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Abstract

We study the domain of dominant competence of six pop-
ular classifiers in a space of data complexity measurements.
We observe that the simplest classifiers, nearest neighbor
and linear classifier, have extreme behavior of being the
best for the easiest and the most difficult problems respec-
tively, while the sophisticated ensemble classifiers tend to
be robust for wider types of problems and are largely equiv-
alent in performance. We characterize such behavior in de-
tail using the data complexity metrics, and discuss how such
a study can be matured for providing practical guidelines in
classifier selection.

1. Introduction

Research and applications of pattern recognition suffer
from a long-existing uncertainty concerning the optimal
match between a method and a problem due to a strong
dependence of classifier performance on data. This uncer-
tainty is rooted in a lack of understanding on how data dis-
tributions interact with classifier geometry and the sampling
processes. We believe that the key to improve upon the cur-
rent level of automation in pattern learning is a better under-
standing of data set complexity in high-dimensional spaces,
especially, the geometry of data distributions and its de-
tailed relationship to classifier behavior.

In [4] a methodology is described where classification
problems are characterized by a set of measures of the
complexity of the class boundaries. The measures span a
rich measurement space where one can compare the diffi-
culty of different problems or different formulations of the
same problem using alternative class definitions and feature
transformations. They give quantitative descriptions on how
close a problem is to being easily solvable (linearly separa-
ble) or to being intrinsically insolvable (as in a random la-
beling). We find that a collection of classification problems
arising from real-world applications can span a large range
in the values of these measures, and that they form a contin-
uous and multi-facet distribution that has never been sys-

tematically studied. These problems present different de-
grees of difficulty to different kinds of classifiers. An at-
tempt was made [3] to compare two complementary algo-
rithms for decision forest construction to find out for what
type of problems each method is preferable.

In this paper we extend this study further to compare a
set of six popular classifiers. Our goal is to find out the do-
main of competence of each classifier, and to see if there
exists any common behavior among these competing algo-
rithms that are based on very different principles. We at-
tempt to develop guidelines for recommending to practi-
tioners the best suited classifier for each problem, using
only measurable characteristics from the data. We report our
unexpected finding of extreme behavior of two well known
classifiers (linear classifier and nearest neighbor), and dis-
cuss our ideas on maturing this methodology for routine
use.

2. Measures of Classification Complexity

We selected 9 metrics from [4] that describe the most im-
portant aspects of boundary complexity of a two-class prob-
lem (Table 1). These include classical measures for a fea-
ture’s discriminating power as well as estimates of bound-
ary lengths and class shapes via more sophisticated meth-
ods. Details of computation procedures are given in [4]. The
9 metrics span a measurement space where each problem,
defined by a labeled data set, is represented by a point in
this space. All measures are normalized as far as possible
for comparability across problems.

Boundary fraction of points on boundary estimated by MST
Pretop fraction of points with maximal in-class ball retained
IntraInter ratio of average intra/inter class NN distance
NonLinNN nonlinearity of 1-nearest-neighbor(NN) classifier
NonLinLP nonlinearity of linear classifier by linear programming
Fisher maximum Fisher’s discriminant ratio
MaxEff maximum individual feature efficiency
VolumeOverlap volume of overlap region of class bounding boxes
Npts/Ndim average number of points per dimension

Table 1. Complexity measures in this study.
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3. Classifiers for Evaluation

We have chosen to evaluate 6 popular classifiers:

1. (nn) 1-Nearest neighbor by Euclidean distance.

2. (lp) Linear classifier constructed by linear program-
ming minimizing sum of error distances [6].

3. (odt) Decision tree using oblique hyperplanes [5].

4. (pdfc) Random subspace decision forest [2].

5. (bdfc) Subsample decision forest, also known as bag-
ging, or bagged decision trees [1].

6. (xcs) XCS, a genetic-algorithm based classifier using
hyper-rectangular codification [7].

Among these classifiers, nn, lp, and odt are popular
and standard classifiers in routine use. pdfc, bdfc, and
xcs are newer classifiers developed in the last decade. They
all take an ensemble learning approach, and are known to
be highly robust and accurate for many practical problems.
They are used in this evaluation because of the authors’ fa-
miliarity with their implementation. We acknowledge that
there are other popular and interesting classifiers to study
once this methodology becomes mature, such as neural net-
works, support vector machines, boosting ensembles, and
stochastic discrimination.

Many of the newer classifiers appear to be in close rivalry
in benchmarking studies. This fact has created some over-
hanging questions: do they represent the limit of classifica-
tion technology? what exactly have they added to the body
of classifier methods? is there still value in the older meth-
ods? when exactly is each of them preferable? This study
attempts to answer these questions.

