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Abstract

The generation of predictive models is a frequent task in data mining with the ob-
jective of generating highly precise and interpretable models. The data reduction is
an interesting preprocessing approach that can allow us to obtain predictive models
with these characteristics in large size data sets. In this paper, we analyze the rule
classification model based on decision trees using a training selected set via evo-
lutionary stratified instance selection. This method faces the scaling problem that
appears in the evaluation of large size data sets, and the trade off interpretability-
precision of the generated models.
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1 Introduction

A basic process in data mining is the generation of representative models
from data [1]. The models, depending on their domain of application, can be
descriptive or predictive. The classical objective of predictive models is the
accuracy or precision of the model. On the other hand, the interpretability of
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the model is an important aspect for the expert point of view, to understand
the model behaviour [2]. In classical literature, we can find different proposals
to measure the quality of the predictive models, as well as the precision, like
simplicity, interpretability, etc [3].

In this paper we are going to focus our attention on the predictive models based
on classification rules for different size data sets, with the special interest in
the trade off interpretability-precision [2]. Our models have been extracted
from the data sets by means of C4.5 algorithm [4].

A possible way to improve the behaviour of predictive models, precision and
interpretability, is to extract them from suitable reduced/selected training sets
[5]. Training set selection can be developed using instance selection algorithms.
The instance selection algorithms select representative instance subsets follow-
ing a determined strategy, and they can improve the nearest neighbour rule
prediction capabilities used in some cases as selection strategy objective [6,7].
In [5], Sebban et al. study the effect of the learning set size in decision trees
performances. An important conclusion of this analysis is that the application
of instance selection algorithms (and concretely, the PSRCG algorithm) can
improve the generalization accuracy, reduce the decision tree size and tolerate
the presence of noise, establishing a close link between instance selection and
tree simplification.

Evolutionary algorithms (EAs) are adaptable methods based on natural evolu-
tion that can be applied to search and optimization problems [8–10]. The EAs
offer interesting results when they are assessed on instance selection [11,12].
In this study, we use CHC algorithm as EA [13], considering its behavior
shown in [14]. The basic idea consists of combining in the fitness function
both objectives, interpretability and precision [14,15].

The evaluation of instance selection algorithms over large size data sets makes
them ineffective and inefficient. The effect produced by the size of data set in
the algorithms is called scaling problem.

We focus our attention on evolutionary instance selection for large size data
sets with the aim of extracting high precise-interpretable rules. To tackle the
scaling problem we combine the stratification of the data sets with the in-
stance selection over them [15]. The stratification reduces the original data
set size, splitting it into strata where the selection will be applied. We analyze
the selected training sets quality by means of the models (decision trees) ex-
tracted from them by means of C4.5, from the precision and interpretability
perspectives. To compare the results we provide a statistical analysis using
some statistical tests (ANOVA, Levene and Tamhane [16]).

The outline of the document is the following. In Section 2, we analyze the
predictive models and their extraction using C4.5, presenting the measures
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considered to assess their behaviour. Section 3 describes the training set se-
lection process and the drawbacks that the evaluation of very large data sets
introduced in the instance selection algorithms. Section 4 presents the evolu-
tionary stratified instance selection process applied to training set selection.
Section 5 contains the experimental study developed, offering the methodol-
ogy followed, the results and their analysis. Finally, in Section 6 we will point
out some concluding results.

2 Predictive Models: Classification trees extraction with C4.5

The importance of decision trees and rules is that they are favoured techniques
to build understandable models, a key point for the helpfulness of them and
their application. A decision tree is a predictive model that can be viewed as
a tree.

In this study we are going to extract the decision trees using the C4.5 algo-
rithm [4]. The models generated are complete and consistent, covering all the
examples of the training set. The induction algorithm may over fit outliers,
mislabelled, noisy data resulting in the inference of more structures than is
justified by the training set. This situation is increased when the size of the
learning set is large, so decision trees size is increased considerably [17–19].
The high size of the decision tree produces:

• Over fitting. In this case, the learned hypothesis is so closely related to the
training examples that its generalization capabilities would be penalized
[20].

• Low human interpretability. The highest size of the decision tree introduces
the disadvantage of excessive complexity that can render it incomprehensi-
ble to experts [3,21].

To avoid this situation, there are several ways to simplify the decision tree,
which were classified by Breslow and Aha in [22].

Among them, prune methods are more popular than the rest to be applied to
the decision trees generated [23]. Prune methods can be classified in:

• Preprune methods. The prune process is developed during the tree genera-
tion. The prune determines the stopping condition for the branch special-
ization.

• Postprune methods. In this case, the prune process is applied after the
tree construction. The prune removes nodes from bottom to top until a
determined limit is reached.
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Prune methods increase the generalization capabilities of the model and reduce
its size, which increases its interpretability.

The drawback for both prune methods, preprune and postprune, is to de-
termine the stop limit. The limit will depend on the training set where the
decision tree is being extracted. The proper adjust of the limit produces mod-
els with better or worse behaviour. If the prune is minimal, the over fitting
will be maintained. If the prune is maximal, the precision capability could be
reduced due to excessive generalization.

In the case of C4.5 algorithm, the Error-Based Pruning is applied [4]. This
prune strategy has shown its balance among precision and size in decision
trees generated among other sort of pruning, like Reduced Error Pruning,
Pessimistic Error Pruning, Minimum Error Pruning, Critical Value Pruning,
Cost-Complexity Pruning, etc [23].

As alternative strategy to simplify the decision trees, it can be developed
the reduction of the initial size of the learning set. This reduction consists of
removing irrelevant instances before the induction process, often resulting in
smaller trees [24,25]. This process is carried out by means of instance selection
algorithms [6,7] where, instead of removing the irrelevant instances, the most
representative ones are selected.

