
330 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

The Linear Separability Problem:
Some Testing Methods

D. Elizondo

Abstract—The notion of linear separability is used widely in ma-
chine learning research. Learning algorithms that use this concept
to learn include neural networks (single layer perceptron and re-
cursive deterministic perceptron), and kernel machines (support
vector machines). This paper presents an overview of several of
the methods for testing linear separability between two classes. The
methods are divided into four groups: Those based on linear pro-
gramming, those based on computational geometry, one based on
neural networks, and one based on quadratic programming. The
Fisher linear discriminant method is also presented. A section on
the quantification of the complexity of classification problems is in-
cluded.

Index Terms—Class of separability, computational geometry,
convex hull, Fisher linear discriminant, linear programming,
linear separability, quadratic programming, simplex, support
vector machine.

I. INTRODUCTION

TWO SUBSETS and of are said to be linearly
separable (LS) if there exists a hyperplane of such

that the elements of and those of lie on opposite sides of it.
Fig. 1 shows an example of LS and NLS set of points. Squares
and circles denote the two classes.

Linear separability is an important topic in the domain of
machine learning and cognitive psychology. A linear model is
rather robust against noise and most likely will not over fit. Mul-
tilayer non linear neural networks, such as the back propagation
algorithm, work well for classification problems. However, as
the experience of perceptrons has shown, there are many real life
problems in which there is a linear separation. For such prob-
lems, using backpropagation is an overkill, with thousands of
iterations needed to get to the point where linear separation can
bring us fast. Furthermore, multilayer linear neural networks,
such as the recursive deterministic perceptron (RDP) [1], [2]
can always linearly separate, in a deterministic way, two or more
classes (even if the two classes are not linearly separable). The
idea behind the construction of an RDP is to augment the affine
dimension of the input vector by adding to these vectors the out-
puts of a sequence of intermediate neurons as new components.
Each intermediate neuron corresponds to a single layer percep-
tron and it is characterized by a hyperplane which linearly sep-
arates an LS subset, taken from the non-LS (NLS) original set,

Manuscript received July 24, 2003; revised June 15, 2005.
The author is with the Centre for Computational Intelligence, School of Com-

puting, De Montfort University, The Gateway, Leicester LEI 9BH, U.K. (e-mail:
elizondo@dmu.ac.uk).

Digital Object Identifier 10.1109/TNN.2005.860871

Fig. 1. (a) LS set of points. (b) Non-LS set of points.

and the remaining points in the input vector. A cognitive psy-
chology study on the subject of linear separability constraint on
category learning is presented in [3]. The authors stress the fact
that grouping objects into categories on the basis of their sim-
ilarity is a primary cognitive task. To the extent that categories
are not linearly separable, on the basis of some combination of
perceptual information, they might be expected to be harder to
learn. Their work tries to address the issue of whether categories
that are not linearly separable can ever be learned.

Linear separability methods are also used for training support
vector machines (SVM) used for pattern recognition [4], [5].
Similar to the RDP, SVMs are linear learning machines on LS

1045-9227/$20.00 © 2006 IEEE

ELIZONDO: THE LINEAR SEPARABILITY PROBLEM: SOME TESTING METHODS 331

and NLS data. They are trained by finding a hyperplane that
linearly separates the data. In the case of NLS data, the data is
mapped into some other Euclidean space. Thus, SVM is still
doing a linear separation but in a different space.

This paper presents an overview of several of the methods for
testing linear separability between two classes. In order to do
this, the paper is divided into five sections. In Section II, some
standard notations and definitions together with some general
properties related to them are given. In Section III, some of the
methods for testing linear separability, and the computational
complexity for some of them are provided. These methods in-
clude those based on linear programming, computational geom-
etry, neural networks, quadratic programming, and the Fisher
linear discriminant method. Section IV deals with the quan-
tification of the complexity of classification problems. Finally,
some conclusions are pointed out in Section V.

II. PRELIMINARIES

The following standard notions are used: Let
Card stands for the cardinality of a set . is the

set of elements which belongs to and does not belong to .
is the set of elements of the form with and

. stands for , i.e., the set of elements of
the form with and . If
and , then corresponds to

. Let
be the standard position vectors representing two points and

in ; the set is called the seg-
ment between and is denoted by . The dot product
of two vectors is defined
as .
and by extension .
stands for the hyperplane of of
the normal , and the threshold . will stand for the set of all
hyperplanes of .

The fact that two subsets and of are lin-
early separable is denoted by or . Thus,
if , then and

or and
. Let

. Let
be the half space delimited by and containing (i.e.,

if for some
.

A. Definitions and Properties

For the theoretical representations, column vectors are used
to represent points. However, for reasons of saving space, where
concrete examples are given, row vectors are used to represent
points. We also introduce the notions of convex hull and linear
separability.

Definition 2.1: A subset of is said to be convex if, for
any two points and in , the segment is entirely
contained in .

Fig. 2. Convex hull of a set of six points.

Fig. 3. (a) Affinely independent and (b) dependent set of points.

Definition 2.2: Let be a subset of , then the convex hull
of , denoted by , is the smallest convex subset of
containing .

Property 2.1: [6]: Let be a subset of .

•
and .

• If is finite, then there exists and
such that

for . Thus, is the intersection of half
spaces.

Fig. 2 represents the convex hull for a set of six points with a
value of .

Property 2.2: If and then
.

Definition 2.3: Let be a subset of points in and let
; then (dimension affine) is the dimension of

the vectorial subspace generated by .
In other words, is the dimension of the smallest

affine subspace that contains . does not depend on
the choice of .

Definition 2.4: A set of points is said to be affinely inde-
pendent if Card .

In other words, given points in , they are

said to be affinely independent if the vectors

are linearly independent. In an affinely dependent
set of points, a point can always be expressed as a linear combi-
nation of the other points. Fig. 3 shows an example of an affinely
independent and dependent set of points with coefficients sum-
ming to 1.

Property 2.3: If , then .
In other words, if we have a set of points in dimension , the

maximum number of affinely independent points that we can
have is . There are no affinely independent points;

332 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

so if we have for example 25 points in , these points are
necessarily affinely dependent. If not all the points were placed
in a straight line, we could find three points which are affinely
independent.

