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Abstract

We investigated the geometrical complexity of several
high-dimensional, small sample classification problems and
its changes due to two popular feature selection procedures,
forward feature selection (FFS) and Linear Programming
Support Vector Machine (LPSVM). We found that both pro-
cedures are able to transform the problems to spaces of very
low dimensionality where class separability is improved
over that in the original space. The study shows that geo-
metrical complexities have good potentials for comparing
different feature selection methods in aspects relevant to
classification accuracy, yet independent of particular clas-
sifier choices.

1. Introduction
Practical classification problems often contain substan-

tial geometrical structure in the class distributions that man-

ifests as patterns learnable by human or machine classifiers.

Yet with sparse samples in a high-dimensional space, such

structure could be difficult to uncover due to an excessive

degree of freedom in parameter choices and interferences

from noninformative or redundant features. Feature selec-

tion is a popular treatment for such data that aims at en-

hancing the differences between classes that impact the data

geometry and subsequently classification accuracy.

Feature selection has to deal with the challenges of over-

fitting and selection bias, both occurring because the search

procedure aggressively adapts to the given limited data.

Sparse data with many redundant features may also yield

alternatives among several equally well-performing feature

subsets to be chosen by ease of interpretation[8]. Such

scenarios are often encountered in biomedical domains,

where sophisticated instruments yield high-resolution mea-

surements on very few available specimens.

Typical feature selection procedures are guided by a par-

ticular merit criterion that is related to class separability, or

follow a wrapper approach to optimize performance of a

particular classifier. To evaluate the final outcome, i.e., the

classification problem projected to the selected subspace,

claims are sometimes made on improved accuracy of a pre-

designated classifier, but more often on higher efficiency of

automatic learning with fewer dimensions to consider. It

is often unclear to what extent the feature selection trans-

formation has changed the difficulty of the classification

problem, in widening the gap between classes, compress-

ing the discriminatory information, and removing irrelevant

dimensions. In this study we propose a way to quantita-

tively describe such changes, using a set of data complexity

measures previously shown useful for characterizing clas-

sification problems [4][5]. We intend to examine whether

a feature selection procedure transforms the initial prob-

lem into spaces where classification difficulty is reduced,

in the sense that it pushes the problem to a position in the

complexity space farther away from a “pattern-less” ran-

dom class labeling than the distance maintained by the full-

dimensional data from a similar “pattern-less” labeling. Us-

ing this method, we investigate two popular feature selec-

tion procedures: Forward Feature Selection (FFS) and Lin-

ear Programming Support Vector Machine (LPSVM) [2],

named LIKNON by [1]. LPSVM has yielded promising

classifiers in microarray analysis [1], face recognition [3],

and classification of biomedical spectra [7]. We will de-

scribe these procedures briefly and then present details and

results of our proposed evaluation methodology.

2. Feature Selection

Forward feature selection is to incrementally add fea-

tures to optimize a criterion that is either a class distance

measure or the accuracy of a classifier. In our study we op-

timize the ratio of between and within class scatter, using

an implementation from PRTools [9].

LPSVM is a variant of SVM where an norm is used

in the regularization term. The dual constraints and the opti-

mality conditions suggest how the values of the regulariza-
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tion parameter affect the selected feature subspace. In this

work the regularization parameter is used to control the size

of the feature subset, as described below.

The primal minimization problem. LPSVM implements

a linear rule for two-class classification: x w
, where x are -dimensional samples,

is the class label of sample i, and , the

total number of samples in the two classes. The important

features in LPSVM are given by the large weights of

the vector w. A component of the weight vector and its

absolute value are modeled through two non-negative vari-

ables: , . Define

to merge vectors from both classes. The weights w of the

separating hyperplane are found by solving the following

optimization problem [1][3]:

J

(1)

The dual maximization problem. The dual of LPSVM is:

J

(2)

The optimal solution lies on a vertex of the feasible region

given by constraints in (2) and .

Optimality conditions of LPSVM. The optimal solu-

tions( ) of primal and dual LPSVM satisfy the optimality

conditions for every feature and sample :

(3)

Binding constraints determine the nonzero components

of w, which correspond to the selected features. We use hy-

perplane to denote any constraint

, which becomes binding for feature .