When the decision tree is going to be applied in domains where its character
predictive and descriptive is important, the simplicity of the decision tree is
a key factor [2]. The measures we are going to use to assess the predictive
models extracted with C4.5 will be the following [3]:

• Test Accuracy.
In predictive models learning, it is a key factor to maximize the accuracy

of the set of rules obtained. This is going to be a quality measure of the
model. The model will be generated by means of the C4.5 algorithm using
the training set selected. The test accuracy is calculated using the model
constructed.

TEST = Test Accuracy (1)

• Decision Tree Size.
The measure of the size of decision tree is assessed considering the number

of rules (nR) which compose the model.

SIZE = nR (2)

• Number of Antecedents.
As second measure of decision tree size we introduce the mean number of

antecedents per rule. Considering the rule Ri as Cond → Class, NAntec(Ri)
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is the number of antecedents of the rule Ri and ANT the mean number of
antecedents in the model (see (3) and (4)):

NAntec(Ri) = ]|Cond| (3)

ANT =
1

nR

nR∑

i=1

NAntec(Ri) (4)

As the number of rules as the mean number of antecedents will be used
to analyse the interpretability capacities of the model.

3 Training Set Selection in Large Size Data Sets

In this section the training set selection process is described. It is developed by
means of instance selection algorithms, which select the most representative
instances in the initial data set. When these algorithms are assessed in large
size data sets, they suffer the scaling problem.

In the Subsection 3.1 the training set selection is presented. The Subsection
3.2 is dedicated to expose the scaling problem.

3.1 Training Set Selection

There may be situations in which there are too much data and these data
in most cases are not equally useful in the training phase of the learning
algorithm [26]. Instance selection mechanisms have been proposed to choose
the most suitable points in the data set to become instances for the training
data set used by the learning algorithm.

In training set selection, the objective is to find training sets which can pro-
duce, when they are used as input, high precise and interpretable models.

The process, as we can see in the Figure 1 is the following: the initial data set
(D) is divided in TR and TS. Using TR as input (learning set), the instance
selection algorithms obtains the training set selected (TSS ). The subset TSS
is used as input in the C4.5 algorithm to generate its decision tree associated.
This model will be validated using the test set TS.
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Model
Obtained

Data Set (D)

Training Set (TR) Test Set (TS)

Data Mining
Algorithm (C4.5)

Algorithm
Instance Selection

Training Set Selected (TSS)

Fig. 1. Instance Selection for Training Set Selection

In the following, we shortly revise the training sets selection approaches that
we can find in the specialized literature. We classify them according to the
model extracted after the training set selection process.

• Decision trees. In this group we can point:
· In [25], Oates and Jensen study the effect of the training set size in decision

trees complexity. The paper analyzes five decision tree pruning algorithms
and the Robust C4.5 algorithm as data reduction method. Authors reach
as conclusions the relationship between tree size and training set size,
where increasing training set size often results in a linear increase in tree
size, even when that additional complexity does not improve the classifi-
cation accuracy.

· Sebban et al. in [5] apply training set selection to analyze the perfor-
mances of the decision trees extracted from them. In this paper the in-
terest is focused on the complexity and the generalization accuracy of the
decision trees. Sebban et al. offer theoretical arguments to justify the data
reduction techniques in favour of tree simplification, where some data re-
duction algorithms are very efficient to improve standard post-pruning
performances.

• Neural networks. Training set selection has been used in the domain of
neural networks:
· In [26], a genetic algorithm is used for training data selection in radial

based function networks. The approach is inspired in data editing con-
cepts and outlier detection. Reeves and Bush apply a genetic algorithm
to identify a ’good’ training set for fitting radial basis function networks.
They conclude that improved generalization can be obtained using this
approach.

· Valls et al. in [27] select training data to improve the generalization ca-
pabilities in radial basis neural networks. They propose a selective learn-
ing method in the domain of time-series prediction for a non-dimensional
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problem. In their approach, they consider that the amount of selected pat-
terns or the neighbourhood choice around the new sample might influence
in the generalization accuracy, and the neighborhood must be established
according to the dimensionality of the patterns.

• Different models. The training set selection is applied to extract quality
subsets used as input to generate different sort of models:
· Sierra et al. apply estimation of distribution algorithms, selecting in-

stances and features for training set selection [28]. The subsets are eval-
uated by means of k-nearest neighbours, artificial neural networks and
classification trees. The training set selection in this paper is applied to a
medical problem. When the resulting models are presented to the medical
staff they noted that the confidence and acceptance of those models had
increased.

· Cano et al. analyze evolutionary training set selection, comparing it with
other non evolutionary instance selection algorithms in [14]. The subsets
extracted are evaluated as 1 nearest neighbor classifiers and by means of
C4.5 to generate decision trees. They combined the reduction rate and the
1 nearest neighbor precision of the subset selected in the fitness function to
address the training set selection process. The conclusions reached indicate
that evolutionary instance selection improves to non evolutionary instance
selection algorithms in the training set selection domain.

· Aguilar et al. in [29], and Riquelme et al. improving it in [30], apply
training set selection based on ordered projection, analyzing the subsets
using a k-nearest neighbour classifier and the C4.5 algorithm. The study
confirms that training set selection improves the efficiency of the models
extractors and classifiers, and the accuracy and interpretability of the
models and classifiers.

· In [31,32], Grochowski and Jankowski study different instance selection
algorithms from the training set selection perspective. The first paper
([31]) presents a set of instance selection algorithms, which are evaluated
as training set selectors in the second one ([32]). The performance of the
selected subsets is tested using k-nearest neighbours, support vector ma-
chine, SSV decision tree, a normalized version of RBF network called
NRBF, FSM and IncNet model.