III. METHODS FOR TESTING LINEAR SEPARABILITY

In this section we present some of the methods for testing
linear separability between two sets of points and . These
methods can be classified in five groups

1) methods based on linear programming;
2) methods based on computational geometry;
3) method based on neural networks;
4) method based on quadratic programming;
5) Fisher linear discriminant method.

A. Methods Based on Linear Programming

In these methods, the problem of linear separability is repre-
sented as a system of linear equations. If two classes are LS, the
methods find a solution to the set of linear equations. This so-
lution represents the hyperplane that linearly separates the two
classes.

Several methods for solving linear programming problems
exist. Two of the most popular ones are the Fourier–Kuhn elim-
ination and the Simplex Method [7]–[10].

1) The Fourier–Kuhn Elimination Method: This method
provides a way to eliminate variables from a set of linear
equations. To demonstrate how the Fourier–Kuhn elimination
method works, we will apply it to both the AND and the XOR
logic problems.

a) The AND Problem: Let and
represent the input patterns for

the two classes which define the AND problem. We want to
find out if .

Let

By doing the above, a mapping of the two-dimensional (2-D)
LS problem into a three-dimensional (3-D) LS problem is ob-
tained where the separating plane passes through the origen.
This mapping is done throughout the paper.

Thus, to find out if , we need to find a set of values for
the weights , and threshold such that

The method consists of eliminating every time a variable from a
set of inequalities. To do so, we consider all pairs of inequalities
in which a variable has opposite signs, and eliminate it between
each pair. Thus, if we choose to eliminate (positive in , and
negative in the rest of the equations) we have

Since at this step all the variables have the same sign (they are
all positive), we want to know if this new system of equations
admits a solution which satisfies

and and

We can confirm that a set of values satisfying these constraints
is: , and . Thus, we have proven that

.
b) The XOR Problem: Let and

represent the input patterns for the two classes
which define the XOR problem. We want to find out if .

Let . We now have
. Thus, to

find out if , we need to find a set of values for the weights
, and threshold such that

As in the AND example, we choose to eliminate (positive in
and , and negative in the rest of the equations). This produces

At this point, we observe that inequalities 1 and 4 (2 and
3) contain a contradiction. Therefore, we conclude that the
problem is infeasible, and that .

c) Complexity: This method is computationally imprac-
tical for large problems because of the large build-up in inequali-
ties (or variables) as variables (or constraints) are eliminated. Its
computational complexity is exponential and can result in the
worst case in constraints (for inequalities involving

variables).
2) The Simplex Method: The Simplex method is one of the

most popular methods used for solving linear programs. A linear
program can be seen as a set of variables which are contained in
a linear expression called the objective function. The goal is to
find values to these variables which maximize or minimize the
objective function subject to constraints. These constraints of
linear expressions must be either or to a given value.
There are three possible results when trying to solve a linear
program.

1) The model is solvable. This means that there exists a set
of values for the variables that provide an optimal value
to the objective function.

2) The model is infeasible. This means that there are no
values for the variables which can satisfy all the con-
straints at the same time.

3) The model is unbounded. This means that the value of
the objective function can be increased with no limit by
choosing values to the variables.

In this paper, we use the Simplex algorithm for testing linear
separability among two classes. The algorithms in Tables I
and II show the Simplex procedure. This algorithm consists of
finding the values of and to pivot and repeating the process
until either an optimum value is obtained, or the linear program
is determined to be infeasible. This method can be viewed

ELIZONDO: THE LINEAR SEPARABILITY PROBLEM: SOME TESTING METHODS 333

TABLE I
SIMPLEX ALGORITHM [11]

TABLE II
PIVOT PROCEDURE FOR THE SIMPLEX ALGORITHM [11]

as a method for organizing the procedure so that a series of
combinations of the equations is tried for which the objective

function increases (maximization of the objective function) or
decreases (minimization of the objective function) at each step,
and the optimal feasible vector is reached after a number of
iterations that is almost always no longer than the order of the
number of equations or the number of independent variables,
whichever is larger.

We illustrate the Simplex method by showing the linear pro-
gram which corresponds to the transformation of the logical
AND problem.

d) The AND Problem: Let and
represent the input patterns for

the two classes which define the AND problem. We want to
find out if .

Let

Thus, to find out if , we need to find a set of values
for the weights , and threshold such that they minimize
any of the given inequalities.

We can minimize:

subject to

Since the Simplex method limits the values of the variables to
being , and a weight value can either be positive or negative,
we transform each of our original variables as the difference
of two variables. This transformation produces the following
variables:

In addition, since the Simplex method does not accept strict
inequalities, we change our conditions to .

Using the above transformations, our new set of constraints
becomes as shown in the equation at the bottom of the page.
By applying the simplex method, we obtain a feasible solution
which gives the following result:

We can thus conclude that the problem is LS. By using these
intermediate values we obtain the following values for our orig-
inal set of variables: , and . These
variables form the actual hyperplane which separates the two
classes.

334 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

Fig. 4. Convex hulls for (a) LS and (b) non-LS set of points.

e) Complexity: One of the problems that the Simplex
Method presents is that there is no known best strategy for
selecting the pivot element because there are no results to tell
us how many pivot steps to expect for any reasonable size
problem.

The complexity of this method depends on the pivot rule used.
A description of apparently all currently known bad examples
for various pivot rules in a uniform way can be found in [12].
These rules include

• greatest increase rule;
• Dantzig(c)s largest coefficient rule;
• Bland(c)s least index rule;
• Gass-Saaty shadow vertex rule.

The largest number of vertices, and therefore, the maximal
number of steps of the simplex algorithm with the worst pos-
sible pivot sequence on a linear programming problem in fixed
dimensions, and containing facets, is equal to).

B. The Methods Based on Computational
Geometry Techniques

In this section, we discuss two methods for testing linear sep-
arability that are based on computational geometry techniques
[13].

