
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005 1547

Classifiability-Based Omnivariate Decision Trees
Yuanhong Li, Student Member, IEEE, Ming Dong, Member, IEEE, and Ravi Kothari, Senior Member, IEEE

Abstract—Top-down induction of decision trees is a simple and
powerful method of pattern classification. In a decision tree, each
node partitions the available patterns into two or more sets. New
nodes are created to handle each of the resulting partitions and the
process continues. A node is considered terminal if it satisfies some
stopping criteria (for example, purity, i.e., all patterns at the node
are from a single class). Decision trees may be univariate, linear
multivariate, or nonlinear multivariate depending on whether a
single attribute, a linear function of all the attributes, or a non-
linear function of all the attributes is used for the partitioning at
each node of the decision tree. Though nonlinear multivariate de-
cision trees are the most powerful, they are more susceptible to the
risks of overfitting.

In this paper, we propose to perform model selection at each de-
cision node to build omnivariate decision trees. The model selection
is done using a novel classifiability measure that captures the pos-
sible sources of misclassification with relative ease and is able to
accurately reflect the complexity of the subproblem at each node.
The proposed approach is fast and does not suffer from as high a
computational burden as that incurred by typical model selection
algorithms. Empirical results over 26 data sets indicate that our
approach is faster and achieves better classification accuracy com-
pared to statistical model select algorithms.

Index Terms—Bayes error, data complexity, data density, deci-
sion boundary, omnivariate decision trees.

I. INTRODUCTION

DECISION trees implement a top-down divide-and-con-
quer approach to supervised classification [1]–[5]. The

construction of decision trees begins by assigning all training
examples to the root node. These training examples are parti-
tioned and assigned to child nodes so as to increase the purity
of the resulting child nodes. The procedure is repeated at each
node until the leaf nodes have training examples of a single
class, i.e., the leaf nodes are pure. Assuming that the input has

attributes and is represented as , each
internal node of the decision tree implements a decision

, and each leaf node carries one class label . Based
on the characteristics of , decision trees can be grouped
into four categories: univariate decision trees, linear multi-
variate decision trees, nonlinear decision trees, and omnivariate
decision trees.

1) Univariate Decision Trees: The internal node uses only
one attribute of to make a decision. If the attribute is
numeric, the decision is of the form

(1)

Manuscript received July 1, 2003; revised March 27, 2005. This work was
supported in part by Wayne State University under a Faculty Research Award.

Y. Li and M. Dong are with the Machine Vision and Pattern Recognition
Laboratory, Department of Computer Science, Wayne State University, Detroit,
MI 48202 USA (e-mail: mdong@cs.wayne.edu).

R. Kothari is with the IBM-India Research Lab., New Delhi 110016, India.
Digital Object Identifier 10.1109/TNN.2005.852864

where is a constant. This defines a hyperplane
orthogonal to the axis and partitions the input space into
two parts.

If is nominal with possible values , the
decision is of the form

(2)

This leads to branches from the node.
Each univariate decision node has a single parameter

though univariate decision trees often end up having a large
number of nodes. ID3 [1], C4.5 [6], and neural networks
[4] are some well-known methods for building univariate
decision trees.
2) Linear Multivariate Decision Trees: The decision at each
internal node is a linear combination of all attributes

(3)

This decision generates an arbitrary hyperplane that is more
discriminating than one that is orthogonal to any particular
axis. A linear multivariate node has (1) parameters and
is more complex than an univariate one. Such decision trees
were first introduced with the CART system of Breiman et
al. [2]. OC1 [7], LMDT [8], and FACT [9] are other popular
algorithms to build linear multivariate decision trees.
3) Nonlinear multivariate decision trees: In the more gen-
eral case, the decision can be a weighted sum of nonlinear
basis functions

(4)

Nonlinear decision nodes can generate an arbitrarily com-
plex decision boundary and provide the strongest discrimi-
nant power. However, each nonlinear node has 1 1
parameters and can be easily influenced by noise in the data.
QDA [10] and neural networks [3] are some methods for gen-
erating such decision trees.