· Pedreira in [33] proposes a methodology to update Learning Vector Quan-
tization prototypes by using a select subset of the available training data.
The method selects, at each epoch, a subset of points considered to be
at risk of being captured by another class prototype. The prototypes are
updated only by the points that are under threat of being captured by
a wrong prototype. A direct consequence of this procedure is that each
prototype ends up located where it is really needed in order to defend its
group feature vectors against the prototypes representing other groups.
The results show some improvements if compared to the traditional LVQ
update scheme.
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3.2 The Scaling Problem

In this section we study the effect of the data set size in the instance selection
algorithms and in the decision trees generated.

The majority of instance selection algorithms cannot deal with large size data
sets. They have to face the following difficulties:

• Efficiency. The efficiency of non-evolutionary instance selection algorithms
evaluated is at least of O(n2), being n the number of instances in the data
set. There are another set of algorithms (like Rnn in [34], Snn in [35], Shrink
in [36], etc.) but most of them present an efficiency order much greater than
O(n2). Logically, when the size grows, the time needed by each algorithm
also increases.

• Resources. Most of the assessed algorithms need to have the complete data
set stored in memory to carry out their execution. If the size of the data
set was too big, the computer would need to use the disk as swap memory.
This loss of resources has an adverse effect on efficiency due to the increased
access to the disk.

• Generalization. Algorithms are affected in their generalization capabilities
due to the noise and over fitting effect introduced by larger size data sets.

• Representation. EAs are also affected by representation, due to the size of
their chromosomes. When the size of these chromosomes is so large, the
algorithms experience converges difficulties, as well as costly computational
time.

These drawbacks introduce considerable degradation in the behaviour of the
instance selection algorithms. There is a group of them that can’t be evaluated
due to its efficiency order (the case of Snn in [35] with O(n3)).

On the other hand, algorithms evaluated directly on the whole larger data sets
can be ineffective and/or inefficient.

4 Evolutionary Stratified Instance Selection Approach

The algorithm for the extraction of quality predictive models (high inter-
pretable and precise) consists of the combination of the EA algorithm with
the stratification of the initial data set to face the scaling problem. Following
this way, the method could be applied to data sets independently of their size.
The stratification reduces the search space, while the EA explores each strata.

The EA applied combines in its fitness function the accuracy offered by the
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1-Nearest Neighbour classifier and the percentage of instances reduced. This
situation makes us to consider the following:

• The use of this classifier to assess the classification percentage of the chromo-
somes introduces the scaling up problem in its evaluation, and the necessity
of the stratification.

• The selection is developed by means of one classifier (1-Nearest Neighbor)
which is not the one that is used to evaluate the classification performances
of the final solution (C4.5 ).

As alternative, we introduce a new fitness function, where the classification
performance of the chromosomes is assessed by means of C4.5, which is more
efficient than 1-Nearest Neighbour so the stratification is needed just in very
large size data sets. Using this fitness function, the selection is guided by the
later classification algorithm (C4.5 ).

The Subsection 4.1 describes the use of EAs in training set selection, offering
the solutions representation and both fitness functions considered. In Subsec-
tion 4.2, the evolutionary stratified instance selection applied in training set
selection is presented.

4.1 Evolutionary Algorithms applied in Training Set Selection

The application of EAs to training set selection is accomplished by tackling
two important issues: the specification of the representation of the solutions
and the definition of the fitness functions.

4.1.1 Representation

Let’s assume a data set denoted TR with n instances. The search space as-
sociated with the instance selection is constituted by all the subsets of TR.
Then, the chromosomes should represent subsets of TR. This is accomplished
by using a binary representation. A chromosome consists of n genes (one for
each instance in TR) with two possible states: 0 and 1. If the gene is 1, then
its associated instance is included in the subset of TR represented by the
chromosome. If it is 0, then this does not occur (see Figure 2).

4.1.2 Fitness Function R-P

Let TSS be a subset (see Figure 2) of instances of TR to evaluate and be coded
by a chromosome. We define the fitness function that combines two values:
the classification performance (clasper1 with 1-Nearest Neighbor classifier)
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Selected 3 6

2 3 71 5 84 6

TR

Fig. 2. Solutions representation

associated with TSS and the percentage of reduction (percred1) of instances
of TSS with regards to TR (this fitness function is denoted by R-P : Reduction-
Precision):

Fitness1(TSS) = α · clasper1 + (1− α) · percred1. (5)

The 1-Nearest Neighbour classifier is used for measuring the classification rate,
clasper1, associated with TSS. It denotes the percentage of correctly classified
objects from TR using only TSS to find the nearest neighbour. For each
object y in TR, the nearest neighbour is searched for amongst those in the set
TSS \ {y}. Whereas, percred1 is defined as:

percred1 = 100 · (|TR| − |TSS|)/|TR|. (6)

The objective of the EAs is to maximize the fitness function defined, i.e., max-
imize the classification performance and minimize the number of instances ob-
tained. In the experiments presented in this contribution, we have considered
the value α = 0.5 in the fitness function due to it presents the best trade off
between reduction and accuracy in the final subsets selected.

4.1.3 Fitness Function I-P

Let TSS be a subset (see Figure 2) of instances of TR to evaluate and be
coded by a chromosome. The fitness function combines two values: the clas-
sification performance (clasper2 with models extracted by C4.5 ) associated
with TSS and the percentage of reduction (percred2) of decision tree size us-
ing as input TSS with regards to TR (this fitness function is denoted by I-P :
Interpretability-Precision):

Fitness2(TSS) = α · clasper2 + (1− α) · percred2. (7)

The models extracted by C4.5 are used for measuring the classification rate,
clasper2, associated with TSS. It denotes the percentage of correctly classified
objects from TR by means of the decision tree generated using TSS as input.
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Whereas, percred2 is defined as:

percred2 =
100 · (SIZETR − SIZETSS)

SIZETR

. (8)

The objective of the EAs is to maximize the fitness function defined, i.e.,
maximize the classification performance and minimize the size of the decision
tree obtained. As in other fitness function, we have considered the value α =
0.5 due to it presents the best trade off between decision tree size and accuracy
in the final subsets selected.