Subset selection. For some fixed , the optimal solution

satisfies for a set of fea-

tures j that correspond to the bind-

ing constraints. When the bounding box expands,

the constraints are encountered sequentially, depending

on how far they are from the origin. At some the

bounding box will fully contain the feasible region formed

by all hyper-planes , including the farthest. Increasing

the beyond likely would not alter the identities of

the selected features. This analysis suggests that the initial

and final values of should be:
(4)

where is a small number. The are the indices

of the individual features corresponding to the maximum

and minimum values of out of all . The

subspaces of the original data space are determined travers-

ing the interval of values non-

uniformly, with matching the ascending distances of

’s from the origin. We collect the feature subset when its

size changes.

3. Data Complexity In Reduced Spaces
Feature selection procedures like FFS and LPSVM are

intended to transform a problem to a new, reduced space,

where only important discriminatory information is re-

tained. Ideally, this should mean an increase in class sep-

arability from that of the “mother” problem in the original

space. Our study attempts to provide a quantitative descrip-

tion of these changes, using several measures of classifi-

cation complexity proposed in [4] to describe each trans-

formed problem. These measures describe the data geome-

try without reference to the performance of a particular clas-

sifier, yet they have been found useful in characterizing a

classifier’s domain of dominant competence [5]. Three of

these measures are especially useful for high dimensional,

sparse data:
1. boundary – percentage of points on class boundary,

estimated by a minimum spanning tree method,

2. intra-inter – ratio of averaged intra-class

nearest-neighbor (NN) distance to averaged inter-class

NN distance,

3. ballcenter – percentage of points needed as cen-

ters of maximal balls to cover the class, also known as

the pretopology measure.
These measures do not involve a linear separability assump-

tion, are not dependent on a classifier, and are insensitive

to the orientation of the class boundary w.r.t. the axes.

Though, previous observations with these measures show

that they may be strongly influenced by the sampling den-

sity, i.e., number of points per feature dimension. This calls

for special caution in our study, because we are compar-

ing problem formulations in spaces of drastically different

dimensionalities, e.g., 1D or 2D versus 1500D, while the

number of samples remains the same. An important concern

is how to isolate the effects inherent to high-dimensional ge-

ometry from those due to the interleaving of the two classes.

As a way to alleviate this problem, we propose to com-

pare the complexity values ( for measure , prob-

lem , and feature subset ) computed for the transformed
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point set ( ) with values computed for “pattern-less” la-

beling of the same point set ( ), in the space of the same

dimensionality. A large difference would mean that the

transformed problem is farther away from the case where

the two classes are thoroughly mixed, i.e., the more class-

discriminatory information is retained. The pattern-less

complexity values are obtained by randomly shuffling the

class labels among the feature vectors and then applying the

complexity measures, as in a permutation test well known

in statistics. We used the averaged value ( ) over 10 re-

alizations of the random shuffling. We note that with sparse

samples, one may afford to have far more realizations and

even compute the exact distribution of the complexity mea-

sures for all labelings.

To show the change (or enhancement in class separa-

bility) due to the feature subset projection, we normalize

the complexity difference obtained for the feature subset by

the difference computed for the mother problem ( ) and

its pattern-less labeling ( ) in the original feature space,

i.e., . The differences are comparable be-

cause each complexity measure spans a known, fixed range

or scale of values [4]. For each feature subset , a ratio

gives the normalized deviation from

pattern-less mean due to the projection of the data set to .

Systematic methods for generating would produce a tra-
jectory of as a function of the controlling parameter

(e.g. the subset size), showing the changes in class separa-

bility. In the experiment described below, we test the utility

of this way of evaluating the FFS and LPSVM feature se-

lection procedures.

