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Abstract. The quality of a decision tree is usually evaluated through its complexity and its gener-
alization accuracy. Tree-simpliÞcation procedures aim at optimizing these two performance criteria.
Among them, data reduction techniques differ from pruning by their simpliÞcation strategy. Actually,
while pruning algorithms directly control tree size to combat the overÞtting problem, data reduction
techniques perform a data preprocessing prior to decision tree construction to improve the learning set
quality. Recent experimental results have shown that randomly manipulating training set size has a
direct impact on tree size, and therefore recommend the use of the latter simpliÞcation strategy. In this
paper, we provide theoretical arguments justifying data preprocessing in favor of tree simpliÞcation.
We also investigate new data reduction techniques, usually used in the Þeld of prototype selection.
From experiments with 22 datasets, we show that some of them are very efficient to improve standard
post-pruning performances.

Keywords: decision tree, tree simpliÞcation, prototype selection, pruning.

1 Introduction

Most models used in machine learning require a learning stage on a training set. The relevance and the
number of examples in this training sample widely inßuence the future performances of the induced
model. For instance, overÞtting is an observed pathology of decision trees, one of the most popular
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Figure 1: Framework for Tree-SimpliÞcation Procedures.

approach in the Knowledge Discovery in Databases Þeld. The induction algorithm may actually
overÞtt outliers, mislabeled, noisy data resulting in the inference of more structures than is justiÞed
by the training set. Thus, decision trees (and the induced knowledge) are more complex and often
incomprehensible, even by an expert of the studied domain. In such a context, many methods for
simplifying trees have been proposed in literature during the last decades. Breslow and Aha [5] have
proposed a clustering of such methods in machine learning according to their simpliÞcation strategies
(Þgure 1).

Among them, pruning techniques are probably the most popular, as a way to a posteriori correct
overÞtting. Most pruning algorithms perform a post-order traversal of the tree, examine individual
subtrees and remove those subtrees deemed to be irrelevant according to a given estimate of error:
error-based pruning [19], reduced-error [18], minimum description length [20], cost-complexity pruning
[4], loss-based pruning [3], etc. By removing unnecessary subtrees, pruning techniques locally �forget�,
from a given level of the tree, some instances judged difficult to learn according to a given criterion.

A second strategy for simplifying decision trees consists in a priori reducing the size of the original
learning set (called data reduction techniques, the fourth category in Þgure 1). This aim can be
achieved by removing irrelevant features before the tree induction process, often resulting in smaller
trees. A study in [24] shows that such a strategy can be very efficient. Using C4.5 [19], the non deletion
of weakly relevant features generates actually deeper decision trees with lower performances. Ad hoc
algorithms have been proposed to deal with this phenomenon on decision trees [2, 8]. A second way to
proceed consists in removing irrelevant training instances prior to tree construction. Such algorithms
have been presented during the last decades in [17] (windowing strategy), [25] (sampling strategy) and
[11] (with John�s Robust C4.5 decision trees).

In this paper, we only focus on these case selection techniques. Following the example of the
standard pruning, such methods have an effect on the decision tree size and the accuracy generalization,
which are the two main performance measures to optimize. However, their difference comes from the
fact that removed instances are deÞnitely eliminated prior to tree construction. From a practical point
of view, three main arguments justify such data preprocessing instead of a standard pruning:

1. Firstly, pruning is statistically dependent on local distributions in each node of the tree. In some
cases, pruning is not performed because of the presence of irrelevant instances, resulting in the
keeping of the node split. Figure 2 presents a 2D-simulated example. C4.5 [19] is run on the



IJCSS, Vol.1, No.1, 2000 87

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3 4 5

Figure 2: The left-hand sample is the original learning set (two overlapped gaussian laws); the right-
hand sample is the deduced set after removing mislabeled instances by John�s RC4.5.

original learning set (on the left) and on the dataset reduced by the John�s Robust C4.5 (on the
right) [11]. Using the whole learning set, the model overÞtts the data (Þgure 3). Starting with
the reduced data set, the decision tree is smaller and more accurate.

2. Secondly, under some circumstances, the additional cost of the data preprocessing (DP) is smaller
than the additional cost due to the calculations on the whole learning set. Thus, we have often
experimentally noted on noisy data that time(DP+C4.5subset) < time(C4.5whole set), even if this
claim can not be theoretically justiÞed and expressed from a complexity point of view, because
it depends on the presence of noise. Of course, on unnoisy datasets a data preprocessing is often
useless, and computationally expensive.

3. The last argument in favor of a data preprocessing comes from recent empirical results [16] which
show that manipulating training set size will have a direct impact on tree size. Said differently,
authors claim that an important part of the tree size reduction is simply due to the reduction of
the learning sample. That means that even if C4.5 (or another induction algorithm) is pruning
unnecessary subtrees, overÞtting is in fact occurring and its gets worse as the size of the learning
set increases. Experimental results presented in [16] with Þve pruning methods seem to conÞrm
this hypothesis. By randomly adding new instances to the learning set, decision tree size grows
even after the accuracy has ceased to increase.