1) The Convex Hull Method for Testing Linear Separa-
bility: The following method makes use of the notion of
convex hull. Two classes and are LS if the intersection
of the convex hulls of and is empty. Fig. 4 presents the
convex hulls for an LS set of points, with an empty intersection,
and an NLS set of points, with a nonempty intersection.

Lemma 3.1: Let
.

Lemma 3.2: Let then
and . Thus,

.
Lemma 3.3: Let be two finite subsets of

.
Theorem 3.1: Let be two finite subsets of , then

iff .
Property 3.1: Let be a finite subset of , then there exists

such that .

TABLE III
CONVEX HULL SEPARABILITY ALGORITHM

This property states that there exists a point which is
LS from the rest of the points in .

Remark: The Lemmas 3.1, 3.2, and 3.3 and the Property 3.1
are intuitively evident and their proofs are not relevant for the
global comprehension of this work. Formal proofs can be found
in [2]. A more general result than the one shown in Theorem 3.1
can be found in [14].

Property 3.2: Let be a finite subset of , and assume
that We have the following:

• if for all , then ;
• if there exists such that , then ,

where , and
.

Proof:

• If for all , then and
; thus, by the Theorem 3.1, we conclude that

.
• If there exists such that then, for every and

we have , that is .
Let , and

. It is clear that , and therefore

We conclude that .
The convex hull separability algorithm presented in Table III

is based in this property. Given , this algorithm
computes and (if they exist) such that

, where and represent the weight vector and
threshold value which make the hyperplane that linearly sep-
arates and .

Following Property 3.2, the convex hull
is obtained as the set of points which verify the constraints

, where is the number
of vertices in the convex hull. This algorithm is applied in two
steps.

ELIZONDO: THE LINEAR SEPARABILITY PROBLEM: SOME TESTING METHODS 335

Fig. 5. XY PLOT of the 2-D classification problem.

1) If for all , then the two classes are NLS.
2) If there exists such that , then the two classes are

LS: With this value of we compute the values of and
which correspond respectively to the maximum value of

the vector product of with belonging to the finite set
of points of the second class , and the minimum value
of the vector product of with belonging to the finite
set of points of the first class . These two values are then
used to compute the threshold value which is defined
by . The set of weights that represents the
hyperplane that linearly separates the two classes and

, corresponds to .
We will use the two-class, two-dimensional classification

problem shown in Fig. 5 to illustrate the Convex Hull separa-
bility algorithm.

Let and
represent the input patterns for the

two classes which define these classification problem. We want
to find out if .

We calculate

We then compute the convex hull of

Thus, we now know that (represents the number of
vertices in the CH). Next, we compute all the vectors which
are perpendicular to each of the facets that form the CH together
with the corresponding values of (see Fig. 6).

Fig. 6. Convex Hull of X 	Y for the 2-D classification problem.

We can now select any of the pairs having a value
. In our example, we have two choices for the value

and 6. Taking, we have the following values of and :

We can now compute the values of and

These weight vector and threshold values produce

Input P. NetInput

NetOutput Class

Fig. 7 shows the hyperplane which linearly separates the two
classes and . Enclosed in a circle are the three points which
represent and , the two values used to calculate the threshold
value .

There are other methods based on computational geometry
that can be found in the literature for testing linear separability.
Examples of this are the open hemisphere method [15], and the
rotating calipers algorithm [16].

f) Complexity: A common algorithm used for computing
convex hulls is the Quick-hull. The complexity of this algorithm
is of for the average case, and of for the worst
case with an overall complexity similar to that of the Quick sort

336 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

Fig. 7. Hyperplane that linearly separates the 2-D classification problem
(dotted line).

TABLE IV
CLASS OF LINEAR SEPARABILITY METHOD

algorithm (these complexities are for the case of two dimen-
sions). An in depth article concerning the complexity of dif-
ferent algorithms for computing the convex hull can be found
in [17].

2) The Class of Linear Separability Method: In this section,
we characterize the set of points of by which passes a hyper-
plane that linearly separates two given LS classes. This charac-
terization is going to allow us to infer the algorithm for testing
linear separability described in Table IV.

g) Characterization of the Class of Linear Separa-
bility: Let and be two finite and disjoint subsets of

, and let be the set of points by which passes
a hyperplane that linearly separates and . Clearly,

.
Before characterizing the set , we give the following

result which presents the linear separability property as a local
property.

Proposition 3.1: Let and be subsets of points of ,
then and are linearly separable if and only if for every
subset containing at most points,
and are linearly separable.

After giving some specific notations, we will characterize the
set .

Property 3.3: Let be finite subsets of such that
, and let . Then,

with
, and and are sets which are closed,

unbounded, and convex. is called a linear separability
class of relatively to . In other words, if we have the class
of separabilities between two LS classes, we can take a point that
does not belong to either of the two classes of separability, and
we can always find a hyperplane that passes through this point
and linearly separates the two classes. We characterize here all
the points by which pass all the hyperplanes that linearly sepa-
rate the two LS classes.

Proof: Let , and note

then and are convex because
and are convex.

Moreover, if then such
that . Let because

, hence
, thus is a closed set in . Let

and and consider the straight line
defined by .

Assume that is bounded, then there exists
such that for all . Let ,
then because . Then,
there exists such that and

. Thus, . Then, there
exists such that ; hence,

which is absurd, thus .
Property 3.4: Let then ; if there

exists such that
and

or and
.

Proof:

1) Assume that there exists such that

and
and assume that

and .
Let ;
and .
Let and .
Then, by construction .

2) Assume that and assume by induc-
tion that there exists such that

and
. Let

and . An orthog-
onal family (i.e., is an orthogonal
basis of such that

and
.

Two vectors and are
orthogonal if .

Assume that and let
be the continuous functions such that

ELIZONDO: THE LINEAR SEPARABILITY PROBLEM: SOME TESTING METHODS 337

Fig. 8. Example of a class of linear separability.

for .
Then, , if

, then
. Let

and
then and

,
because

and .
Hence,

or and
.

h) Class of Linear Separability Method: Let be a hy-
perplane of . is the half of delimited
by and containing . We assume that all points of are in
the same size of . Given , the class of linear
separability procedure, presented in the algorithm IV, computes
recursively and . (if there exists) such that

.
Property 3.5: Let , such that

then, where

Card
is a set of affinely independent

points and

if
if

where is a hyperplance
containing

The proof of the this property can be found in [2].
Fig. 8 presents an example of a class of linear separability.