4. Experimental Setup
We experimented with two-class problems with five

datasets from real-world biomedical applications. Typical

of this domain, they are sparse and high-dimensional. The

public data sets Ovarian and Colon are gene expression mi-

croarrays of cancer classification problems [6]. The sets

Spectra1[7] and Spectra2 (problems of discrimination of

pathogenic fungi) and Spectra3 (cancerous vs. normal tis-

sues) were magnetic resonance spectra provided by the In-

stitute for Biodiagnostics, NRC Canada. The size of these

datasets and their partition into training (Tr) and testing (Te)

sets are as follows.
Property Colon Ovarian Spectra1 Spectra2 Spectra3
Dim. 2000 1536 1500 1500 1500
N1+N2 40+22 30+24 104+75 141+114 77+51
Tr1+Tr2 15+15 16+16 50+50 76+76 34+34
Te1+Te2 25+7 14+8 54+25 65+38 43+17

FFS and LPSVM are applied to each of 10 random splits,

and the complexity trajectory is computed for each data set,

each split and each selection method. The test errors of 9

classifiers from PRTools[9] are computed for the mother

problem and for every subset: nearest neighbor (1,3 5) knnc,

linear fisher discriminant fisherc, decision tree treec, linear
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Figure 1. Trajectories of changes of
intra-inter on the five datasets due to FFS
and LPSVM.
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Figure 2. Comparison of complexity changes
in feature subsets with or without classifi-
cation accuracy improvement over mother
problem.

svm svc, logistic linear classifier loglc, nearest mean classi-

fier nmc and linear discriminant using the data pca expan-

sion pcldc. As it occurs, feature selection may improve

or degrade classification accuracy. We attempt to under-

stand when improvements happen by showing the changes

in class separability due to the transformation.

5. Results and Observations
Figure 1 shows, as an example, trajectories of changes of

the intra-inter measure for the five datasets using the

two feature selection methods. Figure 2 shows typical dis-

tributions of complexity changes for feature subsets with or

without accuracy improvement. Table 1 summarizes the re-

sults from FFS for subsets of dimensionality 1,3,...,15. The

entries are the complexity values of the transformed training

set in the first random split, and (after the “/”) the mean and

stddev of the pattern-less training set projected to the same

subspace. Row “m” describes the mother problem with full

dimensionality, and “s” shows the mean and stddev of the

complexity values over the 10 random splits of the mother.

Table 2 shows, for the Colon data, average test errors of the

mother problem (over 10 random splits) with each classifier,

and those of the feature subsets yielding an improvement.

For all datasets and both feature selection methods, the

values of the complexity measures show some variability

over the data splits. This highlights the need for further

research on quantifying the uncertainty in complexity esti-

mates due to small samples. Yet some discernible trends

can be observed. These are summarized as follows.
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Dim. Colon Ovarian Spectra1 Spectra2 Spectra3
boundary

1 33.3/72.0,13.4 40.6/75.9,9.6 26.0/74.7,6.2 57.2/77.3,3.5 61.8/75.7,4.5
3 26.7/69.0,8.8 34.4/71.9,9.2 15.0/70.8,5.5 38.2/70.9,3.7 51.5/71.0,5.9
5 36.7/66.3,9.6 40.6/71.3,10.9 16.0/73.0,5.2 40.1/66.6,3.5 52.9/68.8,6.5
10 63.3/68.3,8.9 40.6/69.1,11.0 17.0/72.2,3.8 38.8/69.0,2.9 54.4/68.2,7.9
15 60.0/65.3,10.9 56.3/70.6,8.0 18.0/70.6,5.7 39.5/69.3,3.1 50.0/67.4,7.0
m 43.3/72.3,11.3 62.5/67.5,9.1 16.2/69.5,3.4 35.5/70.1,4.3 70.6/71.2,7.1
s 42.33,7.0 51.87,7.7 15.10,2.6 38.15,3.5 67.50,5.0

intra-inter
1 0.61/0.92,0.3 0.73/1.06,0.2 0.15/1.12,0.1 0.56/0.96,0.2 0.63/1.39,0.5
3 0.55/1.06,0.1 0.73/1.00,0.1 0.30/1.02,0.1 0.73/0.98,0.1 0.73/1.06,0.1
5 0.72/1.01,0.0 0.84/1.03,0.1 0.37/1.01,0.1 0.77/0.98,0.0 0.79/1.00,0.1
10 0.93/1.00,0.1 0.88/1.01,0.1 0.38/1.01,0.1 0.77/1.00,0.0 0.87/1.01,0.1
15 0.97/1.00,0.1 0.88/1.02,0.0 0.39/1.01,0.1 0.79/0.99,0.0 0.86/1.01,0.1
m 0.97/1.01,0.03 0.95/1.00,0.02 0.46/0.99,0.04 0.76/1.01,0.04 0.97/1.00,0.04
s 0.92,0.02 0.95,0.01 0.42,0.03 0.78,0.02 0.97,0.02