The difference between univariate, linear, and nonlinear
decision nodes is shown through an illustrative example in
Fig. 1. Note that there is an equivalence that can be estab-
lished between decision trees and neural networks [11], [12];
thus decision trees could also be efficiently implemented in
hardware [11].
4) Omnivariate decision trees: Typically, all nodes in a deci-
sion tree are univariate, linear multivariate, or nonlinear mul-
tivariate. Implicit in such decision trees is the assumption that
the complexity of the decision to be made at each node is the
same. Such an assumption is usually incorrect. Yıldız [13]
proposed a new decision tree architecture called omnivariate

1045-9227/$20.00 © 2005 IEEE

1548 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Fig. 1. Example of univariate (solid line), linear multivariate (dashed line), and
nonlinear multivariate (dotted line) splits that separate instances of two classes.

decision trees, which is a hybrid of the three decision models
mentioned above. Such trees utilize a combination of uni-
variate, linear multivariate, or nonlinear multivariate decision
nodes with the choice being made on the basis of some sta-
tistical model selection criteria.

One reason for looking at different types of internal nodes is
to obtain better overall generalization. Within the same family
of decision trees, one may prefer a tree with smaller depth com-
pared to one with a larger depth. However, it is not very mean-
ingful to compare the depths of trees of different families (one
may replace the whole tree with a single node of arbitrarily large
complexity). In general, however, constructing the smallest de-
cision tree for a given data set is NP-hard [14]. Decision trees
are based on a greedy search, i.e., a locally optimal decision is
implemented at each node. For omnivariate decision trees, the
most critical step is the model selection strategy at each node.
As long as the appropriate split model (univariate, linear, or non-
linear) is selected, the node can then be partitioned by a mature
algorithm corresponding to that model.

Statistical tests, such as the 5 2 cross-validation (cv) test
[15], can be used for model selection. Yıldız [13] proposed a
methodology using 5 2 cv test to choose the winner from
three models. All three split models are induced independently
at each node. If a 5 2 cv test shows that a complex model
is significantly better than a simple one, it will be chosen; oth-
erwise the simple model will be chosen. For example, if both
linear and nonlinear models are superior to univariate model
but there is no significant difference between the linear and
nonlinear model, then the linear model will be chosen. Experi-
ments show that such a decision tree induction method general-
izes better than trees with the same types of nodes everywhere,
and induces smaller trees. However, its drawback is the long
training time resulting from inducing all the considered models
at each node. This computational burden makes the approach
impractical for large data sets. Other measures, i.e., structure
risk [16] and nearest neighbor rule-based implementation of

structure risk [17], can also be employed for model selection
in construction of omnivariate decision trees.

In this paper, we propose to perform the model selection
at each node based on a novel classifiability measure when
building omnivariate decision trees. The classifiability measure
captures the possible sources of misclassification with relative
ease and is able to accurately reflect the complexity of the
subproblem at each node. The proposed approach does not
require time-consuming statistic model tests at each node and
therefore does not suffer from as high a computational burden
as typical model selection algorithms.

The remainder of the paper is organized as follows. Section II
introduces the proposed classifiability measure and Section III
discusses how to handle nominal attributes and missing values.
Section IV addresses the relationship between the classifiability
measure and three possible sources of misclassification: Bayes
error, decision boundary complexity, and data sparsity. In Sec-
tion V, we discuss how to choose the best split model based on
the classifiability measure. In Section VI, the proposed classifi-
ability-based omnivariate decision trees are evaluated based on
26 public data sets that are available from the UCI repository
[18]. Conclusions are presented in Section VII.

II. A CLASSIFIABILITY MEASURE

When a -dimensional classification problem is visualized in
1 dimensions using the class label as the 1 th dimen-

sion, the class label may be viewed as defining a surface. Fig. 2
shows, for example, a two-dimensional classification problem
and the corresponding visualization in three dimensions. The
class label surface is rough in regions where classes are inter-
laced and smooth in regions where classes are noninterlaced.
The smoothness of the class label surface thus provides an intu-
itive feel of the classifiability of data [19], [20].

The roughness of the class label surface can be captured by a
co-occurrence matrix [21], [22], which provides the joint prob-
ability of a class occurring within a neighborhood of another
class. Specifically, let be the total number of patterns and be
the total number of classes denoted by .
Let denote a pattern within the neighborhood of pattern , i.e.,

(is the neighborhood size). The co-occurence ma-
trix is a square matrix with an element being

(5)

where is the probability of occurrence of and the sum-
mation of is over the neighborhood of pattern . Since and

are independent, (5) can be simplified to

(6)

where and are the posterior probability.
We define the primary classifiability measure in the neighbor-

hood of pattern as the summation of the diagonal elements of
co-occurrence matrix .