4. Analysis Procedure

We evaluate the classifiers using 392 two-class
problems from 14 UC-Irvine data sets (abalone,
car, german, kr-vs-kp, letter, lrs,
nursery, pima, segmentation, splice,
tic-tac-toe, vehicle, wdbc, and yeast).
We use pairwise class discriminations in these data sets
that are shown to be linearly nonseparable. In the com-
plexity space they span a large, multi-dimensional con-
tinuum ranging from nearly linearly separable to almost
like random labeling [4]. The rich variations in their com-
plexity provide an interesting domain for characterizing
classifier performances. The complexity measures are com-
puted for each problem using all available data points.
There are no data source models for any of the prob-
lems, therefore we restrain our claims to be for the appar-
ent complexity of the underlying problems as manifested in
the given data sets.

We look for regions in the 9-dimensional complexity
space where each classifier dominates, i.e., is significantly

better than the others, and regions where multiple methods
score similarly. Detailed steps are as follows.

1. For each problem and each method, we estimate the
error rate by a 10-pass, two-fold cross validation. i.e.,
we split each data set randomly into two halves A & B,
training a classifier in A and testing it on B. Then we
train the classifier on B and test it on A. The counts of
errors on both A & B are summed and divided by the
data set size. The procedure is repeated for 10 passes
using a new, random partition in each pass, resulting
in 10 error rate estimates. The same 10 random parti-
tions are used to evaluate each classifier.

2. For each data set, we consider the classifier with the
lowest mean error rate (mean of the 10 estimates) to
be the best method. Then we compare all other classi-
fiers to the best using a paired t-test with a 95% confi-
dence interval. We distinguish between those problems
where one method dominates, i.e., the best method is
significantly better than the others, from those where
such difference is not significant, i.e., there are more
than one methods statistically equivalent to the best.

3. The same procedure is used to find the worst method
for each problem, and determine if its inferiority is sig-
nificant.

We caution that the dominance conclusion is particular
to the current pool of classifiers, in the sense that it could be
changed by new classifiers added in a future study.

5. Observations

There are 270 problems (69% of all) that have a signif-
icantly best classifier and 157 problems (40%) that have a
significantly worst classifier (Figure 1). The two sets over-
lap because some problems have both a significantly best
and a significantly worst method. The remaining problems
have several statistically equivalent best or worst methods.
Outstanding classifiers. Out of the six methods, there are
four that are dominantly best for some problem: the nearest
neighbor, the linear classifier, subsample forest (bagging),
and XCS. The other classifiers (single decision tree and sub-
space forest) have lowest mean error rates for some prob-
lems, but their superiority is not dominant (statistically sig-
nificant).

A remarkable discovery here is that almost all prob-
lems with a dominantly best classifier are best solved by
either the nearest neighbor or the linear classifier (Table 2).
These two simplest methods have extreme behavior. They
are dominatingly best in many problems but can also be
the worst in other problems. That means that they are very
specialized methods. When the conditions are favorable for
them, they perform optimally. Thus a challenge is to look
for these conditions and determine whether they occur for a
given problem.
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Figure 1. (Left) (top row) Problems with a dominant classifier (symbol) or several equivalent classi-
fiers (.), shown in 3 projections of the complexity space; (bottom row) problems with a significantly
worst classifier (symbol) or several bad classifiers (.), shown in the same projections. (Right) Prob-
lems where (top) nn,lp, or odt is best or equiv. to the best, (bottom) ensemble classifiers are needed.

For the problems with a significantly worst method, that
method is most likely the single decision tree, followed by
lp and nn. This reconfirms prior observations on the sub-
sumption of a single decision tree by decision forests [3].

The ensemble classifiers, i.e., decision forests of both
types and XCS, tend to be average performers. They be-
have similarly as a group, and they are rarely dominantly
best or worst classifiers.

classifier Best %Best Worst %Worst
nn 186 69% 18 11%
lp 63 23% 47 30%
odt 0 0% 88 56%
pdfc 0 0% 0 0%
bdfc 10 4% 2 1%
xcs 11 4% 2 1%
total 270 100% 157 100%

Table 2. Distribution of dominating classifiers
among problems with a significantly best or
worst classifier.

Best suited domains. Apparently, from Figure 1, the do-
main of competence of nn locates in short boundaries and
low nonlinearities. This means that nn is good for problems

with compact, non-interleaving classes, or more specifi-
cally, with less than 10% of points on boundary, ratio of
intra-inter class nearest neighbor distances less than 0.5 and
NN-nonlinearities less than 6%. Outside this region, nn is
hardly recommended.