In this figure, we have two classes and having some hypo-
thetical values and . We then have that

represents the linear separability class of class with
respect to class (black area), and the linear separa-
bility class of class with respect to class (gray area).

To demonstrate how the class of linear separa-
bility method works, we will apply it to a two-class,
two-dimensional classification problem. Let

and
represent the input patterns for the two classes which define
our problem. We want to find out if . Fig. 9(a) shows a
plot of the two classes. Following the algorithm, we want to
identify all the hyperplanes with the following characteristics:

1) pass by one point of each of the two classes;
2) linearly separate the remaining points.
In this example, there is only one such hyperplane as

illustrated in Fig. 9(b). This hyperplane is represented by
. We now recursively reduce the original dimen-

sion of the problem to one dimension so as to locate all the
points, by which the selected hyperplane passes in one line.
Once this is done, we calculate the middle point between the
two original points belonging to each of the classes. Next, we
calculate a hyperplane in the original dimension that passes
by this middle point and is different than the first hyperplane.
This is illustrated in Fig. 9(c). The selected two points are
highlighted with a circle (and). They correspond to the
points (4,5), and (5,4) respectively. Thus the middle point has
a value equal to 4.5. This second hyperplane is represented by

. With these two hyperplanes we now compute
the values of and in the following way:

where and correspond to the set of points by which the
first hyperplane does not pass as illustrated in Fig. 9(d). We use
these values for and to calculate the final hyperplane which
linearly separates the two classes in the following way:

338 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

Fig. 9. Steps followed by the class of linear separability for finding the hyperplane which linearly separates classes X and �.

This is illustrated in Fig. 9(e). The final hyperplane
is represented by a dotted line and corresponds to

. This final hyperplane is illustrated in
Fig. 9(f).

i) Complexity: This algorithm transforms recursively the
problem of linear separability from dimensions to . This
transformation may require operations in the worse case.
Thus, in order to simplify the search of this hyperplane, any hy-
perplane can be used to begin with, which can be moved in func-
tion of the points until it contains a set of affinely independent

points of the two classes, and that linearly separates the rest of
the points.

C. The Methods Based on Neural Networks

1) The Perceptron Neural Network: The first neural network
applied to the problem of separating patterns into two categories
was proposed by McCulloch and Pitts [18]. This network com-
putes the weighted sum of the input patterns and compares it to
a threshold value . If the net input is greater than the threshold,

ELIZONDO: THE LINEAR SEPARABILITY PROBLEM: SOME TESTING METHODS 339

TABLE V
PERCEPTRON LEARNING ALGORITHM

Fig. 10. Perception for a 2-D classification problem.

the output of the network is ; otherwise, the output value is
. This network is represented as follows:

NetInput

NetOutput
if NetInput Threshold
if NetInput Threshold

where and correspond to the weight
and input vector. The threshold value represents the minimal
activity needed for the network to produce a positive output.
Rosenblatt [19] transformed this algorithm into the first train-
able neural network which he called the perceptron. Table V
shows the pseudocode for the perceptron procedure.

Fig. 10 shows a perceptron network for a two-dimensional
classification problem. We can take, as an example to illustrate
the perceptron algorithm, the binary function AND.

Let and
represent the input patterns for the two classes,
and , which define the AND problem. We want to
find a weight vector and a threshold such that

. We note, from previous calculations,
,

and
.

Following the algorithm V, we have

TABLE VI
ALPHA VALUES FOR THE QP SOLUTION TO THE 2-D CLASSIFICATION PROBLEM

Thus, . In other words, a set of values for
the weight vector and the threshold that linearly separates
the two classes and are: , and ,
respectively. These weight vector and threshold values produce

InputPattern NetInput NetOutput Class

j) Complexity: A complexity analysis of the percep-
tron algorithm can be found in [20]. The authors show that
each iteration of the perceptron algorithm takes time.
Furthermore, under a Gaussian perturbation of variance
where d, the perceptron algorithm converges in

iterations (if the problem is
LS).

A geometry-based convergence upper bound for the percep-
tron learning algorithm is presented in [2]. This upper bound is
based on the method described above for testing linear separa-
bility based on convex hulls.

D. Methods Based on Quadratic Programming

The training procedure for these methods consists in solving
a quadratic programming optimization problem (QPOP). This
is the case for the support vector machines (SVM). The SVM
[21], [22] are linear learning machines that can be applied to
classification problems involving both LS and NLS data sets
[23], [24]. They can find a hyperplane that linearly separates
a data set by solving a constrained QPOP.

In the case of NLS data, the data is mapped into some other
Euclidean space; so that the SVM is still doing a linear separa-
tion but in a different space.

An on hands tutorial into classification using SVM can be
found in [25]. The hyperplane separating two classes is defined
as

where corresponds to slack variables in optimization theory
and , if the there is no error for (they will all be zero
if the two classes are LS).

340 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

TABLE VII
PRODUCT OF THE DECISION REGION AND CLASS ASSIGNATION FOR EACH DATA POINT

For a training data set with input vector
and output value the SVM needs to find a solu-
tion to the optimization problem

Minimize

subject to

where represents the penalty parameter between the error
term and the margin of the hyperplane.

We can represent this problem in its dual form as

Maximize

subject to

A kernel function must be used on the SVM. In its simplest
form, a kernel function calculates the dot product of two training
vectors. This helps with the evaluation of the correct classifica-
tion of each training vector. Some of the most common kernels
used include

• linear: ;
• polynomial: ;
• radial basis function:

;
• sigmoid: ;

where , and are kernel parameters.
To illustrate how the SVM works, we will apply it to the fol-

lowing 2-D LS set of input vectors:

Class 1

Class 2

which represent the input vector for the two LS classes. Let

represent the output value (-1 Class 1, and 1 Class 2). We want
to find out if Class 1 Class 2.