While these recent works seem to empirically justify the use of case selection techniques, we provide
in this paper theoretical arguments justifying data preprocessing instead of performing a pruning on
the whole learning set. Actually, we statistically prove that the probability to perform an error-
based pruning [19] converges on 0 when the learning set size grows. Then, if our main objective
consists in reducing decision tree sizes, it is in our interest to reduce the learning set size before the
construction of the tree. In [16] authors have empirically shown that a random reduction is actually
very efficient for reducing decision trees, while not compromising the generalization accuracy. We
claim in this paper that efficient case selection techniques not only would reduce tree size, but also
would improve the generalization accuracy of the induced model. To validate this hypothesis, we
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Figure 3: Two decision trees built with the standard C4.5 before and after the Robust C4.5 data
preprocessing: on the left, using the whole learning set, the model overÞts the data. Starting with the
reduced data set, the decision tree is smaller and more accurate.

investigate new case selection techniques, not originally proposed for reducing tree size and improving
human comprehensibility, but rather for limiting database storage requirements in memory [6, 9, 10,
15, 22, 26]. These algorithms (often called prototype selection methods) have been developed in order
to compensate for the drawback of case-based learning algorithms, not only well known to be very
efficient, but also computationally expensive. As far as we know, no recent study has attempted to
establish a close link between the best prototype selection procedures and tree simpliÞcation. This
behavior can be in fact doubly justiÞed:

� The Þrst reason comes from the main goal of the prototype selection algorithms: they are
commonly used to reduce storage requirements imposed by expensive algorithms such as the k
Nearest-Neighbors (kNN). Therefore, their reduction strategies are not a priori directed towards
the construction of smaller trees.

� The second reason directly ensues from the Þrst. Since most of these algorithms usually use a
kNN classiÞer during the selection, their adaptation to tree simpliÞcation is a priori not natural.

Nevertheless, despite this established fact, we show in this paper that some of prototype selection
methods constitute good candidates for simplifying trees, in comparison with the standard pruning,
and the state-of-the-art tree simpliÞcation methods. The rest of this paper is organized as follows:

In section 2, we review the tree simpliÞcation via data reduction techniques, and we present recent
results on the relationship between tree size and training set size. Section 3 introduces our theoretical
results about the effect of training set size on C4.5 pruning. In section 4, we review the prototype
selection techniques, and provide some of pseudocodes of these reduction algorithms. Finally, in
section 5, we present a large comparative study of selected algorithms on 22 datasets, before giving a
conclusion.
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2 Tree SimpliÞcation via Data Reduction Techniques

One can tackle the problem of tree simpliÞcation via data reduction techniques, either through feature
selection or case selection. Both strategies have shown efficient results, improving the quality of
the learning sample. Even if we only focus in this paper on case selection methods, we describe in
this section a brief review concerning the two approaches. We also present recent results relating to
relationships between training set size and tree size.

2.1 Tree SimpliÞcation via Feature Selection

To achieve feature selection, one usually uses one of the two following approaches, called wrapper and
Þlter models [12]. While wrapper models assess alternative feature subsets using a given classiÞcation
algorithm (which does not always use a decision tree representation), Þlter models use a preprocessing
stage, before the induction process, to select relevant features. The parameter to optimize is often
a statistical criterion or an information measure [13, 21]. Tree simpliÞcation methods via feature
selection use an induction algorithm and optimize the generalization accuracy. Then, they belong to
wrapper models. For instance, in [8] authors introduce SET-Gen, an algorithm that improves the
comprehensibility of decision trees grown by standard C4.5 without reducing accuracy. It uses genetic
search to select the set of relevant features. In [12], authors describe a method for feature subset
selection using cross-validation that is applicable to any induction algorithm (C4.5 [19], CART [4],
ID3 [17], etc.).

2.2 Tree SimpliÞcation via Case Selection

Case selection techniques reduce the number of training instances in order to reach the following
explicit goal: improving the quality of the learning sample in order to simplify trees and at least
control generalization accuracy of the model. In such a context, many simpliÞcation strategies can
be performed. Quinlan�s strategy [17] consists in incrementally adding misclassiÞed instances to
an original learning sample and inducing a new decision tree until no cases are misclassiÞed. To
avoid to completely re-induce the tree, that is computationally expensive, Utgoff [25] updates trees
incrementally as each new case is added. John�s Robust-C4.5 [11] chooses an opposite strategy by
iteratively removing all instances misclassiÞed by the current decision tree and building a new one.
Note that the tree is re-induced at each stage in the original algorithm, even if John claims that RC4.5
could be modiÞed with a scheme such as that proposed in [25]. Since we will use this simpliÞcation
method in our experiments, we describe in Þgure 4 the pseudocode of RC4.5.

ROBUSTC45(TrainingData)
Repeat
T ← C45BuildTree(TrainingData)
T ← C45PruneTree(T )
foreach Record in TrainingData
if T misclassified Record then
remove record from TrainingData

Until T correctly classifies all Records in TrainingData

Figure 4: Pseudocode of the ROBUST -C4.5 algorithm
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Brodley and Friedl [6] have proposed a new approach to identifying and eliminating mislabeled
training instances. Then, their aim is not really the reduction of the database, but rather the im-
provement of the quality of the learning data. They introduce the concept of Consensus Filter. This
approach constructs a set of base-level detectors (i.e. classiÞers) and uses them to identify mis-
labeled instances by consensus vote, i.e. all classiÞers must agree to eliminate an instance. The
base-level detectors can come from different Þelds (neural network, decision tree, kNN, genetic algo-
rithm, etc.). The pseudocode of this method (called CF ) is described in Þgure 5. If one only uses
kNN classiÞers (for different values of k) as base-level detectors, this algorithm becomes very suited to
reducing computational costs and improving performances of case-based learning algorithms, such as
the nearest-neighbor classiÞers [22]. Brodley and Friedl also noted that applying the consensus Þlter
to the training data leads to substantially smaller decision trees. They achieved this aim using the
following base-level detectors: a 1-NN , a linear machine and an univariate decision tree. Moreover,
we can note that if CF uses only C4.5 as base-level detector, it corresponds in fact to RC4.5 with
only one iteration.

In order to assess the consensus Þlter�s ability to identify mislabeled instances, authors also pro-
vided estimates of the probability of throwing out good data and the probability of keeping bad data,
easily computable on simulated noisy datasets. We will explain in detail and use these estimates in
the experimental section.