Finding the domain of competence of the linear classifier
is more difficult. The lp behavior is almost contrary to that
of nn. It seems that for very short boundaries it performs
worst, while it is best for most problems with boundary val-
ues between 10% and 70%. Although, for a few problems
with boundaries inside this range (10%-70%) lp performs
worst or as average. Analyzing the lp error w.r.t. other met-
rics, one is tempted to conclude that lp performs best when
the problems are more difficult (long boundaries, high non-
linearities, large overlap volumes). For easy problems (short
boundaries, low nonlinearities, etc.), lp is the worst method
even though it has a low error rate. lp becoming the best
method for difficult problems could be a symptom of that
sparse training sets in those problems cause other classifiers
to overfit [8].

The single decision tree is practically always outper-
formed by other classifiers so it has almost no domain of
dominant competence. The ensemble classifiers are “aver-
age” methods for a wide range of problems, suggesting that
when there is not enough information to apply a specialized
classifier with strong confidence, they can give reasonable
results. In these cases, XCS seems to perform better when
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the classes are more compact, which is true also for sub-
space decision forest [3]. Bagging works better for longer
boundaries and higher nonlinearities.

While there appears to be good separation between prob-
lems where nn or lp dominates, there is no clear signature
that identifies problems where several methods are in close
rivalry. One reason is that nn and lp are often among the
several competing methods, and it is only when the other
methods run into difficulties nn or lp becomes dominant.
This could be caused by some ill conditions leading to en-
semble overfitting that are not yet characterized by our met-
rics. Further studies are needed to identify such conditions.
Worst suited domains. The single decision tree and
lp share almost the same worst suited domain, i.e.,
short boundaries, little class interleaving and small vol-
ume of class overlap. These classifiers should be avoided
if such conditions occur. The nearest neighbor tends to be
worst for boundary values greater than 10% and nonzero
NN-nonlinearities. The worst domains for the ensem-
ble classifiers are not obvious.

6. Discussions

Best metrics for classifier comparison. A by-product of
the study is the identification of the metrics which are more
relevant for discriminating between classifier domains of
competence. These are: percentage of points on boundary,
the nonlinearities, and the ratio of intra-inter class NN dis-
tances. These metrics are about the class geometry and the
shape and the length of the class boundaries. Those de-
scribing the discriminative power of individual features, like
Fisher, MaxEff, and VolumeOverlap, are less im-
portant for evaluating classifiers.

Some metrics can explain the behavior of some but not
all classifiers. One reason for their narrower applicability
is that their values are not spread uniformly with the cur-
rent set of problems. For instance, Pretop has high values
(over 80%) for almost all our problems. Although low val-
ues may indicate that the problem has a less complex geom-
etry, we have too few such problems to extract useful con-
clusions.
Uneven distribution of sample problems. Our calculated
fractions of problems where specific classifiers dominate
are heavily dependent on the composition of the problem
collection, and are not expected to be projectable to other
collections. Moreover, there are empty regions in the com-
plexity space where we do not know how the classifiers per-
form. We still do not know if these empty regions are in-
duced by some geometrical constraints or are due to our
particular choices of classification problems. For instance,
in the sample problems, long boundaries occur often with
high nonlinearities and intra-inter class distances. Although
this correlation is reasonable, it is not necessarily true. Fi-
nally, problems from this particular archive have relatively

small sizes and low dimensionalities, which may cause bias
in the results. Using problems designed artificially to bet-
ter cover the complexity space may overcome these diffi-
culties.
Limitation of apparent complexity. Another source of dif-
ficulty that limits the strength of the conclusions is the es-
timation of complexity from given, fixed data sets without
knowing how well they represent the underlying problems.
This uncertainty needs to be quantified by statistical means.

7. Conclusions

We describe a methodology to compare a set of classi-
fiers and to find their domains of competence. We find that
the simplest classifiers, nearest neighbors and linear classi-
fiers, have extreme behavior. They perform dominantly best
when the conditions are suitable for them. The ensemble
based classifiers are more robust, performing well for a wide
range of problems with little differences among themselves.
The linear classifier turns out to be the best for the most dif-
ficult kinds of problems, where failures of more sophisti-
cated methods could be due to sample sparsity and overfit-
ting.

Our study shows that the simplest classifiers still have
good value when conditions are favorable, and that when the
conditions are unknown and uncertain, the ensemble classi-
fiers are reasonable choices. Yet our study is limited by the
lack of uniformity in problem distributions and the lack of
uncertainty characterization for the complexity estimates.
We believe that this methodology can be much enhanced
with theoretical studies on the influence of geometrical and
topological constraints on problem distributions, better sta-
tistical procedures to quantify the uncertainties, and empir-
ical studies adding in more diverse set of real-world prob-
lems and synthetic data sets.
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