ballcenter
1 60.0/76.7,12.2 59.4/82.5,6.1 40.0/80.7,4.8 67.7/82.7,3.2 73.5/80.3,4.9
3 86.7/99.3,1.4 87.5/97.8,2.6 86.0/98.8,1.4 99.3/98.9,0.9 100.0/98.5,1.2
5 100.0/98.0,1.7 100.0/99.4,1.3 92.0/99.9,0.3 99.3/99.9,0.3 100.0/99.6,0.7
10 100.0/100.0,0.0 96.9/98.4,1.6 96.0/99.5,0.5 98.7/100.0,0.0 100.0/100.0,0.0
15 100.0/100.0,0.0 93.8/99.4,2.0 92.0/99.7,0.5 99.3/100.0,0.0 100.0/100.0,0.0
m 100.0/100.0,0.0 100.0/100.0,0.0 96.8/99.7,0.5 98.0/100.0,0.0 100.0/100.0,0.0
s 100.00,0.0 100.00,0.0 95.27,1.4 99.41,0.8 100.00,0.0

Table 1. Complexity values of problems trans-
formed by forward feature selection.

Selection knnc1 knnc3 knnc5 fisherc treec svc loglc nmc pcldc
mother 0.262 0.250 0.232 0.154 0.333 0.157 0.157 0.175 0.161
ffs 0.218 0.193 0.197 0.118 0.235 0.120 0.120 0.114 0.148
lpsvm 0.164 0.150 0.149 0.112 0.213 0.114 0.113 0.132 0.140
% ffs 26.1 20.7 23.4 5.4 41.9 1.8 3.2 8.1 19.4
% lpsvm 86.3 89.3 96.2 18.3 77.3 26.8 7.7 74.9 44.5

Table 2. Average test errors of mother prob-
lem and improved FFS and LPSVM subsets,
and percentage of subsets with reduced er-
rors (Colon data).

1. The intrinsic difficulty of the problem is reflected in

the complexity values. e.g. Spectra3, for which all

classifiers are at their worst, has generally much higher

boundary values than Spectra1.

2. Low dimensional ( ) projections have significantly

different complexity characteristics from the rest. With

dim. , complexity quickly approaches that of the

mother problem.

3. Classes are severely compressed in 1-dim. projec-

tions, causing low values of ballcenter. Even the

pattern-less sets show substantial compactness, which

may become false classes that can be ”learned” by an

automatic classifier.

4. Feature selection appears to be best for the microar-

ray data (Colon,Ovarian): for all splits, all low dim.

projections have lower complexity than the mother

( ), in terms of all three measures. Relative

merits degrade gracefully as dimensionality increases.

Feature selection is useful for MR spectra only in the

very low dim. projections ( ). Other than that, very

often the selected feature subsets are no better than the

mother ( ).

5. Complexity changes due to FFS and LPSVM are sim-

ilar; FFS produces monotonic trends more often.

6. Feature subsets that improve accuracy for several clas-

sifiers simultaneously almost always have high val-

ues in the ratio for both boundary and

intra-inter. For the microarray datasets, the sub-

sets selected by LPSVM improve accuracies more of-

ten. For Spectra1 FFS is obviously better.

Though we observe some separation (e.g. in Figure 2)

of the values of the feature subsets that lead to more

accurate classifiers from those of the less accurate ones, a

definitive and quantitative relationship between complexity

changes measured in this way and accuracy improvements

remains to be an open question. Future efforts towards this

need to consider the small sample effects as well as the sen-

sitivity of each type of classifiers to the specific aspect of

data complexity represented by each measure.

6. Conclusions
We describe a method for using geometrical complex-

ity measures to characterize changes in class separability

due to feature selection. We report an early experiment

where we applied this to evaluate two feature selection pro-

cedures, and found interesting evidences of their merits on

five high-dimensional biomedical problems with extremely

sparse samples. From the results, LPSVM appears to be

useful for these data, and it produces accuracies compara-

ble to FFS while being much faster.
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