LI et al.: CLASSIFIABILITY BASED OMNIVARIATE DECISION TREES 1549

Fig. 2. A two-class classification problem (top panel) and the visualization in
three dimensions (bottom panel).

Definition 1: The primary classifiability measure for patterns
distributed in the neighborhood of a pattern is defined by

(7)

Based on (7), the overall primary classifiability can be ob-
tained by integrating the local classifiability.

Definition 2: The primary classifiability measure for the
entire data is defined by

(8)

Operationally, the classifiability can be computed as follows:

• Define the neighborhood size . should be large
enough such that each instance has a few instances
in its neighborhood. also should be small enough
to keep the calculation of co-occurrence matrix local
(see next step).

• For each pattern , obtain a co-occurrence matrix
of size . Elements of ,

are the total number of patterns of class that occur

within a circular neighborhood of radius of an in-
stance of class , i.e.,

(9)

where denotes a pattern of class , is an
indicator function that is one if and

belongs to , and is the number of patterns
from class .

• The co-occurrence matrix of entire data can be com-
puted by summing all the individual co-occurrence ma-
trices together, i.e.,

(10)

One can normalize such that the sum of its elements
is one.

• We thus obtain classifiability measure as

(11)

where is primary classifiability measure and can be
computed as follows:

(12)

and , the data sparsity factor, is of the form

(13)

where is the dimensionality of the input space, is the
number of classes, and is the number of examples.
Our motivation for introducing is to incorporate the
complexity caused by the data density. In this paper,
we propose to use this extended version of classifia-
bility measure as the model selection criterion when
constructing omnivariate decision trees. The sparsity
factor is discussed in greater detail later in this paper.

III. HANDLING NOMINAL ATTRIBUTES AND MISSING VALUES

The classifiability measure proposed above depends on the
Euclidean distance between instances (9), which requires the
calculation of the differences between two instances on each
and every attribute. It is straightforward to do so on a numerical
attribute. For a nominal attribute, the difference between two
instances is set at zero if and only if the two instances have the
same nonmissing value in that attribute; otherwise the difference
is set at one.

Most data sets encountered in practice contain missing
values. Different machine learning schemes may deal with it
in different ways [23]. For example, the instance with missing
attributes might be simply discarded; the missing attributes
may be replaced by estimates, and so on. When we compute
the classifiability measure, we adopt some common methods
of handling missing values for the calculation of the Euclidean
distance of two instances [23].

• For nominal attributes, assume that a missing feature
is maximally different from any other feature value.

1550 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Thus if either (or both) of the values is/are missing, or
if the values are different, the difference between them
is taken as one; the difference is zero only if they are
not missing and both are the same.

• For numeric attributes, the difference between two
missing values is also taken as one. However, if just
one value is missing, the difference is taken as either
the (normalized) magnitude of the available attribute
or one minus that size, whichever is larger. This means
that if values are missing, the difference is as large as
it can possibly be.

Once we obtain the Euclidean distances, the classifiability
measure can be calculated normally and is able to describe the
complexity of data sets with missing values.

IV. RELATIONSHIP BETWEEN CLASSIFIABILITY MEASURE AND

DATA COMPLEXITY

To sufficiently describe the classifiability of data, the pro-
posed measure should be able to address the possible sources
of classification errors, for example, class ambiguity, decision
boundary complexity, and data density [24]. In the following, we
show that the classifiability measure is strongly related to Bayes
error and decision boundary complexity. It also has ability to in-
corporate data complexity introduced by the data density.

A. Classifiability Measure Versus Bayes Error

Bayes error is the lowest achievable classification error for
a given data distribution. Certain problems are known to have
nonzero Bayes error, i.e., the classes are ambiguous either in-
trinsically or due to inadequate feature measurements. The fol-
lowing relationship holds between the classifiability measure
and Bayes error rate:

Theorem 1: For a given data distribution, the sum of the pri-
mary classifiability measure and the Bayes error is a con-
stant.

The proof is attached in Appendix I. To avoid confusion, in
the rest of this paper we will call the classifiability measure
instead of the practical classifiability measure.