To solve this problem we need to solve the following opti-
mization problem:

Maximize

subject to

This allows to find the Lagrange multipliers associated with
the classification constrains.

Table VI shows the resulting values of obtained by using
a QP solver. The support vectors are the vectors with .

We can now use the Lagrange multipliers to obtain the value
of the hyperplane that linearly separates the two classes

The value of (the bias) can be obtained by

If we choose , then we obtain . Using these two
values, our decision boundary becomes

for class 1

for class 2

Table VII shows the output values obtained by applying the
decision boundary to the classification points.

Fig. 11 shows a plot of the input vectors together with the hy-
perplane that linearly separates them in two classes. The support
vectors , and are also displayed.

ELIZONDO: THE LINEAR SEPARABILITY PROBLEM: SOME TESTING METHODS 341

Fig. 11. SVM for a 2-D classification problem.

k) Complexity: Training an SVM requires the solution of
a very large QPOP. This can be very slow, especially for large
data sets. The complexity of a QPOP depends on the training
data, its size, and its dimensions. There is no known method to
define data complexity analytically. A fast method for training
SVMs called sequential minimal optimization is described in
[26]. The algorithm uses a divide and conquer approach by split-
ting the QPOP into smaller problems and solving these prob-
lems analytically.

E. Fisher Linear Discriminant

Let and represent a two-class classification problem,
where is a set of patterns belonging
to class and is a set of
patterns belonging to class . The Fisher linear discriminant
(FLD) [27] tries to find a linear combination of input variables,

which maximizes the average separation of the projec-
tions of the points belonging to the two classes and while
minimizing the within class variance of the projections of those
points. The Fisher discriminant is given by the vector that
maximizes

where is the between class scatter matrix
, and the within class scatter matrix

with

The parameter vector of the linear classifier

for

for

is computed to maximize class separability criterion. The bias
is determined to lie between means of training data projected

onto direction .
To illustrate how the FLD works, we will apply it to the

following 2-D LS set of points. Let Class 1

and Class 2

represent the input vector for the two LS classes.
Let represent the
output values –1 Class 1, and 1 Class 2). We want to find out if
Class 1 Class 2.

To solve this problem we need to compute means and scatter
matrix for each class:
mean Class 1:

mean Class 2:

scatter matrix Class 1:

scatter matrix Class 2:

The final scatter matrix is the sum of the two scatter matrixes

Next, we compute the weight vector of the hyperplane that
separates the two classes using the inverse of the square matrix

and the means for the two classes

Finally we compute the bias

bias

Fig. 12 shows a plot of the input vectors together with the
hyperplane that linearly separates them in two classes.

Table VIII shows the output values obtained by applying the
decision boundary to the classification points.

IV. QUANTIFICATION OF THE COMPLEXITY OF

CLASSIFICATION PROBLEMS

As well as studying the computational complexity of methods
for testing linear separability, it is also interesting to look at ways
of measuring the difficulty of a classification problem. Being
able to quantify this complexity provides ways into better un-
derstanding of classification problems and classifier behavior.

A study presenting several measures to characterize the dif-
ficulty of a classification problem is presented in [28]. Their

342 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

Fig. 12. Hyperplane for a 2-D classification problem using Fisher linear discriminant.

TABLE VIII
PRODUCT OF THE DECISION REGION AND CLASS ASSIGNATION FOR EACH DATA POINT

study focuses in the geometrical characteristics of the class dis-
tributions. The authors analyze measures that can emphasize
the way in which classes are separated or interleaved, which
play a role in the level of accuracy of classification. These mea-
sures include: overlap of individual feature values; separability
of classes; and geometry, topology, and density of manifolds.

Another study on the measurement of the classifiability of in-
stances of classification problems is presented in [29]. For this
purpose, the authors propose a nonparametric method based on
the evaluation of the texture of the class label surface. When the
instances of a class are interlaced with another class, the sur-
face is rough. The surface is smoother when the class regions
are compact and disjoint. The texture of the class label surface

is characterized by the use of a co-ocurrence matrix. They apply
this approach to a look-ahead-based fuzzy decision tree induc-
tion that splits the instances of a particular node in such a way as
to maximize the number of correct classifications at that node.

These characterization approaches can be used as another cri-
teria from which to select the most adequate classifier for a spe-
cific problem.

V. DISCUSSION AND CONCLUDING REMARKS

Several of the existing methods for testing linear separability
between two sets of points and the complexities associated with

ELIZONDO: THE LINEAR SEPARABILITY PROBLEM: SOME TESTING METHODS 343

TABLE IX
SUMMARY OF THE COMPUTATIONAL COMPLEXITIES OF SOME OF THE

METHODS FOR TESTING LINEAR SEPARABILITY

some of the algorithms have been presented. The methods pre-
sented have been divided into four groups.

• The methods based on solving systems of linear equations.
These methods include: the Fourier–Kuhn elimination al-
gorithm, and the Simplex algorithm. The original classifi-
cation problem is represented as a set of constrained linear
equations. If the two classes are LS, the two algorithms
provide a solution to these equations.

• The methods based on computational geometry tech-
niques. We focused on the convex hull algorithm and the
class of linear separability method. If two classes are LS,
the intersection of the convex hulls of the set of points
that represent the two classes is empty. The class of linear
separability method consists in characterizing the set of
points of by which it passes a hyperplane that
linearly separates two sets of points and .

• The methods based on neural networks. The method de-
scribed in this section is the perceptron learning algorithm.
If the two classes are LS, the perceptron algorithm is guar-
anteed to converge, after a finite number of steps, and will
find a hyperplane that separates them.

• The methods based on quadratic programming. These
methods can find a hyperplane that linearly separates two
classes by solving a quadratic optimization problem. This
is the case for the SVM.

• The Fisher linear discriminant method. This method tries
to find a linear combination of input variables,
which maximizes the average separation of the projections
of the points belonging to the two classes and while
minimizing the within class variance of the projections of
those points.

Table IX presents a summary of the complexities of some of
the algorithms for testing linear separability described in this
paper.

