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Abstract This paper will present a novel method based on
harmonic mean, geometric mean, arithmetic mean and root
mean square to help reduce fuzzy rules. The objective of the
new method proposed is to produce fuzzy models with both
a small number of interpretable rules and sufficiently high
precision. Comparisons will be made between systems uti-
lizing reduced rules and original rules to verify efficacy of
the new methods in terms of the defuzzified outputs. As a
practical example of a nonlinear system, an inverted pendu-
lum will be controlled by a minimal set of rules to illustrate
the performance and applicability of the proposed method.

Keywords Fuzzy Membership function · Mean operators ·
Centroid defuzzification · Fuzzy rules

1 Introduction

In the last decades, fuzzy rule bases have been used to build
models for control applications, function approximation, etc.
[1–5]. Formally, a fuzzy model represents the relationships
among components of the underlying system. These rela-
tionships are characterized by a set of if–then rules in a rule-
based model. For developing a fuzzy logic controller first the
problem must be identified. Then the membership functions,
input/outputs of the system, inference method, defuzzifica-
tion method and fuzzy rules of the system must be defined.
The rules of the system are if–then statements that are defined
according to the goals of the system. The rules are the key
as they decide how the system would behave for different
inputs. The fuzzy controller shown in Fig. 1 has three parts
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i.e., fuzzifier, fuzzy rule set and defuzzifier. In the first stage,
the input to the controller is converted into fuzzy variables
using membership functions. These fuzzy variables are then
passed on to the fuzzy rule set which evaluates fuzzy rules
and generates output fuzzy variables to be passed on to the
defuzzifier. The defuzzifier, on the bases of output fuzzy vari-
ables, generates a crisp output for the system.

Validation of rule bases ensures correctness and robust-
ness [6] by detection of anomalies. Anomalies in a rule base
or a knowledge base can be detrimental in a rule-based sys-
tem’s performance. Anomalies like conflict of rules, exis-
tence of redundant rules, inconsistencies of rules, and a few
more often occur in rule bases. Rules can be determined heu-
ristically from domain experts or from the training data to
build fuzzy models. Linguistic terms common to the prob-
lem domain are used by experts to describe the state of the
system and the proposed action. A rule base [1] produced
in this manner generally consists of a small number of rules
with each rule covering a large number of situations. When
learning, algorithms are used to generate a rule base from a
set of known instances, fuzzy sets and the rules do not neces-
sarily have a semantic interpretation. The fuzzy sets are often
selected based on the distribution of the training data. Rule-
learning algorithms have ability to generate precise rules with
a limited range of applicability when sufficient training data
is available [1].

It is possible to design more rules than those required by
the actual process but still cannot stimulate the entire con-
trol process. As a result, it will decrease the effectiveness
of control process due to the time required for firing all the
rules and incomplete knowledge of the rules. Regardless of
the manner in which a rule base is obtained, it is possible for
rules whose regions of applicability are adjacent in the input
domain to specify similar responses. When this occurs, these
rules may be merged to produce a single rule. The possibility
of the occurence of similar adjacent rules is accentuated when
there is a large number of rules, as is frequently the case when
a large number of rules are generated from training data. It
is desired to use the most effective rule set instead of imple-
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Fig. 1 To replace a conventional controller with fuzzy controller in a closed-loop system

menting all possible rules, and provide a set of compensation
for incomplete knowledge.

Harmonic mean (HM) ≤ geometric mean (GM) ≤ arith-
metic mean (AM) ≤ root mean square (RMS) is a well-known
inequality constraint used in many areas like optimization,
neural networks and many more; hence, it can be exploited
here also. Given a set of rules for a system, the rules can be
aggregated using any of the mean operators. The rules being
reduced using mean operators is expected to have a simi-
lar performance as that of the original rule base. Therefore,
the time required for computing the control signal will be
decreased.

The rest of the paper is organized as follows. Section 2
presents an insight into fuzzy rule base. Section 3 gives a new
procedure to reduce rules. In Sect. 4, an inverted pendulum
is controlled by a set of minimal rules to illustrate the perfor-
mance and applicability of the proposed methods followed
by a discussion. Finally the paper is concluded in Sect. 6.

