claim that this tree is the best subtree of the trained tree
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Table 3: Average Size and Error Rate for Tree Built on 90% of the Data and
Tested on the Remaining 10% (10 replications per mean value)

CF = 25 CF = .01 Reported OPTT 6

Mean Mean Mean Mean Mean Mean
Size Error Size Error Size Error

Iris 8.4 6.00 5.4 6.67 4.00 4.42
Glass 11.0 2.88 11.0 2.88 15.08 28.31

Led-1000 49.6 26.70 23.8 27.80 22.04 25.31
Hypo 24.6 0.73 8.6 0.73 9.36 0.35
P-gene 21.8 25.00 5.0 22.00 10.00 16.50

Hepatitis 17.0 18.66 2.8 21.35 4.36 16.34
Cleveland 39.2 20.00 6.6 21.33 16.36 20.84
Hungary 17.0 20.32 3.4 19.30 9.64 17.27

Switzerland 1.0 6.66 1.0 6.66 1.16 5.73
Long Beach 18.6 23.00 1.2 26.00 4.92 23.13

Heart 37.3 25.16 4.5 27.01 45.96 17.71
Blocks 84.2 3.33 27.0 3.43 30.44 2.35
Pima 39.6 25.40 4.6 26.06 22.68 27.71

Australian 33.7 12.89 3.0 14.47 24.76 12.04

with respect to the test set. For this reason, all other trees created by pruning
the trained tree are compared to the OPTT.

We experimented with 14 of the 15 data sets used in Esposito 6. We did
not use LED-200 due to uncertainty in how to re-create the test set that
they used. Our tree size for comparison was the average over a ten-fold cross
validation with a certainty factor of 0.01. For 12 of the 14 data sets the tree
size was smaller than or equal to the optimally pruned trained tree. Only
for the Iris data set was our tree size larger, with potential significance. Our
results indicate an average size of 5.4 nodes in the tree versus the 4 nodes per
tree reported by Esposito. This is a three-class problem and we believe it is
necessary, with binary splits on continuous values, to have at least five nodes
in the tree so that there is a leaf for each of the three classes. Hence, we do
not believe their reported result is correct. Table 3 contains the comparative
results.

We conclude that the certainty factor of EBP can be lowered so that it
does not under prune. It is true that the smallest tree is not always the
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most accurate tree. However, we are simply addressing the concern that this
pruning method cannot be used to produce appropriately small trees.

4. Choosing the Certainty Factor

We consider two cases for choosing the certainty factor for pruning, where
the training set size either is or is not large enough to reasonably allow the
use of a validation set. The solution we will present for small training sets
requires more computational time per example and hence may itself help
draw the dividing line between small and “large enough to use a validation
set” training data sets.

4.1. Choosing the Certainty Factor: Large Data

In the case that the training set is large enough that a validation set can
be subtracted from it without an expectation that the accuracy of the tree
built from the remaining data will be greatly lowered, one can simply use
a validation set to decide how much to prune. The first thing to recognize
is that a tree pruned at CF2 can be obtained by pruning the tree pruned
at CF1 when CF1 > CF2. So, the search for the appropriate certainty
factor would consist of choosing an initial certainty factor, CFi, for pruning
and then evaluating the resultant tree on the validation set to determine
its accuracy. Next, choose a new certainty factor δ lower than the last and
prune the pruned tree. Evaluate the resultant tree on the validation set.
Continue creating new pruned trees until the stopping criterion is met. The
most reasonable stopping criterion is a decrease in classification accuracy on
the validation set.

The above approach requires a choice of initial certainty factor and the
amount to change the certainty factor after each tree is built. To maximally
search the space δ = 1 is appropriate until a value of 1 is reached for the
certainty factor. At that point, from our experiments the following values
appear sensible, 0.1, 0.01, 0.001, and 0.0001. A larger value of delta may often
be reasonable. However, it does not take very long to prune an already built
tree. Certainly it requires much less time than building the tree.

4.2. Choosing the Certainty Factor: Small Data

Kohavi 15,16 discussed the use of wrappers for choosing the certainty factor
for C4.5 decision tree pruning. The wrapper approach makes use of best-first
search and cross validation to set parameters utilizing just training data.
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Frank 3 also had success in choosing a parameter for an enhanced REP
pruning algorithm using cross validation. In the case of small data sets
where we do not want to set aside data for validation purposes, wrappers
can be applied to determine the appropriate certainty factor. The approach
would work as follows if we assume the use of five-fold cross validation as
suggested by Kohavi.

Choose a certainty factor modification operator, call it δ. Choose an
initial certainty factor, CFi. Use fivefold cross validation to get an accuracy
estimate from the training data. The accuracy will be the average accuracy
over the five experiments. Generate successor certainty factors by CFs =
CFi ± δ. For each certainty factor value, do a fivefold cross validation to
find an average accuracy and size. Put the average accuracy, size and the
certainty factor value onto a list ordered by accuracy and size. Choose the
first element of the list and create the successor states via successor certainty
factors. Evaluate them and appropriately place them on the list. Continue
this until a stopping criterion is met. The stopping criterion can be a decrease
in accuracy upon the evaluation of n successor states.