Other methods for testing linear separability include the
Tarski elimination algorithm [30] which verifies the validity of
a special first order formula in an algebraic closed field

It is well known that the first-order logic for an algebraic
closed field is decidable.

Several aspects should be considered when choosing a
method for testing linear separability for a given problem.
Some of these aspects include: the complexity level, the
difficulty of the classification problem, the easiness of imple-
mentation, and the degree of linear separability that can be
obtained when dealing with nonlinearly separable sets.

The Fourier-Khun elimination method is computationally im-
practical for large problems due to the large build-up in inequali-
ties (or variables) as variables (or constraints) are eliminated. Its
computational complexity is exponential and can result in the
worst case in constraints (for inequalities involving

variables).
From a complexity point of view, the simplex method is re-

markably efficient in practice and is guaranteed to find the global
optimum. However, in some cases, this method has markedly
varying response times. Most of the times it is extremely fast,
but when a succession of pivots are required, it slows down con-
siderably, given rise to a less stable iteration.

The linear separability algorithm based on the convex hull of
the data sets is simple to implement in three or less dimensions.
It becomes more difficult as the dimension of the problem aug-
ments. It is important to use effective storage techniques and
take into account possible imprecision in measurement. One
must decide how to store a convex hull, once found, which is
especially tricky to do in higher dimensions. Hulls are gener-
ally stored as a list of the highest dimensional facets (facets in
two dimensions), the neighboring facets for each facet, as well
as the vertices associated with the facets. This allows for a way
to add extra points to a computed hull.

The class of linear separability method can have a high com-
putational complexity. However, this method cannot only be
used for testing linear separability, but also for finding linearly
separable subsets of maximum cardinality from within a nonlin-
early separable set of points [31]. The concept of linearly sep-
arable subsets of maximum cardinality is used as the basis for
constructing RDP multilayer linear networks.

From an implementation point of view, the perceptron neural
network is probably one of the simplest algorithm to program.
However, this algorithm is not very stable. There is also no way
to know after how many weight updates one can conclude that if
the algorithm has not converged, the problem at hand is not lin-
early separable. A convergence upper bound for this algorithm
has been developed by Elizondo [2]. This bound remains hard
to compute, and further work needs to be done before it could
be of practical use.

The SVM method is an efficient learning algorithm. Some of
its advantages include its ability to handle nonlinear classifica-
tion problems that are nonseparable using linear methods; the
handling of arbitrary complex classifications, and the flexibility
and avoidance of overfitting. A key issue with this method is
finding the right kernel that will map a nonlinearly separable
data set into a higher dimension making it linearly separable.
Training an SVM involves finding a solution to a very large
QPOP. This can prove very slow for large data sets. The sequen-
tial minimal optimization method is a fast method for training
SVMs. It uses a divide and conquer approach to minimize the
training time.

The Fisher linear discriminant is a well-known method for
testing linear separability. The method has proven very powerful
and popular among users of discriminant analysis. Some rea-
sons for this are its simplicity and unnecessity of strict assump-
tions. However, this method has optimality properties only if the
underlying distributions of the groups are multivariate normal.
The discriminant rule obtained can be seriously harmed by only

344 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

a small number of outlying observations. Outliers are hard to
detect in multivariate data sets. The method is not very robust
because it uses the sample means and variances, which can be
affected by one sufficiently large point. Kernel variations of this
method have been proposed that can be used for nonlinear pat-
tern recognition.

All the methods above will provide a hyperplane only if the
two classes are linear separable. Both the SVM and the Fisher
linear discriminant will provide a hyperplane even if the two
classes are nonlinearly separable.

Future directions in the area of linear separability include
the optimization of the hyperplanes that linearly separate two
classes in order to maximize the generalization level. In other
words, once we know that two classes are linearly separable,
there exists an infinite number of hyperplanes that can separate
them linearly. How does one select the hyperplane that provides
the highest level of generalization? This will involve a deep
comparison study of the levels of generalization obtained with
the different methods for testing linear separability, involving
several real world data sets and benchmarks. Another interesting
aspect to study is to include linear separability probabilities.
This will make a set of points linearly separable within a cer-
tain probability making the decision regions less rigid. Most re-
search involving linear separability has been conducted using
tasks that involve learning two classes with a small number of
data samples. It could be useful to do more research involving
linear separability for more than two classes and larger data sets.

ACKNOWLEDGMENT

The author would like to thank the Associate Editor and two
anonymous referees for all their detailed comments and sug-
gestions that have clearly improved the final presentation of this
paper. He would also like to thank especially to Dr. R. John,
Dr. F. Chiclana, and R. Birkenhead from the CCI group at the
School of Computing of De Montfort University for their feed-
back on this paper.

REFERENCES

[1] M. Tajine and D. Elizondo, “Enhancing the Perceptron Neural Network
by Using Functional Composition,” Comp. Sci. Dept., Univ. Louis Pas-
teur, Strasbourg, France, Tech. Rep. 96-07, 1996.

[2] D. A. Elizondo, “The Recursive Determinist Perceptron (rdp) and
Topology Reduction Strategies for Neural Networks,” Ph.D. disserta-
tion, Univ. Louis Pasteur, Strasbourg, France, Jan. 1997.

[3] M. Blair and D. Homa, “Expanding the search for a linear separability
constraint on category learning,” Memory and Cognition, vol. 29, no. 8,
pp. 1153–1164, 2001.

[4] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines. Cambridge, U.K.: Cambridge Univ. Press, 2003, vol. I.

[5] A. Atiya, “Learning with kernels: Support vector machines, regulariza-
tion, optimization, and beyond,” IEEE Trans. Neural Netw., vol. 16, no.
3, pp. 780–781, May 2005.

[6] F. P. Preparata and M. Shamos, Computational Geometry. An Introduc-
tion. New York: Springer-Verlag, 1985.

[7] J. Fourier, Memoire de l’Academie Royale des Sciences de l’Institute de
France, 7 (1824), xlvij-lv., 1827. Chez Firmin Didot Pere et Fils.