CF(TrainingData)
For Each Base-Level Detectors BLDi
Ci ← BLDi(TrainingData)

End For
Foreach Record in TrainingData
if all Ci misclassified Record then
remove record from TrainingData

End For
Return the TrainingData

Figure 5: Pseudocode of the CF algorithm

2.3 Linear Relationship Between Training Set Size and Tree Size

While previous works have proposed case reduction methods for simplifying trees and controlling gen-
eralization accuracy, other works have tried during the last decade to establish relationships between
training set size and tree size. Such relationship was originally identiÞed by Catlett [7], who found
that decision trees built from a part of large learning samples were smaller than those constructed on
the whole datasets, even if the accuracy was not always controlled.

An important advancement was achieved by Oates and Jensen [16]. Authors have tested the hy-
pothesis that there is a nearly linear relationship between training set size and tree size, even after
accuracy has ceased to increase. The experiments were based on a k-cross validation procedure, re-
taining randomly from 5% to 100% of the original instances. For each subset of instances, 5 pruning
methods were applied, generating tree size and accuracy curves. Results of the linear regression of tree
size on training set size provide high values of R2 particularly for the error-based pruning [19], that
seems to conÞrm their hypothesis. We will explain from a statistical point of view in the next section
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why C4.5 is particularly sensitive to the increase of training set size.
Authors also proposed an experimental method for evaluating new data reduction methods. The

impact of a given data reduction technique must be assessed through two components: the part due
to the reduction of the training set size, and that which is directly attributable to the selection strategy.
To deal with this problem, Oates and Jensen deÞned four items of information:

� the size of the tree that C4.5 builds on the whole learning set (LS), called C4.5 Size,
� the size of the tree built on the subset SB1 of instances selected by the data reduction technique,
called C4.5 DRT Size,

� the percentage of learning instances retained by the data reduction technique, called %Kept,
� the size of the tree built on the subset SB2 containing %Kept of instances randomly selected,
called C4.5 Random Size

Authors propose the following criterion to estimate the effect on tree which is due to the reduction
in the training set size:

EffectLS size/Tree size = 100 ∗ (C4.5 Size−C4.5 Random Size)
(C4.5 Size−C4.5 DRT Size)

A value of EffectLS size/Tree size near 0 means that reduction of training set size accounts for 0%
of the effect of the data reduction technique. Said differently, it means that all the tree reduction
is simply due to the relevance of the selected instances, and not to the reduction of the learning
sample. On the contrary, a value of EffectLS size/Tree size near 100% means that the tree reduction is
attributable to the fact that the learning sample is reduced. Finally, a value near 50% means that the
tree reduction is as much due to the learning set reduction as the relevance of the selected instances.
Authors have performed this decomposition for the RC4.5 algorithm, and shown that an important
percentage of its effect on tree size is attributable to the fact that it simply reduces the size of the
training set. On 12 benchmarks, they show that 42% of RC4.5�s effect is due to reduction of training
set size.

In fact, we can claim that such criterion for evaluating RC4.5�s effect is relevant when the accuracy
computed from SB1 is the same as for the subset SB2. In such a context, it is actually possible to
directly compare tree sizes and evaluate RC4.5�s contribution. If this constraint is not satisÞed,
the relevance of the reduction method can only be assessed through the analyze of two performance
measures: tree size, and generalization accuracy. We will analyze this problem in the experimental
section.

3 Effect of training set size on C4.5 pruning

3.1 Introduction

The Þrst tangible results about the relationship between training set size and tree size have been
presented in [16]. Authors have empirically shown that, under a broad range of circumstance, all data
reduction techniques (especially C4.5 in their experiments) result in some decrease in tree size with
little impact on accuracy. In this section, we provide theoretical justiÞcations of this trend for C4.5
in the case with 2 classes (the principle remains the same for multiclass problems).
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Consider a given node 0 of the decision tree, split into two nodes 1 and 2. Our goal consists in
evaluating the pruning probability of this subtree when the training set size increases. The learning
set is supposed to be produced by a simple random sampling process from the reference population
Ω, that gives the same probability to each possible sample set.

3.2 Theoretical Risk Behavior in Subtrees

Let πij be the relative proportion of instances of the class i in the node j in the whole population
Ω. Let θ0 = MIN(π1.;π2.)/π.. be the error rate in the node 0 and θ1 = MIN(π11;π21)/π.1 and
θ2 = MIN(π12;π22)/π.2 respectively the error rates in the nodes 1 and 2 in Ω. Without loss of
generalization, we assume here that π1. > π2., that means that class 1 has the majority in the node 0,
therefore θ0 = π2./π... The average error rate from the subsequent nodes is:

θ = θ1× π.1/π..+ θ2 × π.2/π.. = [MIN(π11;π21) +MIN(π12;π22)] /π..
There are four possible conÞgurations for the error rates in the subsequent nodes:

MIN(π12;π22)=π12 MIN(π12;π22)=π22
MIN(π11;π21)=π11 Impossible (π1. > π2. is assumed) π.. × θ=π11+π22 < π12+π21=π2.
MIN(π11;π21)=π21 π.. × θ=π12+π21 < π21+π22=π2. π.. × θ=π21+π22=π2.
Therefore, the average error rate θ is always smaller or equal to θ0. Said differently, either majority

classes are different in nodes 1 and 2 resulting in the decrease of θ0, or the majority class is the same
resulting in the stabilization of θ0 (this claim is true in the whole population and in the sample set).

3.3 Pruning Probability

Let N be the size of the learning sample LS and Nij be the number of examples of the class i
observed in the node j. Let pj be the empirical risk in the node j.

In C4.5 algorithm, a subtree is pruned if and only if:·
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The second term in brackets tends to 0 as N tend to ∞, because it can be seen as a bounded term
divided by

√
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Then the sign of the expression (1) depends on the value of the Þrst term (N.1N p1 +
N.2
N p2 − p0).

Two different situations can occur:
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Figure 6: Progressive adjustment of the decision rule built by C4.5 on a linearly separable problem.