B. Classifiability Measure Versus Decision Boundary
Complexity

The complexity of a decision boundary is another important
factor that affects the complexity of a classification problem.
Several measures have been proposed in the literature to
describe the decision boundary complexity. Some intend to
describe the geometry of the decision boundary spanned by
each class. These measures include various estimators of in-
trinsic dimensionality of the data set [25], [26]. Others attempt
to describe the shape of the decision boundary, the existence of
isolated subdecision boundary, or variation in the point densi-
ties within the decision boundary [27], [28]. With a complete
sample, the class boundary can also be characterized by its
Kolmogorov complexity [29], [30] or the minimum length
of a computer program needed to reproduce it [31], [32]. In
the following, we choose the geometrical size of the decision
boundary as the boundary complexity measure and show its
relation with the classifiability measure. The following theorem

holds between the classifiability measure and the decision
boundary length for a given data distribution:

Theorem 2: The classifiability measure and the decision
boundary length satisfy the following relationship:

(14)

where is the sparsity factor that we introduce in the next sec-
tion and is a constant.

The proof is attached in Appendix II.

C. Classifiability Measure Versus Data Density

In the discussions above, we assume that there are a sufficient
number of instances to compute the classifiability measure. This
is not always true; for example, a decision node near the leaf of
a decision tree may only have few instances.

Usually a complex classifier has high risk of overfitting when
applied to sparse data set. Therefore, data density should be in-
corporated in the data complexity descriptor. A measure of the
average number of samples per dimension is proposed in [24] to
represent the data complexity of a two-class problem. For mul-
ticlass problems, the number of classes also affects the sparsity
of the data. For instance, consider two one-dimension classifi-
cation problems 1 and 2 with ten samples each. Assume 1
contains two classes while 2 has ten classes. It is obvious that

2 is much sparser than 1. Based on all these considerations,
we introduce a sparsity factor

(15)

where , , and represent the number of attributes (inputs), the
number of classes, and the number of training patterns, respec-
tively.

The classifiability measure can describe the data complexity
more accurately by introducing density factor , especially
when only a few training patterns are available. For example,
when , one obtains that , and means

is sufficient to describe the complexity of the data set. On
the other hand, if 1 or 1 , the
classifiability measure is considerably amplified by and
the sparse data set is then considered less complicated.

V. MODEL SELECTION BASED ON CLASSIFIABILITY MEASURE

The decision nodes of an omnivariate tree are univariate,
linear, or nonlinear classifiers. The most critical step in con-
structing omnivariate decision tree is selecting the split model
at each node. Univariate classifiers should be chosen if the
training data set is simply partitioned; linear classifiers should
be chosen if the partitioning is more complex; and nonlinear
classifiers for the most complex partitioning. Since the pro-
posed classifiability measure captures the complexity of the
data, it can be used for selecting the classifier to used at each
decision node of a omnivariate decision trees.

Consider a decision node with enough training instances. A
small (rough class label surface) indicates that the data are
better classified by a nonlinear multivariate model, and a large
indicates that a linear multivariate model or a univariate model
is preferred. Since a rotation is the only difference between a

LI et al.: CLASSIFIABILITY BASED OMNIVARIATE DECISION TREES 1551

TABLE I
DESCRIPTION OF THE DATA SETS. d IS THE NUMBER OF ATTRIBUTES. d AND d IS THE NUMBER OF NUMERIC AND NOMINAL ATTRIBUTES,

RESPECTIVELY. c IS THE NUMBER OF CLASSES AND N IS THE SIZE OF DATA SET

univariate frontier and a linear frontier, and the proposed clas-
sifiability measure is rotation-invariant, an additional criterion
is required to choose from a linear model and a univariate one.
Given a decision node with large , a univariate split is suitable
if there exists at least one attribute with sufficient discrimina-
tion power. Otherwise, a linear model is preferred. In this study,
we choose the gain ratio [33] as such a measure to determine
the discriminant ability of an attribute. Therefore, the complete
model selection algorithm is described as follows:

nonlinear if
linear if and
univariate if and

(16)

where and are called nonlinear threshold and univariate
threshold, respectively, and is the highest gain ratio over the
attributes with sufficient information gain.