4.2 Evolutionary Stratified Instance Selection for Training Set Selection

The stratified strategy has shown in previous works its behaviour facing the
scaling problem [15]. It divides the initial data set in disjoint strata with equal
class distribution. Due to the prototypes are independent one of each other,
we can group them in these strata without loss of information.

The number of strata will determine the size of them. Using the proper number
of strata we can reduce significantly the data set. This situation allows us to
avoid the drawbacks suggested in Section 3.2.

Following the stratified strategy, initial data set D is divided into t disjoint
sets Dj, strata of equal size, D1, D2, ..., and Dt.

The test set TS will be the TR complementary one in D. The subsets TR and
TS will be obtained as (9) and (10) show:

TR =
⋃

j∈J

Dj, J ⊂ {1, 2, ..., t} (9)

TS = D \ TR (10)

Instance selection algorithms (evolutionary and non-evolutionary) are applied
in each Dj obtaining a subset selected DSj. The instance selected set (TSS )
in stratified strategy is obtained using the DSj (see equation (11)) and it is
called Stratified Training Subset Selected (STSS ).

STSS =
⋃

j∈J

DSj, J ⊂ {1, 2, ..., t} (11)

The complete process is presented in Figure 3:
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Stratified Training Subset Selected (STSS)i

Fig. 3. Evolutionary Stratified Instance Selection for Training Set Selection

5 Experimental Study

In this section we describe the experimental study developed. Subsection 5.1
shows the methodology followed in the experiments, Subsection 5.2 shows the
results, finally, in the Subsection 5.3 we analyze them from different points
of view (reduction, test accuracy, size of the model and balance precision-
interpretability), using some statistical tests (ANOVA, Levene, Tamhane) for
analyzing the algorithms accuracy.

5.1 Experimental Methodology

In this subsection we present: the data sets, the algorithms assessed and their
parameters, the stratification model.

5.1.1 Data Sets

We have carried out the experiments with increasing complexity and size of
data sets. We have selected medium, large and huge size data sets as we can
see in Tables 1, 2 and 3 (these data sets can be found in the UCI Repository
in [37], where the Kdd Cup’99 data set is particularly its 10% version).
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Table 1
Medium size data sets

Data set Instances Features Classes

Pen-Based Recognition 10992 16 10

Satimage 6435 36 6

Thyroid 7200 21 3

Table 2
Large size data set

Data set Instances Features Classes

Adult 30132 14 2

Table 3
Very Large size data set

Data set Instances Features Classes

Kdd Cup’99 494022 41 23

5.1.2 Algorithms and Parameters

The algorithms evaluated in this study will be divided in two groups, consid-
ering their evolutionary nature:

• Non Evolutionary Algorithms. The algorithms selected will be: Cnn [38], Ib2
[39], Ib3 [39], which have been selected due to they are the most efficient non
evolutionary algorithms in [14], and John’s Robust C4.5 [40], PSRCG [41]
and Random which have shown the best behaviour in [5] to obtain quality
training sets to extract the decision trees.

The description of the algorithms is the following:
· Cnn [38]: It tries to find a consistent subset, which correctly classifies all

of the remaining points in the sample set. However, this algorithm will
not find a minimal consistent subset.

· Ib2 [39]: It is similar to Cnn but using a different selection strategy.
· Ib3 [39]: It outperforms Ib2 introducing the aceptable instance concept

to carry out the selection.
· Robust C4.5 [40]: This algorithm removes interactively all instances mis-

classified by the current decision tree and builds a new one. It employs
the C4.5 algorithm to generate the decision trees.

· PSRCG [41]: The algorithm considers a statistical information criterion
based on a quadratic entropy computed from the nearest neighbor topol-
ogy to carry out the remove of the instances.

· Random: It selects randomly a training set fixing the reduction percent-
age it has to apply. This one has been added to compare the algorithms
selection versus the random one.
The parameters of Ib3 are: Aceptance Level=0,9 and Drop Level=0,7.

The other algorithms don’t have parameters to be fixed.

13



• Evolutionary Algorithms: We have selected the CHC [13] algorithm as effi-
cient and effective model, due to its behaviour showed on [14]. The descrip-
tion of the algorithm is the following:

During each generation the CHC algorithm uses a parent population
of size N to generate an intermediate population of N individuals, which
are randomly paired and used to generate N potential offspring. Then, a
survival competition is held where the best N chromosomes from the parent
and offspring populations are selected to form the next generation.

CHC also implements a form of heterogeneous recombination using HUX,
a special recombination operator. HUX exchanges half of the bits that differ
between parents, where the bit position to be exchanged are randomly deter-
mined. CHC also employs a method of incest prevention. Before applying
HUX on two parents, the Hamming distance between them is measured.
Only those parents which differ from each other by some number of bits
(mating threshold) are mated. The initial threshold is set at L/4, where L
is the length of the chromosomes. When no offspring are inserted into the
new population the threshold is reduced by 1.

No mutation is applied during the recombination phase. Instead, when
the population converges or the search stops making progress (i.e., the dif-
ference threshold has dropped to zero and no new offspring are being gen-
erated which are better than any members of the parent population), the
population is reinitialized to introduce new diversity to the search. The chro-
mosome representing the best solution found over the course of the search is
used as a template to re-seed the population. Re-seeding of the population
is accomplished by randomly changing 35% of the bits in the template chro-
mosome to form each of the other N -1 new chromosomes in the population.
Search is then resumed.