1. First situation (the most common): in the reference population Ω, the majority classes are
different in nodes 1 and 2, then the average error rate is decreasing and

³
N.1
N p1 +

N.2
N p2− p0

´
tends towards its expected value (π.1 × π21 + π.2 × π12 − π2.) or (π.1 × π11 + π.2 × π22 − π2.),
both of them < 0. In this case the pruning probability tends towards 0 as N tends towards ∞;
then the tree size built by C4.5 increases with the learning set size N .

2. Second situation: in Ω, the majority class is the same in nodes 0, 1 and 2, then the average
error rate is stable and

³
N.1
N p1 + N.2

N p2− p0
´
oscillates around its expected value 0. In fact this

situation is rare because the nodes tends to specialize, especially around the optimum frontier
between classes in Ω, resulting in the growing of the tree.

3.4 Example

Consider a problem with 2 classes, where each example is represented by a 2-dimensional vector
(X1 ∈ [0 − 1], X2 ∈ [0 − 1]). In the population Ω, the density is uniform in this 1 × 1 square. The
example belongs to the class 1 if 0 < X1 < X2 < 1 and to the class 2 if 0 < X2 < X1 < 1. Each class
has an uniform density in its half-square. A theoretical study of the C4.5�s gain-ratio function (see
Þgure 6) shows that the Þrst optimal cutting takes place at X1 = 0.5, with X2 = 0.374 if X1 < 0.5
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and at X2 = 0.626 if X1 > 0.5. Proceeding this way, the tree built by C4.5 adjusts progressively
the optimum diagonal frontier by vertical and horizontal line segments as shown in Þgure 6. The
generalization accuracy on a training set will converge to its theoretical limit (which is here equal to
1), as N tends to ∞.

Even if this example seems to be very simple, several real world problems have, at least locally,
linear theoretical frontiers. According to this theoretical problem, we generated several learning sets
with N varying from 100 to 200, 000. In order to reduce the variance, we generated 10 learning samples
for each size N , and we used the average results. For each dataset, we evaluate the tree complexity
built by C4.5 (the number of leaves) and its generalization accuracy computed from a test set with
500, 000 examples (see Þgure 7). As expected, we can note that tree size increases withN and continues
to grow even after accuracy has ceased to increase and reached its theoretical limit (here equal to 1).
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Figure 7: Tree size and accuracy as a function of training set size.

All these results conÞrm the relationship empirically established in [16] between tree size and
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training set size. A possible interpretation of our theoretical result would consist in reversing the
problem, i.e.:

1. if the training set size decreases by randomly eliminating instances, then the tree size built by
C4.5 also decreases, while controlling the generalization accuracy.

2. according to 1., we can submit the following hypothesis: if the training set size decreases by
strategically eliminating irrelevant instances, then not only the tree size built by C4.5 decreases,
but also the generalization accuracy can be improved.

The consequence of this hypothesis is simple: a data preprocessing consisting in removing irrel-
evant instances prior to decision tree construction would be more efficient (from a complexity and
performance point of view) than a standard pruning.

Results presented in [6, 11] seem to conÞrm this hypothesis. Oates and Jensen [16] claim that
a part of the tree size reduction is simply due to the reduction of training set size, and the rest is
due to the strategy used for selecting relevant instances. In such a context, the aim of the following
section consists in testing our hypothesis and investigating new data reduction techniques, usually
called prototype selection methods, as a data preprocessing.

4 Prototype Selection Techniques

Historically, prototype selection (PS) Þrstly aimed at improving the efficiency of the nearest-neighbor
classiÞer [10]. While its use was widely spread and encouraged by early theoretical results linking its
generalization error to Bayes, this classiÞer presents several problems from a practical point of view
[4]:

1. It is a computationally expensive classiÞer because it stores all the instances in memory,

2. It is intolerant of noisy instances,

3. It is intolerant of irrelevant attributes,

4. It is sensitive to the chosen distance function,

Pioneer works in PS Þrstly searched only solutions to solve the Þrst problem listed above. In
[10], Hart proposes a Condensed NN Rule (CNN) to Þnd a Consistent Subset, CS, which correctly
classiÞes all of the remaining points in the sample set. However, this algorithm does not Þnd aMinimal
Consistent Subset, MCS. The Reduced NN Rule (RNN) proposed by Gates [9] tries to overcome this
drawback. It searches for the minimal subset in Hart�s CS which correctly classiÞes all the learning
instances. This approach is efficient if and only if Hart�s CS contains the MCS of the learning set,
and that is not always the case. In [1], the IB2 algorithm is quite similar to the CNN rule, except
it does not repeat the process after the Þrst pass. A common characteristic of these approaches is
that they are very sensitive to noise because noisy instances will probably be misclassiÞed, and then
not deleted. Initial solutions to improve IB2, and then handle the second problem listed above, were
proposed in IB3 [1].

The third problem (intolerance of irrelevant attributes) is a matter of feature selection. Therefore,
we do not discuss it in this section. Concerning the choice of the distance function, PS algorithms
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usually use the Euclidean distance. This function is appropriate only if the attributes are numeric. In
[27], Wilson and Martinez propose new distance functions to handle numeric and nominal attributes.

In [23], Skalak proposes two algorithms to Þnd sets of prototypes for NN classiÞcation. The Þrst
one is a Monte Carlo sampling algorithm, and the second applies random mutation hill climbing. In
these two algorithms, the size of the prototype subset must unfortunately be provided by the user.
Moreover, they require the Þxing of another parameter which contributes to the increase in the time
complexity: the number of samples or the number of mutations. All these user-Þxed parameters make
the algorithms too user-dependent, despite interesting performances.