[8] H. W. Kuhn, “Solvability and consistency for linear equations and in-
equalities,” Amer. Math. Monthly, vol. 63, pp. 217–232, 1956.

[9] M. Sakarovitch, Optimization Combinatoire Graphe et Programmation
Lineaire. Paris, France: Hermann, 1984. Editeurs de Sciences et des
Arts.

[10] M. S. Bazaraa and J. J. Jarvis, Linear Programming and Network
Flow. London, U.K.: Wiley, 1977.

[11] R. Sedgewick, Algorithms.. Reading, MA: Addison-Wesley, 1983, pt.
38, p. 508.

[12] R. P. B. Chazelle and J. E. Goodman, Deformed Products and Maximal
Shadows.: American Mathematical Soc., Mar. 1996.

[13] M. Tajine and D. Elizondo, “New methods for testing linear separa-
bility,” Neurocomput., vol. 47, no. 1–4, pp. 295–322, Aug. 2002.

[14] J. Stoer and C. Witzgall, Convexity and Optimization Infinite Dimensions
I. Berlin, Germany: Springer-Verlag, 1970.

[15] D. S. Johnson and F. P. Preparata, “The densest hemisphere problem,”
Theor. Comput. Sci., vol. 6, pp. 93–107, 1978.

[16] Solving Geometric Problems With the Rotating Calipers, May 1983.
[17] D. Avis and D. Bremner, “How good are convex hull algorithms,” in

Proc. IEEE Symp. Computational Geometry , 1995, pp. 20–28.
[18] W. McCulloch and W. Pitts, “A logical calculus of the ideas imminent

in nervous activity,” Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.
[19] F. Rosenblatt, Principles of Neurodynamics. Washington, D.C.:

Spartan, 1962.
[20] A. Blum and J. Dunagan, “Smooth analysis of the perception algorithm,”

Proc. 13th Annu. ACM-SIAM Symp. Discrete Algorithms, pp. 905–914,
2002.

[21] A Traning Algorithm for Optimal Margin Classifiers, 1992.
[22] C. Cortes and V. Vapnik, “Support-vector network,” Mach. Learn., vol.

20, pp. 273–297, 1995.
[23] L. Ferreira, E. Kaszkurewicz, and A. Bhaya, “Solving systems of linear

equations via gradient systems with discontinuous righthand sides:
Application to ls-svm,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp.
501–505, Mar. 2005.

[24] S. Pang, D. Kim, and S. Y. Bang, “Membership authentication using svm
classification tree generated by membership-based lle data partition,”
IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 436–446, Mar. 2005.

[25] C. Hsu, C. Chang, and C. Lin, “Practical Guide to Support Vector Classi-
fication,” National Taiwan Univ., Taipei 106, Taiwan, Tech. Rep., 2003.

[26] J. Platt, “Fast training of support vector machines using sequential min-
imal optimization,” in Advances in Kernel Methods—Support Vector
Learning, B. Schlkopf, C. Burges, and A. Smola, Eds. Cambridge,
MA: MIT Press, 1998.

[27] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annu. Eugenics, vol. 7, no. II, pp. 179–188, Apr. 1936.

[28] T. K. Ho and M. Basu, “Complexity measures of supervised clas-
sifi—cation problems,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
24, no. 3, pp. 289–300, Mar. 2002.

[29] M. Dong and R. Kothari, “Look-ahead based fuzzy decision tree induc-
tion,” IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 461–468, Jun. 2001.

[30] A. Tarski, “A decision method for elementary algebra and geometry,”
Univ. California Press, Berkeley and Los Angeles, Tech. Rep., 1954.

[31] D. Elizondo, “Searching for linearly separable subsets using the class of
linear separability method,” in Proc. IEEE 2004 Int. Joint Conf. Neural
Networks (IJCNN 04) , vol. 2, Jul. 2004, pp. 955–959.

D. Elizondo received the B.Sc. degree in computer
science from Knox College, Galesbourg, IL, in
1986, the M.Sc. degree in artificial intelligence
from the University of Georgia, Athens, in 1992,
and the Ph.D. degree in computer science from the
Universite Louis Pasteur, Strasbourg, France, and
the Institut Dalle Molle d’Intelligence Artificielle
Perceptive (IDIAP), Martigny, Switzerland, in 1996.

He is currently a Senior Lecturer at the Centre for
Computational Intelligence of the School of Com-
puting at De Montfort University, Leicester, U.K. His

research interests include applied neural network research, computational ge-
ometry approaches towards neural networks, and knowledge extraction from
neural networks.

	toc
	The Linear Separability Problem: Some Testing Methods
	D. Elizondo
	I. I NTRODUCTION

	Fig.€1. (a) LS set of points. (b) Non-LS set of points.
	II. P RELIMINARIES
	A. Definitions and Properties
	Definition 2.1: A subset D of ${\rm I}\!{\rm R}^{d}$ is said t

	Fig.€2. Convex hull of a set of six points.
	Fig.€3. (a) Affinely independent and (b) dependent set of points
	Definition 2.2: Let S be a subset of ${\rm I}\!{\rm R}^{d}$, t
	Property 2.1: [6]: Let S be a subset of ${\rm I}\!{\rm R}^{d
	Property 2.2: If $X\,\Vert\,Y(P), X'\subset X$ and $Y' \subset Y
	Definition 2.3: Let S be a subset of points in ${\rm I}\!{\rm
	Definition 2.4: A set S of points is said to be affinely indep
	Property 2.3: If $S \subset {\rm I}\!{\rm R}^{d}$, then ${\rm di
	III. M ETHODS FOR T ESTING L INEAR S EPARABILITY
	A. Methods Based on Linear Programming
	1) The Fourier Kuhn Elimination Method: This method provides a w
	a) The AND Problem: Let $X = \{(1,1)\}$ and $Y = \{(0, 0), (1, 0
	b) The XOR Problem: Let $X = \{(1,0), (0,1)\}$ and $Y = \{(0, 0)
	c) Complexity: This method is computationally impractical for la