The size of the population is 50 and the number of evaluations 10000.

As reference we have introduced the C4.5 algorithm using the initial data set
without reduction, and following the ten fold cross validation classic process
(we denoted it Tfcv cl). When the size of the data sets permits us, we assess
the instance selection algorithms over the complete data set in Tfcv cl (see
Figure 4).

We have included at the same time the execution of C4.5 applying the maxi-
mal (C4.5 Max ), minimal (C4.5 Min) and default (C4.5 ) Error-Based Prune
to analyze the interpretability of the models generated.

As baseline, we have added to the experimentation the execution of the Ran-
dom algorithm considering the minimal and the maximal reduction offered by
the instance selection algorithms assessed.
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Fig. 4. Evolutionary Instance Selection for Training Set Selection in Tfcv cl

5.1.3 Stratification and Partitions

We have evaluated each algorithm in a ten fold cross validation process. In the
validation process TRi, i=1, ..., 10 is a 90% of D and TSi its complementary
10% of D.

The executions follow the model described in Figure 3 called stratified Ten
fold cross validation (Tfcv st).

In Tfcv st each TRi and TSi are defined as we can see in (12) and (13), by
means of the union of Dj subsets.

TRi =
⋃

j∈J

Dj, J = {j/1 ≤ j ≤ b · (i− 1) and (i · b) + 1 ≤ j ≤ t} (12)

TSi = D \ TRi (13)

where t is the number of strata, and b is the number of strata grouped (b =
t/10, to carry out the ten fold cross validation).

The STSSi subset is generated using the DSj instead of Dj (see (14)).

STSSi =
⋃

j∈J

DSj, J = {j/1 ≤ j ≤ b · (i− 1) and (i · b) + 1 ≤ j ≤ t} (14)

STSSi contains the instances selected by instance selection algorithms in TRi

following the stratified strategy.

For each data set we have employed the number of strata that appear in Table
4.
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Table 4
Data sets stratification

Pen-Based Recognition Satimage Thyroid Adult Kdd Cup’99

t=10 t=10 t=10 t=100 t=100

5.2 Results

In this section we describe and offer the tables where the results are shown.

The table presents the following structure:

• The first column shows the name of the algorithm. In this column the name
is followed by the sort of validation process st (Tfcv st) or cl (Tfcv cl).

• The second column offers the average reduction percentage from the initial
set.

• The third column contains the test accuracy associated to the decision tree
classifier generated using the subset selected in stratification (STSS ).

• The fourth column presents the number of rules which composed the model.
• The fifth column shows the mean number of antecedents of the rules of the

model
• The sixth column offers the time per algorithm execution consumed.

Tables 5, 6 and 7 contain the results obtained in the evaluation of Pen-Based
Recognition, SatImage and Thyroid data sets, respectively. In Table 8 we
present the results obtained in the evaluation of Adult data set. Table 9 con-
tains the results associated to Kdd Cup’99 data set.
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Table 5
Results associated to Pen-Based Recognition data set

RED TEST SIZE ANT TIME

C4.5 Min cl 96,58 262,1 9,8 1

C4.5 cl 96,46 185,2 9,5 1

C4.5 Max cl 96,20 158,4 8,6 1

Robust C4.5 cl 3,54 96,46 176,6 9,2 11

Robust C4.5 st 3,31 96,20 168,4 8,9 2

Cnn cl 95,43 84,2 59,3 7,0 16

Random1 cl 95,43 85,1 38,8 6,1 1

Cnn st 89,45 90,62 98,7 8,1 1

Ib2 cl 98,61 58,13 25,0 5,4 2

Random2 cl 98,61 74,98 19,3 4,9 1

Ib2 st 94,31 79,30 48,5 6,2 1

Ib3 cl 96,39 80,9 57,6 6,8 7

Ib3 st 83,05 94,05 88,3 7,7 1

PSRCG st 94,95 75,97 42,1 6,3 63

CHC I-P cl 79,01 95,08 109,5 7,9 905

Random3 cl 79,01 91,86 77,2 7,4 2

CHC R-P st 96,65 80,16 29,2 5,3 263

Random4 cl 96,65 83,34 31,0 5,7 1
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Table 6
Results associated to SatImage data set

RED TEST SIZE ANT TIME

C4.5 Min cl 86,27 444,2 12,4 1

C4.5 cl 86,71 280,4 10,8 1

C4.5 Max cl 87,59 144,3 9,0 1

Robust C4.5 cl 6,79 87,23 183,6 10,5 24

Robust C4.5 st 6,39 87,02 198,5 10,6 2

Cnn cl 80,26 78,36 183,7 12,5 30

Random1 cl 80,26 82,98 83,0 8,3 1

Cnn st 75,12 80,44 208,6 11,7 1

Ib2 cl 96,50 52,18 32,2 7,8 3

Random2 cl 96,50 77,04 19,8 5,3 1

Ib2 st 91,87 62,91 68,1 10,2 1

Ib3 cl 84,70 76,70 139,2 10,9 11

Ib3 st 78,11 86,49 186,7 10,7 1

PSRCG st 79,69 79,24 142,9 10,1 30

CHC I-P cl 51,2 84,98 115,3 9,3 25240

Random3 cl 51,2 84,1 135,5 8,9 2

CHC R-P st 94,32 78,83 15,5 4,4 128

Random4 cl 94,32 79,03 30,0 6,3 1
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Table 7
Results associated to Thyroid data set