RT3(Training Set LS)
Let S=LS
Noise filtering
Sort instances in S by the distance to their nearest ennemy
For Each instance P in S
Find P.N1..k+1, the k + 1 nearest neighbors of P in S
Add P to each of its neighbors� lists of associates

For each instance P in S:
Let with=# of associates of P classified correctly with P as a neighbor
Let without=# of associates of P classified correctly without P
If (without−with) ≥ 0
Remove P from S
For each associate A of P
Remove P from A�s list of nearest neighbor
Find a new nearest neighbor for A
Add A to its new neighbor�s list of associates

End If
Return S

Figure 8: Pseudocode of RT3

In [26], Wilson and Martinez present the algorithm RT3 (it proceeds as shown in Figure 8),
probably one of the most efficient PS algorithm. In this approach, an instance ωi is removed if its
removal does not hurt the classiÞcation of the instances remaining in the sample set, notably instances
that have ωi in their neighborhood (called associates). The algorithm is based on 2 principles: it uses
a noise-Þltering pass, which removes instances misclassiÞed by their kNN, that avoids overÞtting the
data; it removes instances in the center of clusters before border points, by sorting instances according
to the distance from their nearest enemy (i.e. of a different class).

In Sebban and Nock�s PSRCG [22], authors investigate the prototype selection as an informa-
tion preserving problem (see the pseudocode of PSRCG in Figure 9). Rather than optimizing the
accuracy of a classiÞer, they build a statistical information criterion (RCG in the algorithm) based
on a quadratic entropy computed from the nearest-neighbor topology. From neighbors linked by an
edge to a given instance, PSRCG computes a quadratic entropy by taking into account the label of
each neighbor. From this entropy (which conveys a local uncertainty Uloc), it deduces a global uncer-
tainty Utot of the learning sample LS. While an instance deletion is statistically signiÞcant, PSRCG
eliminates uninformative examples. Using k−nearest neighbors for building the neighborhood graph,
PSRCG has shown a high ability for reducing the database and improving kNN performances [22].
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PSRCG algorithm
t← 0; Np = |LS|
Build the kNN graph on the learning set
Compute RCG1

RCG1 =
U0−Utot
U0

Repeat
t← t+ 1
Select the instance ω = max(Uloc(ωj))
If 2 instances have the same Uloc
select the example having the smallest
number of neighbors
Local modifications of the kNN graph
Compute RCGt+1 after removing ω
Np ← Np − 1

Until (RCGt+1 < RCGt) or not(RCGt+1 >> 0)
Remove instances having a null uncertainty with their (k + 1)-NN
Return the prototype set with Np instances

Figure 9: Pseudocode of PSRCG

Finally, the PSB algorithm [15] proposes an adaptation of the properties of boosting to prototype
selection. While in a standard boosting algorithm the Þnal classiÞer combines a set of weak hypotheses,
where each one is a classiÞer built according to a given distribution over the training data, each weak
hypothesis in PSB is a single weighted prototype. The distribution update (a key step of boosting)
and the criterion optimized during the process are slightly modiÞed to allow an efficient adaptation of
boosting to the prototype selection Þeld.

5 Tree SimpliÞcation via Prototype Selection: a Comparative Study

5.1 Introduction

In this section, we achieved an important programming work in order to evaluate the contribution of
prototype selection algorithms to tree simpliÞcation. To achieve this aim, we compared them not only
with the state-of-the-art case selection methods but also with the standard error-based pruning [19].
We updated the SIPINA software, developed in the ERIC-Lyon2 laboratory1 and the GRAF software
developed in the TRIVIA laboratory2. Deliberately, each PS algorithm has been applied using its
original speciÞcities (i.e. to reduce the storage requirement), without any methodological adaptation
to tree simpliÞcation.

Therefore, RNN and RT3 were run using a kNN classiÞer (here k = 5) during the selection (note
that Hart�s CNN is not tested here because it contains the subset deduced by Gates�s RNN rule).
PSRCG has been performed from a 5-NN graph. PSB requiring to provide the number Nw of weak
hypothesis, we decided to Þx Nw as the number of prototypes selected by PSRCG. Such a strategy
allows comparisons between approaches.

1http://eric.univ-lyon2.fr
2http://www.univ-ag.fr
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The problem for the Consensus Filter (CF ) was more complicated, because it requires to a priori
provide not only the number of base-level detectors but also their type. For this experimental study,
we decided (as it was performed in [6]) to take three classiÞers: a 1-NN classiÞer, C4.5, and a linear
machine. These three classiÞers must agree to remove an instance with CF . Finally, John�s RC4.5
was also run.

Each data reduction method was applied as a data preprocessing before the construction of the
decision tree by the C4.5 algorithm. We tested here a large panel of databases (22 datasets), the
large majority coming from the UCI Repository [14]. The experimental method was the following:
f-fold cross-validation (here f = 5) was used on each database to obtain unbiased estimates of the
true performance of C4.5 algorithm according to the data reduction method. Each database DB is
then divided into f disjoints sets DBi. Data preprocessing (successively RNN , RT3, PSRCG, PSB,
CF and RC4.5) is applied on each combination DB−DBi. A tree is built with C4.5 on the resulting
subset of instances (DB −DBi)subset and tested on the instances in DBi. For each data reduction
method, we obtain an accuracy estimate by averaging results over all f folds. Note that C4.5 is also
run for comparisons on each combination DB−DBi without data preprocessing and the induced tree
is tested on DBi.

5.2 Results

We present in Table 1 the reduction methods for which we observed dramatic tree size reduction, often
to the detriment of the generalization accuracy. Several remarks can be made from this table:
RNN+C4.5 vs C4.5: The main speciÞcity of the RNN rule is the keeping of misclassiÞed instances.
This way to proceed results in a difficulty to build efficient trees because only overlapping and border
points are used to identify relevant features. The results of RNN+C4.5 conÞrm this drawback: while
the average tree size is highly reduced (6.4 vs 12.1 rules on average), that improves the model compre-
hensibility, the predictive accuracy is not controlled and decreases a lot (73.0 vs 80.3%). Therefore,
we can not claim that RNN+C4.5 is an efficient tree simpliÞcation procedure.