2 Fuzzy rule bases

An example of a fuzzy rule template is given as

If x1 is µ1 and x2 is µ2 . . . and xn is µn

Then y is µ

where µ,µ1, µ2, . . . , µn are fuzzy sets. The degree of ful-
fillment of a rule is calculated from the membership degrees
of the antecedents by use of a t-norm, usually Tmin or Tprod.

Since decisions are based on the testing of all the rules
in a system, the rules must be combined in some manner
in order to make a decision. Aggregation is the process by
which the fuzzy sets that represent the outputs of each rule
are combined into a single fuzzy set. Aggregation occurs only
once for each output variable. For each fuzzy variable, the
maximum or the weighted average [7] average of the rule
activation is calculated. The output class is determined with
the highest accumulated activation.

There are two basic approaches [7] for pruning of fuzzy
rule bases: direct deletion versus expansion of only some
rules. In direct deletion, the less important rules are identi-
fied by some measure and are removed. In the latter approach,
the similar rules are merged to reduce the total number of
rules. In this paper, a totally different and a new method is
introduced for merging fuzzy rules.

3 New methodology for merging fuzzy rules

The characteristics of a fuzzy model are frequently deter-
mined by the manner in which the rules are constructed. All
fuzzy rules contribute with some degree to the final decision
or inference. However, some rules, which are fired weakly
do not contribute significantly to the final decision and may
even be merged. The aim is to minimize the rules in order to
reduce the computation time to make a faster decision. The
rule bases are simplified on the data level. The considered
fuzzy rule bases are given in disjunctive normal form (DNF),
i.e., each rule is a conjunction of its antecedents, and the rule
base is a disjunction of its rules. For illustration purposes,
assume a rule base consisting of the following two rules.

Original rules:

R1: If x is small and y is large then z is medium or
R2: If x is small and y is medium then z is small
If x is 0.65 (small) and y is 0.7 (large) then z is 0.65
(medium)
If x is 0.65 (small) and y is 0.4 (medium) then z is 0.4
(medium)

Those rules whose input regions overlap are merged by
taking the mean of antecedent fuzzy values; so these two
rules can be merged using any of the mean operators given in
the inequality constraint earlier. Rules are merged as given
below.
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Reduced rules:
If x is RMS (0.65, 0.65) (small) and y is RMS (0.7, 0.4)
(large, medium) then
z is min (0.65 (small, 0.57 (large_medium new membership
function))

= 0.57 (large_ medium new membership function)
When two or more rules are identical, and if the identical
rules are merged, the new methodology will give one sin-
gle rule of same dimensions, as per the inequality constraint
given earlier. Two rules become one, therefore the rules are
reduced, and decision will be made faster. By merging rules
using mean operators the system’s defuzzified output remains
similar to the original rule base. Rules may be merged using
any of the mean operators, but HM gives a lower output as
per the inequality.

4 Application

In this section, the control problem for the inverted pendulum
is used to interpret how the mean operators can be used to
reduce fuzzy rules. This control system has two inputs and
one output. A fuzzy controller is designed and analyzed for
the simplified version of the inverted pendulum problem. For
detailed explanation one should refer to [8]. The differential
equation governing the system is given as

−ml
d2θ

dt2
+ m lg (sin θ) = τ = µ(t).

where m is the mass of the pole located at the tip point of the
pendulum, l is the length of the pendulum, θ is the deviation
angle from vertical in the clockwise direction, τ = µ(t) is the
torque applied to the pole in the counterclockwise direction
is time and g is gravitational acceleration constant.

If x1 = θ and x2 = dθ

dt
, as start variables, the state space

representation for the nonlinear system is given by dx1/dt =
x2 and dx2/dt = (g/ l)x1 − (

1/ml2
)
u(t) .