RED TEST SIZE ANT TIME

C4.5 Min cl 99,01 38,4 7,6 1

C4.5 cl 99,03 25,1 6,2 1

C4.5 Max cl 99,06 10,8 4,2 1

Robust C4.5 cl 0,43 99,04 21,9 5,2 5

Robust C4.5 st 0,34 99,05 20,1 6,3 1

Cnn cl 81,25 97,32 13,1 4,7 31

Random1 cl 81,25 98,63 10,6 4,7 1

Cnn st 78,93 98,78 14,0 4,9 1

Ib2 cl 99,22 93,71 3,2 1,6 1

Random2 cl 99,22 94,19 2,0 1,5 1

Ib2 st 92,92 98,61 9,3 3,8 1

Ib3 cl 33,65 98,83 17,7 5,8 40

Ib3 st 38,62 99,01 22,2 7,0 1

PSRCG st 86,12 98,93 5,4 2,9 20

CHC I-P cl 50,44 99,16 7,9 3,4 7543

Random3 cl 50,44 98,89 19,0 6,1 1

CHC R-P st 99,44 93,77 2,2 1,0 156

Random4 cl 99,44 92,26 2,6 1,1 1
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Table 8
Results associated to Adult data set

RED TEST SIZE ANT TIME

C4.5 Min cl 84,02 1252,3 17,3 12

C4.5 cl 85,4 359,8 14,3 11

C4.5 Max cl 85,86 52,0 11,1 10

Robust C4.5 cl 12,16 85,69 297,1 11,9 37

Robust C4.5 st 11,52 86,15 193,3 12,8 1

Cnn cl 64,4 85,5 107,7 13,1 1

Random1 cl 64,4 84,8 191,9 13,0 1

Cnn st 84,27 85,75 292,5 15,5 1

Ib2 cl 99,94 26,56 2,2 1,3 1

Random2 cl 99,94 72,71 38,6 1,7 1

Ib2 st 99,57 36,4 12,1 5,0 1

Ib3 cl 79,42 83,76 145,9 12,2 3

Ib3 st 76,69 82,70 179,0 12,8 1

PSRCG st 96,84 75,77 47,8 8,1 4

CHC I-P st 58,54 85,24 203,5 13,5 108

Random3 cl 58,54 85,09 216,3 14,5 1

CHC R-P st 99,38 82,7 5,9 2,8 38

Random4 cl 99,38 79,89 13,9 5,5 1
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Table 9
Results associate to Kdd Cup’99 data set

RED TEST SIZE ANT TIME

C4.5 Min cl 99,96 281,5 15,0 248

C4.5 cl 99,95 143,8 11,7 375

C4.5 Max cl 99,99 106,1 10,4 380

Robust C4.5 st 0,28 99,72 71,1 9,8 6

Cnn st 63,85 99,5 105,5 12,1 33

Random1 cl 63,85 99,9 89,4 10,6 1

Ib2 st 82,01 95,05 58,2 10,8 21

Random2 cl 82,01 99,9 61,9 9,3 1

Ib3 st 78,82 96,77 74,3 11,4 2

PSRCG st 99,88 98,6 37,0 7,6 5634

CHC I-P st 60,32 99,7 69,3 10,0 1306

Random3 cl 60,32 99,9 94,7 10,8 1

CHC R-P st 99,28 98,41 9,5 3,5 4912

Random4 cl 99,28 99,44 18,8 6,1 1

5.3 Analysis

The analysis of the Tables 5 to 9 is developed according to the following
key points: Reduction percentage, Test Accuracy, Size of the model, balance
Precision-Interpretability and Execution Time.

5.3.1 Reduction percentage

Taking the second column of the tables into account, we can offer the following
comments:

• The Robust C4.5 is the algorithm which offers the smallest reduction over
the initial data set. It cleans some noisy instances to improve the precision
of the models extracted with C4.5.

• Among the non evolutive instance selection algorithms, the one with the
best behaviour in reduction is the Ib2 in large and medium size data sets,
followed by the PSRGC algorithm. In very large data sets as Kdd Cup’99,
the best reduction is offered by PSRGC.

• In the EAs we can detect two different behaviours: CHC I-P is focused
to the size of decision tree and its precision, so it is not interested in the
number of instances and its reduction. For this reason, the reduction rate of

21



CHC I-P is average. On the other hand, CHC R-P combines the reduction
rate as objective in the fitness function, so it presents high reduction rates.

The CHC R-P shows high reduction rates in the data sets analyzed,
independently of the size of them. It presents reduction rates greater than
94% in all cases.

5.3.2 Test accuracy

To compare the results provided by C4.5 over the different training set se-
lection algorithm outputs we develop a statistical analysis. First, we use the
ANOVA analysis of one factor [16] for each problem to be used for that pur-
pose; the factor being the algorithms used. Given that significant differences
were found for all algorithms with respect to the mean result values associated
with the different algorithms analyzed, we performed a Tamhane means rank
test [16] with a confidence coefficient of 95%, as the hypothesis of equality of
variances of the results was rejected in all of the analyzes performed for each
method (Levene test). The tests were performed using SPSS [42] statistical
package (see from Table A.1 to A.3 in the appendix).