An ideal algorithm for constructing omnivariate tree should
select nodes that are as simple as possible and produce a tree
that is as small as possible. In practice, an omnivariate splitting
algorithm will attempt to find a balance between those expec-
tations. Currently, there is no theoretical method to identify the
two thresholds and . Based on more than two dozen typ-
ical data sets, we empirically find an optimal pair of thresholds
through a search procedure. This pair of thresholds could serve
as a general guide for future experiments. Our approach is as
follows.

1) For each data set, train and test (using ten-fold cross-
validation) omnivariate trees with different pairs of
and . Compute the tree size and testing accuracy and
normalize them over all selected pairs of thresholds.

2) Compute the average measure over all the data sets on
each pair of thresholds.

3) Choose the threshold pair that produces trees with
small size and high testing accuracy as the optimal
thresholds.

Tree size can be represented by the number of tree nodes or
the number of total free parameters. Univariate decision trees
usually contain a large number of decision nodes, while non-
linear trees contain a small number of complicated decision
nodes. For an omnivariate decision tree, the number of internal
nodes and the number of free parameters can be adjusted by
combining different split models. Typically, choosing simple
classifiers as much as possible is conflicting with generating a
small decision tree in terms of tree nodes. On the other hand,
choosing complicated classifiers may result in a large number
of free parameters. The overall performance of a decision tree
on a particular pair of and can be computed as follows:

performance testingAccuracy nodes parameters (17)

where testing accuracy, nodes, and parameters are normalized
to lie in [0, 1]. The optimal pair of thresholds should have max-
imum performance over all data sets evaluated.

VI. EXPERIMENTAL RESULTS

The performance of the proposed model selection algorithm
is evaluated on 26 data sets from the UCI repository [18]. Table I
summarizes these data sets.

The performance of the proposed algorithm is evaluated in
terms of the training time, classification accuracy, and tree size.
For comparison, the performance of pure univariate, pure linear,
pure nonlinear, and 5 2 cv test-based omnivariate decision
trees are also reported.

1552 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Fig. 3. Average normalized performance on different threshold pairs. (a) Tree size in terms of the number of nodes; (b) tree size in terms of the number of free
parameters; (c) testing accuracy; and (d) overall performance.

We implemented and evaluated our algorithm by developing
code within the framework provided by Weka [23]. Weka is a
collection of machine learning algorithms for solving real-world
data mining problems. The algorithms can either be applied di-
rectly to a data set or called from external Java code.

Pure univariate trees are built using the J4.8 algorithm im-
plementation of Weka, which actually implements a later and
slightly improved version of C4.5 (called C4.5 Revision 8 and
the last public version of this family of algorithms before the
commercial release of C5.0). Pure linear multivariate trees are
constructed with a single-layer neural network with (recall that

is the number of classes) neurons at each node. Pure nonlinear
trees are built with a two-layered neural network at each node.
The network has (recall that is the number of attributes) in-
puts, 2 hidden neurons, and output neurons. For both
linear and nonlinear models, the classes are encoded to -binary
basis vectors and a winner take all rule is taken for testing [34].
In other words, if the th output neuron produces the maximum
value, the testing pattern will take the th branch of current
node. These testing conditions are identical to the ones used
with the 5 2 cv test approach [13] and thus allow for a
direct comparison.

For the proposed algorithm, the neighborhood size is set to
be 3 the average Euclidean distance of each pattern from its
nearest neighbor. The results are reported based on ten indepen-
dent ten-fold cross-validations on each data set. All simulations
are done on a Pentium IV 2.4 GHz PC with 512 M memory run-
ning Microsoft Windows XP Professional Edition.

Experiments are performed as follows. We first evaluate om-
nivariate decision trees on each data set with different pairs
of thresholds; the results appear in Fig. 3. An optimal pair of
thresholds is identified from this evaluation. The performance
of omnivariate decision trees using this pair of threshold algo-
rithms is compared with pure univariate trees, pure linear multi-
variate trees, nonlinear multivariate trees, and omnivariate trees
constructed using 5 2 cv test in terms of the testing accu-
racy (Table II), tree size (Tables III and IV), and time consumed
(Table VI).