If x1 is measured in degrees and x2 is measured in degrees
per second (dps), by choosing l = g and m = 180/π × g2,
the linearized and discrete-time state-space equations can be
represented as matrix difference equations,
x1(k + 1) = x1(k) + x2(k) (1)
and
x2(k + 1) = x1(k) + x2(k) − u(k) (2)
The universe of discourse for the two variables are assumed
to be −2◦ ≤ x1 ≤ 2◦ and −5 dps ≤ x2 ≤ 5 dps. Three
membership functions for x1 are constructed for the values
positive (P), zero (Z) and negative (N), shown in Fig. 2. Then
three membership functions for x2 are constructed for the
values P, Z and N, shown in Fig. 3. To partition the control
space (output), five membership functions for u(k) are con-
structed on its universe, which is −24 ≤ u(k) ≤ 24, shown
in Fig. 4.

Nine rules are constructed in a 3×3 FAM table and shown
in Table 1. The entries in this table are control actions u(k).

Fig. 2 Input x1 partitioned

Fig. 3 Input x2 partitioned

Fig. 4 Output u(k), five membership functions

Table 1 Fam table

x2

x1 P Z N

P PB P Z
Z P Z N
N Z N NB

4.1 Illustration

To start the simulation, the following crisp initial conditions
are chosen: x1(0) = −0.5• and x2(0) = 1.5 dps. Only first
cycle of simulation is conducted to show the effects of the
new methodologies. The aggregated membership function
for the original rules is shown in Fig. 5.

The original rules are given below:

R1: If (x1 = Z ) and (x2 = P) then (output = P) min
(0.74, 0.3) = 0.3 (P)

R2: If (x1 = Z ) and (x2 = Z ) then (output = Z) min
(0.74, 0.7) = 0.7 (Z )

R3: If (x1 = N ) and (x2 = P) then (output = Z) min
(0.26, 0.3) = 0.26 (Z )
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Fig. 5 Aggregated membership function

R4: If (x1 = N ) and (x2 = Z ) then (output = N) min
(0.26, 0.7) = 0.26 (N )

4.1.1 Rule Reduction using HM

R1 and R2 are merged into one rule using HM. Similarly R3
and R4 are combined into one rule.

R1–2: If x1 = HM ((0.74 (Z), 0.74 (Z)) and x2 = HM (0.3
(P), 0.7 (Z)) then
Output = min (0.74 (Z), 0.42 (new function))
= 0.42 (positive_ zero membership function)
R3–4: If x1 = HM ((0.23 (N), 0.23 (N)) and x2 =H.M (0.3
(P), 0.7 (Z)) then
output = min (0.26 (N), 0.42 (positive_ zero membership
function)
= 0.26 (N)

The new membership function is the HM of the positive,
zero membership function shown in Fig. 6. The new mem-
bership function and negative membership function for the
above two rules are shown in Fig. 7. R1–2trigger the negative
membership function with the membership degree of 0.26,
and R3–4 trigger the positive and zero membership function
with a membership degree of 0.42. The consequent sets are
shown in Fig. 6. The final aggregated membership function

Fig. 6 Output sets of the consequent

Fig. 7 Output sets with modified harmonic mean (HM) membership
function

Fig. 8 Aggregated membership function using HM

Fig. 9 Output sets with modified root mean square (RMS) membership
function

with the membership degrees 0.23 and 0.42 are shown in
Fig. 8.

4.1.2 Rule Reduction using RMS

R1 and R2 are merged to one rule using RMS. Similarly R3
and R4 are combined as one rule.

R1–2: If x1 = RMS (0.74 (Z), 0.74 (Z)) and x2 = RMS (0.3
(P), 0.7 (Z)) then
output = min(0.74 (Z), 0.54 (positive_zero new member-
shipfunction))
= 0.54 (positive_zero membershipfunction)

R3–4: If x1 = RMS (0.26 (N), 0.26 (N)) and x2 = RMS (0.3 (P),
0.7 (Z)) then
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Fig. 10 Aggregated membership function using root mean square RMS

Table 2 Defuzzified outputs

Type of rules Centroid
defuzzified output

Using original rules 0.33
Rule reduction using harmonic mean (HM) −1.55
Rule reduction using root mean square (RMS) 0.1