The Table 10 resumes the tables offered in the appendix where the Tamhane
test for each problem, having CHC I-P as reference, is applied. The first
column is the name of the algorithm which is being compared to CHC I-P.
The second one represents the number of data sets where the algorithm CHC
I-P presents a better or equal behaviour than the algorithm which is in the
first column.
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Table 10
Resume of Tamhane test having CHC I-P as reference focused on precision

Algorithm Better or Equal in Precision

C4.5 Min cl 3/5

C4.5 cl 3/5

C4.5 Max cl 3/5

Robust C4.5 cl 3/4

Robust C4.5 st 2/5

Cnn cl 4/4

Random1 cl 4/5

Cnn st 4/5

Ib2 cl 4/4

Random2 cl 4/5

Ib2 st 5/5

Ib3 cl 4/4

Ib3 st 4/5

PSRCG st 5/5

Random3 cl 4/5

CHC R-P st 5/5

Random4 cl 5/5

Considering the third column on the Tables 5 to 9 and the Table 10, we can
point out that:

• The CHC I-P presents one of the highest test precision rates among the
instance selection algorithms studied, near to the C4.5 ones. According to
the statistical analysis, we can point out that the CHC I-P precision is
better or equal than the offered by most of instance selection algorithms.
We have an exception with Robust C4.5 that produces small data reduction.

• In the EAs case, the CHC I-P offers better precision rates than CHC R-P
due to the first one has associated smaller reduction rates to generate the
models.

5.3.3 Size of the model

The size of the model can be studied considering the fourth and fifth columns
of the results tables (Tables 5 to 9), corresponding to the mean number of
rules and the mean number of antecedents per rule. We can point out the
following:
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• Usually, the size of the predictive models is related to the size of the input
training data set used to generate them. The instance selection algorithms
which present the best reduction rates are often the ones that present the
smaller predictive models. We have an exception with the PSRCG algo-
rithm, which presents high reduction rates with medium size models.

• The biggest decision trees correspond to the C4.5 executions, with maximal,
minimal or default prune, and Robust C4.5.

• Among the non evolutionary instance selection algorithms, the best one is
Ib2, which has associated high reduction rate, but it presents very bad test
accuracy.

• Focusing our attention on the EAs, CHC R-P offers the minimal decision
trees due to its maximal reduction percentage. The average reduction rate
in CHC I-P produces that its model associated is bigger than the one
generated by CHC R-P.

The CHC R-P generates one of the minimal decision trees when the size
of data set grows. In the fourth and fifth columns of the Table 9, dedicated
to the biggest data set (Kdd Cup’99), we can see that C4.5 with maximal
prune obtains models with 106,1 rules and 10,4 antecedents while stratified
CHC R-P reduces the size to 9,5 rules and 3,5 antecedents per rule.

• Comparing the decision trees extracted from the Random selection, we can
point out that CHC R-P improves considerably the results of the Random
selection, with smaller models in all the data sets assessed.

Due to the size of the model affects directly to the interpretability of the
model, we can consider that CHC R-P offers the most interpretable decision
trees.

5.3.4 Balance Precision-Interpretability

In this study the objective considered is the analysis of the extraction of
highly precise-interpretable prediction models by means of instance selection
algorithms. Having the precision and the interpretability (size of the models)
key points in mind we add the Table 11. This table presents the behavior
relationship in accuracy test and interpretability between CHC I-P and the
rest of algorithms.
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Table 11
Resume of Tamhane test having CHC I-P as reference, considering precision and
size.
Algorithm Better or Equal in Precision Better or Equal in Size of the Model

(smaller Size)

C4.5 Min cl 3/5 5/5

C4.5 cl 3/5 5/5

C4.5 Max cl 3/5 4/5

Robust C4.5 cl 3/4 4/4

Robust C4.5 st 2/5 4/5

Cnn cl 4/4 2/4

Random1 cl 4/5 2/5

Cnn st 4/5 4/5

Ib2 cl 4/4 0/4

Random2 cl 4/5 0/5

Ib2 st 5/5 1/5

Ib3 cl 4/4 2/4

Ib3 st 4/5 3/5

PSRCG st 5/5 1/5

Random3 cl 4/5 4/5

CHC R-P st 5/5 0/5

Random4 cl 5/5 0/5

The conclusions reached analyzing Tables 5 to 9 and Table 11 are the following:

• The models generated without reduction by means of C4.5 have the high-
est accuracy rates, but their decision trees are the biggest ones, so their
interpretability is reduced.

• The models associated to the Random selection present high accuracy rates,
but their models are bigger than the ones extracted from the CHC R-P
selection.

• The best behaviour in interpretability belongs to Ib2, due to its high reduc-
tion rate, but the precision it has associated is very poor.

• The CHC R-P and CHC I-P present a high trade off between precision
and interpretability. The CHC R-P produces smaller models than CHC I-
P, but the last one offers higher accuracy rate, near to the associated to
C4.5 without reduction.
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5.3.5 Execution time

Paying attention to the execution time of the algorithms we can offer the
following comments (Tables 5 to 9):

• As the size of data set grows, the C4.5 execution time grows too. The proper
reduction of the data set improves the execution time of C4.5. To increase
the prune rate of C4.5 affects to the execution time negatively.

• The non evolutionary algorithms present smaller computational cost than
CHC due to the evolutionary process that CHC has associated.

• Between both CHC versions, the execution of CHC R-P is the fastest one.

The execution time associated to CHC represents a greater cost than the of-
fered by the non evolutionary algorithms, however its application is interesting
because it produces a high trade off between test accuracy and small size of
the decision trees generated.

6 Concluding Remarks

In this contribution we have analyzed the extraction of classification rule-based
models by means of evolutionary stratified training set selection. The quality of
the models has been evaluated considering their accuracy and interpretability.

The main conclusions reached are the following:

• The evolutionary stratified instance selection (CHC R-P) offers the best
model size, maintaining an acceptable accuracy. It produces the smallest
set of rules, with the minimal number of rules and the smallest number of
antecedents per rule.

• The stratified CHC I-P allows us to obtain models with high test accuracy
rates, similar to C4.5, but with the advantage of the size of the models that
are reduced considerably.