This approach requires building five trees to evaluate each certainty factor
value. However, if the training set is small this will not be too big a penalty.
There are choices of how much to change the certainty factor and where to
start and when to stop. Kohavi tried using multiple modification operators,
for example one that changes the certainty factor by 1 together with one that
changes the certainty factor by 5. So, the highest accuracy tree’s certainty
factor would be used to generate four new certainty factors for evaluation.
Under this scheme, we would include values less than 1 for searching. So, we
would use a list of certainty factor values {0.1, 0.01, 0.001, 0.0001} ∪ [1, 100].
Now, given that the best certainty factor was 1 we would also evaluate trees
created with a certainty factor of 2 and 0.1 if δ = 1.

4.3. EBP evaluated on validation data

To illustrate how error based pruning can be applied to a large data set,
we used the data from the domain of protein secondary structure prediction.
We used the same training set of 209,529 examples and a test set (17,731)
amino acids from a set of protein chains that were considered non homologous
to the training set 13 plus a separate validation set of 74,813 examples.

EBP was applied to the training data with seven different levels of pruning.
The pruned tree was evaluated on the validation data. The tree that had the
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best performance on the validation data was the one for which the certainty
factor was equal to 0.001. That particular tree also had the best performance,
at 60.4% accuracy on the test data. The results are as one would expect with
complete results shown in Table 4.

Table 4: Tree size and accuracy for a tree built on Jones train1 with evalua-
tion after pruning on a validation set for each certainty factor and evaluation
on the test data.

EBP Tree Size Error on validation data Error on test data
certainty factor

25 46,103 46.2% 47.9%
10 40,825 45.1% 46.5%
5 36,137 43.8% 45.2%
1 25,121 41.1% 42.3%

0.1 14,719 39.3% 40.7%
0.01 8,111 38.8% 40.0%
0.001 5,743 38.5% 39.6%

4.4. EBP and REP pruning on a validation set

The REP and EBP algorithms were compared on the Jones train1 data set.
The results are shown in Table 5. For comparison purposes, we applied REP
to the test set to get the optimally pruned trained tree 6 which was 81.7%
accurate on the test data and consisted of 24,365 nodes. It is significantly
more accurate than any other tree we obtained.

REP applied to the validation data resulted in a tree of 28,077 nodes. EBP
applied to the validation set with no certainty factor (no additional errors
estimated at the leaves) and just subtree raising resulted in a much smaller
tree of 15,105 nodes that also made 26 fewer errors. With a CF = 50, a tree
of 9,755 nodes was obtained which was the most accurate on the test data at
61.2%. This experiment shows that EBP will prune more than REP when
both are applied to a validation set, as expected. In this particular case, the
smaller tree is actually more accurate on unseen test data. To decide how to
set the certainty factor on this large data set, we would recommend having
a pruning data set and a validation data set for evaluating the pruned trees.

5. Summary and Discussion
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Table 5: Tree size and accuracy for trees built on Jones train1 and pruned
on a validation set with EBP and REP. Error is on the unseen test data.

Pruning Pruning Size Test Set
Algorithm Data set Error

REP Test 24,365 18.3%
REP Validation 27,255 39.9%

EBP (no CF) Validation 15,105 39.8%
EBP (CF = 100) Validation 14,213 39.6%
EBP (CF = 75) Validation 13,277 39.3%
EBP (CF = 50) Validation 9,755 38.8%

Error-based pruning is a simple method of pruning decision trees. It
uses the training set error at a node and does not require a validation set.
The degree of pruning is controlled by the certainty factor parameter. One
objection to error-based pruning is that it has the general effect of under-
pruning 6,10. A related but more specific objection is that, for large datasets,
error-based pruning results in trees that continue to increase in size as the
amount of training data increases, even when the resulting trees give no
increased accuracy 9.

Our results show that these objections are valid only if one restricts atten-
tion to the default value for the certainty factor. When the certainty factor
value is appropriately tuned for the data set, error-based pruning can give
trees that are essentially constant in size regardless of the amount of training
data. This generally requires values of the certainty factor much smaller than
the default value in C4.5.

One could object to having to tune a parameter value for effective pruning,
on the basis that, other things being equal, a parameter-free method is better.
However, essentially all pruning methods are controlled by a parameter of
some sort. For example, any method that requires a split of the available
labeled data into a training set and a validation set effectively requires a
parameter that is the split ratio and is vulnerable to an unfortunate group
of examples in the validation set even with a good choice of split ratio. Thus
an argument for one pruning method being better than another would have
to be based on relative ease of parameter tuning.

We have addressed how to choose the CF for small data sets. The wrapper
approach 15 to searching for the best certainty factor value through cross
validation will not be overly expensive for small data set sizes. For larger
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data sets, where there is enough data to create a separate validation set, we
have shown that a validation set can be effectively used to set the certainty
factor. A learned tree can be pruned, successively, to different levels and
tested with the most accurate tree retained, as was done with the Jones
train1 data. For large labeled data sets, there is no major drawback in using
a validation set. In absence of any information the current default value is
reasonable. However, for most data sets smaller trees can be obtained with
no decrease in accuracy by utilizing a smaller certainty factor.

Error-based pruning has perhaps been too readily dismissed. For small
datasets, it has the advantage that it does not require a split into train and
validation data. As we have shown, EBP is able to produce trees that are
essentially constant in size in the face of increasingly larger training sets.
There is not yet a clear demonstration of a true problem with error-based
pruning that is successfully addressed by some more sophisticated technique.
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