Table 3 Simulation results for the inverted pendulum

Iteration Exisiting method Harmonic mean Geometric mean
x1 x2 u x1 x2 u x1 x2 u

First 1 −4 −2 1 −4 −2.66 1 −4 −3
Second −3 −1 −9.6 −3 −0.34 −2.66 −3 0 −8
Third −4 5.6 0.0 −3.34 −0.68 −2.66 −3 5 0
Fourth 1.6 1.6 5.28 −4.02 −1.36 −2.66 2 2 3.3
Fifth 3.2 −2.08 1.12 −5.38 −2.72 −2.66 4 0.71 3.3

output = min (0.26, 0.54) = 0.26 (N)

R1–2 and R3–4 trigger the negative membership function with
the membership degree of 0.26 of N and 0.54 of the RMS of
the positive and zero membership function. The new mem-
bership function is shown in Fig. 9 and the final aggregated
membership function is shown in Fig. 10.

The final output is calculated using centroid defuzzifi-
cation method for all the three methods and the results are
tabulated in Table 2.

The defuzzified output of the system using RMS rule
reduction is similar to the existing method. The defuzzified
output is lower when HM is used for reducing rules; this is
due to the inequality constraint given earlier. HM and GM
can also be used to reduce rules, but the defuzzified results
lie between −1.55 and 0.1.

4.2 Simulation results

To start the simulation, crisp initial conditions used are
x1(0) = 1 and x2(0) = −4 dps. Four cycles of simulation
are conducted using the matrix difference equations given
above (1,2) for the discrete steps 0 ≤ k ≤ 3. Each simulation
cycle will result in membership functions for the two input
variables. Each simulation cycle after k = 0 will begin with
the previous values of x1 and x2 as the input conditions to
the next cycle of the recursive difference equations. Table 3

shows the simulation results using original rules and rule
reduction using GM and HM.

Simulations can be carried out similarly using AM and
RMS value for rule reduction. The results are shown only for
first cycle of iteration. Using AM the first iteration values are
x1(0) = 1, x2(0) = −4, and u(0) = −4. Similarly using
RMS the first iteration values are x1(0) = 1, x2(0) = −4,
and u(0) = 4.

5 Discussion

This nonlinear system is simulatd to compare the perfor-
mance of the system using original rules and the minimum
rules in controlling the balance of the inverted pendulum.
Tables 2 and 3 show the defuzzified output of the system
using original rules and rule reduction using HM, GM, AM
and RMS . When the rules are reduced using HM it is clear
from Table 3 that the pendulum oscillates at −2.66 deviation

angle, whereas using GM the pendulum oscillates between
−3 and +3.3 deviation angle. Using AM, the pendulum starts
oscillating at −4.0 deviation angle, and the deviation angle
increases when the rules are reduced using RMS, where the
pendulum starts oscillating from + 4.0. This is due to the
inequality constraint of the aggregation operators mentioned
earlier in the paper.

A 3D control surface shown in Figs. 11 and 12 are plot-
ted to visualize the controller of the two sets of rules. The
control surface shows the control output (vertical axis) cor-
responding to some combinations of values of the two input

Fig. 11 Control surface for the system using geometric mean (GM) rule
reduction
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Fig. 12 Control surface for the existing system with original rules

state variables x1 and x2. We find the control surface of the
reduced set using GM is similar to the control surface using
original rules.

There are many ways of reducing rules, but in this paper,
we present an easy and simple approach of rule reduction
and still maintaining the same defuzzified output as that of
the original rules. Moreover, the computation time is obvi-
ously shorter by using the reduced rules and it alleviates the
complexity of implementation for the rule base.

6 Conclusion

In this paper, we interpret and demonstrate the applicabil-
ity of using mean operators to reduce rules base controller.
The comparison is also made between the reduced set and

the original set rules. It is concluded that the expensive com-
putation time will be reduced by using the minimum rules.
As a result, this approach can provide a low-cost and robust
means of design of the fuzzy rule-based controller. Limi-
tations are obvious in case of incomplete knowledge of the
rules. Further experimentation is required to explore the
effects of using mean operators instead of t-norm and max
and different defuzzification methods to reach a more effec-
tive defuzzified output.
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