Finally, we can conclude that the predictive model extraction by means of
evolutionary stratified training set selection (CHC R-P or I-P) presents a
good trade-off between accuracy and interpretability. Our proposals present a
very good scaling up behaviour, obtaining good results when the size of data
set grows.
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A Appendix

Table A.1
Averaged values, standard deviations, mean differences and critical values of the
Tamhane test of the results of Pen-Based and SatImage data sets for CHC I-P.

Pen Based Satimage

Algorithm Mean SD Mean Diff p-value Mean SD Mean Diff p-value

C4.5 Min cl 96,581 0,20648 1,5010(*) 0 86,27 0,16773 -1,2893(*) 0

C4.5 cl 96,46 0,16138 1,3800(*) 0 86,71 0,12463 -1,7293(*) 0

C4.5 Max cl 96,2 0,19385 1,1200(*) 0 87,59 0,11343 -2,6093(*) 0

Robust C4.5 cl 96,462 0,3255 1,3820(*) 0 87,231 0,38304 -2,2503(*) 0

Robust C4.5 st 96,2 0,54371 1,1200(*) 0,006 87,02 0,41085 -2,0393(*) 0

Cnn cl 84,201 0,74912 10,8790(*) 0 78,359 0,58463 6,6217(*) 0

Random1 cl 85,141 1,01902 9,9390(*) 0 82,98 1,34582 2,0007(*) 0

Cnn st 90,619 0,58911 4,4610(*) 0 80,44 0,87932 4,5407(*) 0

Ib2 cl 58,13 1,48531 36,9500(*) 0 52,181 0,99849 32,7997(*) 0

Random2 cl 74,9797 1,2403 20,1003(*) 0 77,0387 1,50062 7,9420(*) 0

Ib2 st 79,299 0,8464 15,7810(*) 0 62,908 1,38984 22,0727(*) 0

Ib3 cl 80,9 0,51584 14,1800(*) 0 76,7 0,78771 8,2807(*) 0

Ib3 st 94,049 0,42459 1,0310(*) 0,001 86,49 0,68532 -1,5093(*) 0,005

PSRCG st 75,969 0,59207 19,1110(*) 0 79,239 0,48303 5,7417(*) 0

Random3 cl 91,861 1,14942 3,2190(*) 0 84,1007 1,02602 ,8800(*) 0,017

CHC R-P st 80,159 1,30844 14,9210(*) 0 78,83 0,34143 6,1507(*) 0

Random4 cl 83,3403 1,28502 11,7397(*) 0 79 1,20198 5,9807(*) 0
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Table A.2
Averaged values, standard deviations, mean differences and critical values of the
Tamhane test of the results of Thyroid and Adult data sets for CHC I-P.

Thyroid Adult

Algorithm Mean SD Mean Diff p-value Mean SD Mean Diff p-value

C4.5 Min cl 99,01 0,01491 0,149 0,502 84,021 0,19902 1,2180(*) 0

C4.5 cl 99,03 0,01414 0,129 0,854 85,401 0,16135 -0,162 1

C4.5 Max cl 99,061 0,00876 0,098 1 85,859 0,08306 -,6200(*) 0,001

Robust C4.5 cl 99,04 0,02667 0,119 0,963 85,69 0,32338 -0,451 0,334

Robust C4.5 st 99,05 0,03801 0,109 0,996 86,151 0,23082 -,9120(*) 0

Cnn cl 97,319 0,31409 1,8400(*) 0 85,499 0,3276 -0,26 1

Random1 cl 98,629 0,17103 ,5300(*) 0 84,8007 0,1692 ,4383(*) 0,028

Cnn st 98,781 0,18953 ,3780(*) 0,01 85,751 0,20179 -,5120(*) 0,012

Ib2 cl 93,71 1,40509 5,4490(*) 0 26,56 0,46205 58,6790(*) 0

Random2 cl 94,1893 1,51943 4,9697(*) 0 72,7103 1,62002 12,5287(*) 0

Ib2 st 98,61 0,25586 ,5490(*) 0,004 36,402 2,58145 48,8370(*) 0

Ib3 cl 98,829 0,28661 0,33 0,604 83,76 0,65501 1,4790(*) 0,004

Ib3 st 99,009 0,07894 0,15 0,744 82,701 0,58966 2,5380(*) 0

PSRCG st 98,931 0,18114 0,228 0,59 75,77 0,93051 9,4690(*) 0

Random3 cl 98,89 0,22215 ,2690(*) 0,012 85,09 0,25365 0,149 1

CHC R-P st 93,77 0,33407 5,3890(*) 0 82,7 0,37818 2,5390(*) 0

Random4 cl 92,2597 1,04137 6,8993(*) 0 79,8903 0,7984 5,3487(*) 0
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Table A.3
Averaged values, standard deviations, mean differences and critical values of the
Tamhane test of the results of Kdd Cup’99 data set for CHC I-P.

Kdd Cup’99

Algorithm Mean SD Mean Diff p-value

C4.5 Min cl 99,962 0,01229 -,2610(*) 0

C4.5 cl 99,95 0,01247 -,2490(*) 0

C4.5 Max cl 99,99 0 -,2890(*) 0

Robust C4.5 st 99,72 0,05578 -0,019 1

Cnn st 99,5 0,06912 ,2010(*) 0,001

Random1 cl 99,899 0,02734 -,1980(*) 0

Ib2 st 95,049 0,14761 4,6520(*) 0

Random2 cl 99,8993 0,0297 -,1983(*) 0

Ib3 st 96,769 0,27674 2,9320(*) 0

PSRCG st 98,6 0,28802 1,1010(*) 0

Random3 cl 99,8997 0,02371 -,1987(*) 0

CHC R-P st 98,41 0,18547 1,2910(*) 0

Random4 cl 99,4403 0,16816 ,2607(*) 0
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