RT3+C4.5 vs C4.5: While RT3 is particularly suited to reduce storage requirements of a kNN classi-
Þer without reducing the kNN predictive accuracy [22, 26], it seems also to be inefficient for simplifying
trees. RT3+C4.5 does not provide actually a good balance between the tree size reduction, i.e. the
comprehensibility of the model (5.9 rules on average vs 12.1 for C4.5 ), and the control of the predic-
tive accuracy which falls much (from 80.3% to 72.6). A Student paired t-test proves the signiÞcant
superiority of C4.5. This noting is in fact not amazing because RT3 is originally optimized for the
kNN classiÞer. The speciÞcities of RT3 based on distance calculations (noise-Þltering pass removing
instances misclassiÞed by their kNN; instance sorting according to the distance from their nearest
enemy) make its adaptation to tree simpliÞcation difficult.

RC4.5+C4.5 vs C4.5: According to the average result on the 22 datasets, it is amazing to note
that RC4.5 allows high tree size reduction, but also entailing an accuracy drop (76.7 vs 80.3), that
is signiÞcant using a Student paired t-test. In fact, we can explain this global result by analyzing
datasets in detail. Actually, we note that for 3 datasets (Car, Pima and Xd6 ), the decision tree is so
reduced that no rule is induced, resulting in a decision rule in favor of the majority class in LS. This
explains why accuracy falls much, respectively -20.0, -5.7 and -22.4. By eliminating these 3 datasets,
the global performance of RC4.5 is signiÞcant on the 19 remaining databases (near 79%).
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Dataset C4.5 RNN+C4.5 RT3+C4.5 RC4.5+C4.5

|LS| # R Acc. # pr. # R Acc. # pr. # R Acc. # pr. # R Acc.

Australian 552 8.6 85.0 288.4 4.6 81.9 51.1 2.5 83.9 404.2 6.8 85.0

Balance 500 33.0 77.8 140.0 17.5 70.3 44.0 14.5 70.6 405.4 11.2 76.2

Bigpole 400 5.2 63.4 195.3 2.8 57.3 61.4 2.3 57.6 267.2 2.0 62.7

Breast Cancer 558 13.4 94.6 88.0 7.1 85.9 88.0 5.9 85.9 523.4 4.2 93.0

Car 800 19.8 97.6 103.6 10.5 88.2 32.2 8.7 88.6 618.0 1.0 77.6

Dermato 293 8.4 94.6 86.4 4.5 94.6 73.3 7.1 73.6 279.6 8.4 91.3

Ecocardio 104 3.3 54.3 86.2 1.8 48.7 8.9 1.3 51.7 76.4 1.4 58.2

German 800 8.0 70.8 657.6 4.2 70.2 46.4 3.2 65.7 579.6 5 71.3

Glass 170 4.0 75.8 86.1 2.1 67.8 31.7 1.0 57.8 104.8 3.4 76.6

Heart 216 5.8 72.0 102.9 3.0 65.0 32.3 2.5 65.4 147.0 2.6 66.1

Horse 294 11.6 82.6 135.2 6.1 85.5 25.0 2.0 83.8 257.0 5.4 84.4

Ionosphere 148 10.2 86.4 32.0 5.4 68.8 15.2 1.5 90.7 144.0 6.6 85.7

LED 400 16.2 69.0 140.0 8.6 62.3 44.0 7.1 62.6 266.2 12.6 62.9

LED2 400 7.2 88.4 152.0 3.8 74.4 32.0 5.0 74.4 354.6 6.0 88.1

LED+17 400 18.5 81.5 188.0 9.8 81.0 46.7 18.5 53.5 308.8 4.6 79.4

Pima 614 3.4 71.2 321.4 1.8 63.9 32.8 3.4 70.6 345.0 1.0 65.5

Tic-Tac-Toe 480 17.4 80.4 174.4 9.2 64.7 131.2 4.2 66.7 350.8 4.0 72.5

Vehicle 676 9.2 74.8 300.8 4.9 66.1 87.9 23.5 75.7 504.2 5.6 71.0

Waves 400 33.8 75.6 169.3 17.9 65.6 69.3 1.4 69.6 347.4 22.2 74.8

White House 348 5.8 94.4 37.0 3.1 92.0 22.2 2.0 97.9 336.0 2.2 95.2

Wine 141 5.8 91.8 35.3 3.1 76.5 19.7 2.4 71.3 143.6 4.8 88.4

Xd6 479 17.6 84.0 188.0 9.3 75.9 67.1 9.2 79.0 265.6 1.0 61.6

Average 417 12.1 80.3 168.5 6.4 73.0 48.3 5.9 72.6 319.5 6.3 76.7

Table 1: Number of prototypes (# pr.), tree size (number of rules # R) and Predictive accuracy (Acc.)
on 22 datasets with 3 data reduction methods; C4.5 is also presented for comparisons

We present in Table 2 the simpliÞcation methods which provide a good balance between tree size
reduction and accuracy control.
CF+C4.5 vs C4.5: CF removes very few instances (8.1% on average) in comparison with the other
data reduction techniques. This is not amazing because CF is only intended to remove mislabeled
instances. On the other hand, this data preprocessing allows high tree size reduction (8.4 vs 12.1)
while controlling accuracy (80.2 vs 80.3). These results conÞrm in fact those presented in [6].

PSB+C4.5 vs C4.5: Our prototype selection method based on boosting also provides interesting
results, with smaller trees (9 rules on average vs 12.1), and almost equivalent from a generalization
point of view (80.0 vs 80.3).