	2) The Simplex Method: The Simplex method is one of the most pop

	TABLE I S IMPLEX A LGORITHM [11]
	TABLE II P IVOT P ROCEDURE FOR THE S IMPLEX A LGORITHM [11]
	d) The AND Problem: Let $X = \{(1, 1)\}$ and $Y = \{(0,0), (1,0)

	Fig.€4. Convex hulls for (a) LS and (b) non-LS set of points.
	e) Complexity: One of the problems that the Simplex Method prese
	B. The Methods Based on Computational Geometry Techniques
	1) The Convex Hull Method for Testing Linear Separability: The f
	Lemma 3.1: Let $X, Y \subset {\rm I}\!{\rm R}^{d}, X \parallel Y
	Lemma 3.2: Let $X, Y \subset {\rm I}\!{\rm R}^d$ then ${-}{\rm C
	Lemma 3.3: Let X, Y be two finite subsets of ${\rm I}\!{\rm R}
	Theorem 3.1: Let X, Y be two finite subsets of ${\rm I}\!{\rm
	Property 3.1: Let S be a finite subset of ${\rm I}\!{\rm R}^{d

	TABLE III C ONVEX H ULL S EPARABILITY A LGORITHM
	Remark: The Lemmas 3.1, 3.2, and 3.3 and the Property 3.1 are in
	Property 3.2: Let X, Y be a finite subset of ${\rm I}\!{\rm R}
	Proof:

	Fig.€5. XY PLOT of the 2-D classification problem.
	Fig. 6. Convex Hull of $X\,{\ominus}\,Y$ for the 2-D classificat
	f) Complexity: A common algorithm used for computing convex hull

	Fig.€7. Hyperplane that linearly separates the 2-D classificatio
	TABLE IV C LASS OF L INEAR S EPARABILITY M ETHOD
	2) The Class of Linear Separability Method: In this section, we
	g) Characterization of the Class of Linear Separability: Let X

	Proposition 3.1: Let X and Y be subsets of points of ${\rm I
	Property 3.3: Let X, Y be finite subsets of ${\rm I}\!{\rm R}^
	Proof: Let ${\cal P}(\vec{u},t)\ {\varepsilon}\ {\rm I}\!\!{\rm

	Property 3.4: Let $X, Y \subset {\rm I}\!{\rm R}^{d}$ then $X\,\
	Proof:

	Fig.€8. Example of a class of linear separability.
	h) Class of Linear Separability Method: Let ${\cal P}$ be a hype
	Property 3.5: Let $X, Y\subset {\rm I}\!{\rm R}^{d}$, such that

	Fig.€9. Steps followed by the class of linear separability for f
	i) Complexity: This algorithm transforms recursively the problem
	C. The Methods Based on Neural Networks
	1) The Perceptron Neural Network: The first neural network appli

	TABLE V P ERCEPTRON L EARNING A LGORITHM
	Fig.€10. Perception for a 2-D classification problem.
	TABLE VI A LPHA V ALUES FOR THE QP S OLUTION TO THE 2-D C LASSIF
	j) Complexity: A complexity analysis of the perceptron algorithm
	D. Methods Based on Quadratic Programming

	TABLE VII P RODUCT OF THE D ECISION R EGION AND C LASS A SSIGNAT
	Fig.€11. SVM for a 2-D classification problem.
	k) Complexity: Training an SVM requires the solution of a very l
	E. Fisher Linear Discriminant
	IV. Q UANTIFICATION OF THE C OMPLEXITY OF C LASSIFICATION P ROBL

	Fig.€12. Hyperplane for a 2-D classification problem using Fishe
	TABLE VIII P RODUCT OF THE D ECISION R EGION AND C LASS A SSIGNA
	V. D ISCUSSION AND C ONCLUDING R EMARKS

	TABLE IX S UMMARY OF THE C OMPUTATIONAL C OMPLEXITIES OF S OME O
	M. Tajine and D. Elizondo, Enhancing the Perceptron Neural Netwo
	D. A. Elizondo, The Recursive Determinist Perceptron (rdp) and T
	M. Blair and D. Homa, Expanding the search for a linear separabi
	N. Cristianini and J. Shawe-Taylor, An Introduction to Support V
	A. Atiya, Learning with kernels: Support vector machines, regula
	F. P. Preparata and M. Shamos, Computational Geometry. An Introd
	J. Fourier, Memoire de l'Academie Royale des Sciences de l'Insti
	H. W. Kuhn, Solvability and consistency for linear equations and
	M. Sakarovitch, Optimization Combinatoire Graphe et Programmatio
	M. S. Bazaraa and J. J. Jarvis, Linear Programming and Network F
	R. Sedgewick, Algorithms. . Reading, MA: Addison-Wesley, 1983, p
	R. P. B. Chazelle and J. E. Goodman, Deformed Products and Maxim
	M. Tajine and D. Elizondo, New methods for testing linear separa
	J. Stoer and C. Witzgall, Convexity and Optimization Infinite Di
	D. S. Johnson and F. P. Preparata, The densest hemisphere proble

	Solving Geometric Problems With the Rotating Calipers, May 1983.
	D. Avis and D. Bremner, How good are convex hull algorithms, in
	W. McCulloch and W. Pitts, A logical calculus of the ideas immin
	F. Rosenblatt, Principles of Neurodynamics . Washington, D.C.: S
	A. Blum and J. Dunagan, Smooth analysis of the perception algori

	A Traning Algorithm for Optimal Margin Classifiers, 1992.
	C. Cortes and V. Vapnik, Support-vector network, Mach. Learn.,
	L. Ferreira, E. Kaszkurewicz, and A. Bhaya, Solving systems of l
	S. Pang, D. Kim, and S. Y. Bang, Membership authentication using
	C. Hsu, C. Chang, and C. Lin, Practical Guide to Support Vector
	J. Platt, Fast training of support vector machines using sequent
	R. A. Fisher, The use of multiple measurements in taxonomic prob
	T. K. Ho and M. Basu, Complexity measures of supervised classifi
	M. Dong and R. Kothari, Look-ahead based fuzzy decision tree ind
	A. Tarski, A decision method for elementary algebra and geometry
	D. Elizondo, Searching for linearly separable subsets using the