PSRCG+C4.5 vs C4.5: Incontestably, PSRCG seems to be the most efficient algorithm for simplifying
trees. Several criteria are actually improved in comparison with the standard C4.5 algorithm: (i) only
69% of the total number of instances are used for building the tree, that reduces the learning process;
(ii) the number of rules is 13.2% smaller than with the standard C4.5, that allows a higher model
comprehensibility; (iii) the predictive accuracy is improved (80.8% vs 80.3); using a Student paired
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t-test over accuracies, we found that it is statistically signiÞcant with a critical risk near 15%.

Dataset C4.5 CF+C4.5 PSRCG+C4.5 PSB+C4.5 Random

|LS| # R Acc. # pr. # R Acc. # pr. # R Acc. # R Acc. # R Acc.

Australian 552 8.6 85.0 514.4 6.2 85.7 394.6 10.4 83.6 10.4 84.4 16.4 82.0

Balance 500 33.0 77.8 462.8 18.8 79.3 297.0 25.4 79.0 13.4 75.4 23.2 77.0

Bigpole 400 5.2 63.4 348.8 3.0 64.3 354.6 2.6 67.4 7.6 67.6 7.0 64.8

Breast Cancer 558 13.4 94.6 555.2 7.4 93.7 69.6 6.4 93.4 2.0 88.6 4.6 91.6

Car 800 19.8 97.6 787.6 8.6 90.1 337.6 17.8 96.4 10.8 93.0 15.0 94.6

Dermato 293 8.4 94.6 288.4 10.2 91.4 213.4 8.0 94.6 7.0 94.4 6.8 92.2

Ecocardio 104 3.3 54.3 88.2 3.0 68.0 84.3 4.0 57.0 5.0 55.7 5.3 62.7

German 800 8.0 70.8 709.2 7.4 72.6 676.4 6.4 71.6 5.8 68.4 13.8 70.8

Glass 170 4.0 75.8 113.0 3.4 77.3 120.3 3.8 76.5 4.8 75.6 10.6 76.8

Heart 216 5.8 72.0 195.0 4.8 75.5 146.0 8.8 77.5 6.8 78.0 8.8 79.0

Horse 294 11.6 82.6 279.8 5.6 85.7 246.6 8.2 83.6 7.2 85.4 12.4 76.0

Ionosphere 148 10.2 86.4 143.4 7.8 86.2 112.8 9.0 87.0 8.6 88.0 7.8 77.8

LED 400 16.2 69.0 315.8 15.4 69.2 309.8 14.4 70.0 14.4 70.0 15.4 69.6

LED2 400 7.2 88.4 374.8 7.2 87.5 211.4 4.4 87.4 8.2 87.4 6.2 86.0

LED+17 400 18.5 81.5 370.6 10.0 80.7 364.3 17.8 82.5 16.8 81.8 15.0 78.5

Pima 614 3.4 71.2 533.0 4.0 70.6 468.6 3.6 71.2 3.4 71.8 4.2 71.0

Tic-Tac-Toe 480 17.4 80.4 441.4 8.4 72.5 404.6 14.6 78.0 17.0 79.0 22.4 77.0

Vehicle 676 9.2 74.8 587.2 5.6 73.5 566.6 8.4 74.8 11.8 73.8 10.8 72.4

Waves 400 33.8 75.6 383.6 30.2 74.8 297.8 30.6 75.6 12.5 75.6 23.8 70.4

White House 348 5.8 94.4 342.8 3.0 95.7 135.4 4.8 93.6 2.0 95.0 5.2 93.8

Wine 141 5.8 91.8 144.0 4.8 92.8 98.4 4.8 92.8 3.0 87.2 4.6 89.0

Xd6 479 17.6 84.0 446.4 10.0 77.2 404.0 17.8 83.2 20.0 82.4 21.6 79.2

Average 417 12.1 80.3 383.0 8.4 80.20 287.0 10.5 80.8 9.0 80.0 11.9 78.7

Table 2: Number of prototypes (# pr.), tree size (number of rules # R) and predictive accuracy (Acc.)
on 22 datasets. Results in the column "Random" are used for the decomposition of PSRCG�s effect
as proposed by Oates and Jensen

5.3 Analysis of PSRCG

Among the new data reduction methods tested in this paper, PSRCG seems to be the most efficient for
simplifying decision trees, and improving generalization accuracy. In this section, we try to explain why
this prototype selection method is suited to simplifying trees, and why it deserves future investigations.

5.3.1 Filter Precision

In [6], authors provide a method for evaluating the consensus Þlter�s ability (called Þlter precision) to
identify and eliminate mislabeled instances. Consider a learning set artiÞcially corrupted by a given
percentage of noise. One deÞnes the 3 following information items:

� the number of instances discarded by the data reduction technique D,
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� the number of instances a priori corrupted M ,
� the number of corrupted instances discarded by the data reduction technique M ∩D.

Brodley and Friedl propose the two following estimates P (E1) and P (E2), respectively the proba-
bility of throwing out good data, and the probability of keeping bad data:

P (E1) =
D−M∩D
N−M ,

where N is the training set size
P (E2) =

M−M∩D
M

While the original 22 datasets are not pure and probably already contain noisy data, we decided to
calculate P (E1) and P (E2) for different artiÞcial noise levels. We corrupted original data successively
with 5, 10, 15 and 20% noise. Table 3 reports P (E1) and P (E2) averaged over all datasets and all
folds.

Noise Level P (E1) P (E2)

5% 0.515 0.311
10% 0.494 0.312
15% 0.481 0.327
20% 0.469 0.360

Table 3: PSRCG�s Þlter precision

Contrary to CF , the value of P (E1) is difficult to interpret for PSRCG, which eliminates not
only mislabeled instances but also irrelevant and useless examples. Then, D includes other instances
than M that explains a relative high value. On the other hand, results for P (E2) illustrate PSRCG�s
ability to eliminate mislabeled instances. For small levels of noise, PSRCG Þnds many mislabeled
instances. Actually, with 5% noise, PSRCG Þnd about 70% of them. From a practical point of view,
it explains why PSRCG is particularly suited to simplifying decision trees. Even for higher levels of
noise, it detects many corrupted examples (about 64% with 25% noise).

5.3.2 Tree SimpliÞcation in the Presence of Noise

According to the previous results, PSRCG would not be too sensitive in the presence of noise. We
tested this hypothesis on the 22 datasets, corrupting the data by changing the output class of 5% of
the learning instances. The experimental method (cross-validation) remains the same. Results are
described in Table 4. As expected, PSRCG is still efficient for simplifying decision trees, even in the
presence of noise. On average, the number of rules is reduced (11.2 vs 10.4), and the generalization
accuracy is slightly improved (75.5 vs 75.7).

5.3.3 PSRCG�s Effect on Tree Size Reduction

According to [16], the impact of a given data reduction technique must be assessed through two
components: the part due to the reduction of the training set size, and that which is directly attributable
to the selection strategy. Authors proposed the following criterion to estimate the effect on tree which
is due to the reduction in the training set size:



102 IJCSS, Vol.1, No.1, 2000

Dataset C4.5 PSRCG+C4.5

|LS| # R Acc. # pr. # R Acc.

Australian 552 9.4 83.0 422.6 8.4 84.2

Balance 500 26.8 73.6 302.8 25.8 72.0

Bigpole 400 3.6 61.0 356.6 3.8 62.6

Breast Cancer 558 14.2 90.6 129.2 8.6 88.6

Car 800 16.8 92.2 407.8 18.4 91.6

Dermato 293 3.8 91.8 127.0 4.8 89.6

Ecocardio 104 2.3 59.3 90.7 3.7 59.3

German 800 5.3 66.3 714.3 6.3 68.3

Glass 170 4.2 70.0 109.4 4.6 69.4

Heart 216 5.0 68.3 164.7 6.3 75.3

Horse 294 12.4 80.2 275.0 9.0 79.0

Ionosphere 148 12.6 81.0 74.8 11.2 79.2

LED 400 15.8 69.2 362.8 15.2 68.2

LED2 400 6.3 85.8 266.0 6.0 85.5

LED+17 400 15.0 73.5 369.3 17.5 75.8

Pima 614 3.6 70.0 503.8 3.0 69.2

Tic-Tac-Toe 480 13.8 72.2 415.8 14.0 70.2

Vehicle 676 7.6 71.4 585.2 8.6 71.4

Waves 400 41.4 70.6 317.4 34.8 70.6

White House 348 3.2 89.6 205.8 3.6 89.2

Wine 141 8.3 85.0 106.3 5.8 91.3

Xd6 479 15.0 78.6 432.8 10.6 75.8

Average 417 11.2 76.5 306.4 10.4 76.7

Table 4: Number of prototypes (# pr.), tree size (number of rules # R) and predictive accuracy (Acc.)
on 22 noisy datasets

EffectLS size/Tree size = 100 ∗ (C4.5 Size−C4.5 Random Size)
(C4.5 Size−C4.5 PSRCG Size)

where,

� C4.5 Size corresponds to the size (averaged over the 22 datasets) of the tree that C4.5 builds
on the whole learning set,

� C4.5 PRSCG Size is the size of the tree built on the subset SB1 of instances selected by PSRCG,
� %Kept is the percentage of learning instances retained by PSRCG,
� and C4.5 Random Size corresponds to the size of the tree built on the subset SB2 containing
%Kept of instances randomly selected,

All these quantities are described in Table 2:

� C4.5Size = 12.1
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� C4.5PSRCG Size = 10.5
� C4.5 Random Size is deduced from the column Random in Table 2, C4.5Random Size = 11.9

EffectLS size/Tree size = 100 ∗ (12.1−11.9)(12.1−10.5) = 15.4%

Then, for the 22 datasets listed in Table 2, an average of 15.4% of PSRCG�s effect is due to
reduction of training set size, and 84.6% is due to PSRCG�s strategy for selecting prototypes. Even
if, as already mentioned, the quantity EffectLS size/Tree size is particularly relevant when accuracies
are close, we can conclude that substantial reductions in tree size are directly attributable to the
PSRCG method in comparison with a random reduction. Actually, decision trees are smaller (10.5
vs 11.9) and more accurate (80.8% vs 78.7).

6 Conclusion

In the Þeld of Knowledge Discovery in Databases, the human comprehensibility of models is as im-
portant as the accuracy optimization. To address this problem, many methods have been proposed to
simplify decision trees and improve their understandability. In this paper, we have studied the contri-
bution of new case selection methods, called prototype selection (PS) algorithms, for simplifying trees.
We used PS algorithms differently from what they are originally intended. Actually, we investigated
four PS algorithms as data preprocessing in favor of tree simpliÞcation, and compared them with the
state-of-the-art tree simpliÞcation methods.

Many performance measures allow to evaluate the reliability of such methods. Among all the PS
methods tested in this article, PSRCG has shown on 22 datasets a dramatic efficiency, (i) by reducing
the decision tree size, (ii) improving the generalization accuracy, (iii) tolerating the presence of noise.
This algorithm optimizes an information measure within a neighborhood graph. It does not depend on
a given learning algorithm, is not computationally expensive (only local modiÞcations of the graph are
required) and uses a theoretical framework for halting search (for mor details, see [22]). Proceeding
this way, we have established, for the Þrst time, a close link between prototype selection and tree
simpliÞcation.

In this paper, we have also theoretically established the relationship between training set size and
tree size, when the decision tree is built with C4.5 and its error-based pruning. We have shown that
the pruning probability converges on 0 when the training set size increases. However, we only dealt
with the error-based pruning [19], and future research will have to include new investigations of the
other pruning algorithms. Actually, results presented in [16] show that, except error-based pruning
and minimum description length-based pruning[20], the linear relationship between training set size
and tree size is not very established.
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