For each comparison, raw data are listed in the first table,
and pairwise comparisons (by statistical -test) are shown in
the second table. The entry of the second table represents
the number of data sets on which method is statistically sig-
nificantly better than method with 95% confidence. The row
sums of the second table give the number of data sets (out of 26)
where the algorithm on that row outperforms at least one of the
other algorithms. The column sums give the number of data sets
where the algorithm on the column is outperformed by at least
one of the other algorithms.

In the following sections, we provide additional details on the
threshold computation as well as on the comparitive results.

A. Optimal Thresholds

To find out a pair of optimal thresholds, a series of thresholds
is preselected. Each data set listed in Table I is evaluated on
those thresholds independently.

LI et al.: CLASSIFIABILITY BASED OMNIVARIATE DECISION TREES 1553

TABLE II
THE FIRST TABLE GIVES TESTING ACCURACY. VALUES ARE AVERAGE AND

STANDARD DEVIATIONS OF TEN INDEPENDENT TEN-FOLD CROSS-VALIDATION.
THE SECOND TABLE CONTAINS PAIRWISE COMPARISONS WHERE (i; j)

VALUES ARE THE NUMBER OF DATA SETS ON WHICH MODEL i IS

STATISTICALLY SIGNIFICANTLY BETTER THAN MODEL j. ENTRIES IN THE �
COLUMN CORRESPOND TO THE NUMBER OF DATA SETS (OUT OF 26) WHERE

THE ALGORITHM ON THAT ROW OUTPERFORMS AT LEAST ONE OF THE OTHER

ALGORITHMS. ENTRIES IN THE � ROW CORRESPOND TO THE NUMBER OF

DATA SETS (OUT OF 26) WHERE THE ALGORITHM ON THE COLUMN IS

OUTPERFORMED BY AT LEAST ONE OF THE OTHER ALGORITHMS

In the omnivariate decision trees, a univariate classifier carries
one or two free parameters. If the split is performed on a nominal
attribute, the only parameter is the attribute index; if the split is
performed on a numeric attribute, two parameters (an attribute
index and the corresponding threshold) are recorded. A linear
multivariate node carries 1 parameters (recall and
are the number of attributes and the number of classes, respec-
tively) since each output neuron has weights and a bias. Simi-
larly, for nonlinear multivariate classifier, each internal node has

2 1 3 2 free parameters.1 Tree size in terms
of free parameters thus can be computed.

Fig. 3(a)–(d) shows the average performance of each pair of
thresholds over 26 data sets in terms of the number of nodes,
the number of parameters, the testing accuracy, and the overall

1(d +(2c+ 1)d+ c + 3c)=2 is actually the number of weights and biases
for a two-layer neural network. Strictly speaking, the number of free parameters
is not equal to the number of weights but also depends on the degree of nonlin-
earity.

performance calculated based on (17). One should be aware that
the measures of tree size and testing accuracy are normalized
over all pairs of thresholds.

The number of decision nodes decreases with increasing
threshold [Fig. 3(a)] while the number of free parameters
[Fig. 3(b)] increases with increasing value of the threshold.
This indicates that a large nonlinear threshold induces a deci-
sion tree with fewer, though more complicated, decision nodes.
This is true since large usually leads to a tree with a large
number of nonlinear classifiers that have significant number
of free parameters. Fig. 3(a) also shows that higher univariate
threshold induces decision trees with fewer nodes. At the
same time, the number of free parameters varies on different
univariate thresholds. This may be explained by the fact that
a large number of univariate nodes may still introduce a large
number of free parameters. Fig. 3(c) shows the testing accuracy
increases with increasing value of the threshold, implying that a
complex split can usually achieve better classification accuracy
than a simple one.

The overall performance is shown in Fig. 3(d). It increases
with increasing at the left side, but changes slightly at right
side. At each omnivariate decision node, we prefer a simple clas-
sifier model. A complex model is selected only when it outper-
forms a simple one significantly. In other words, only when the
complexity of a subproblem is significant will a complex model
be chosen; otherwise a simple one is preferred. Based on this
consideration, a optimal pair of thresholds (and

) is obtained from Fig. 3(d). This optimal pair of
thresholds might be finely tuned by evaluating more data sets
on smaller intervals of and . In the following discussion,
the classifiability-based omnivariate trees are built based on this
pair of thresholds.

B. Testing Accuracy

Table II gives the testing accuracy. Comparing univariate,
linear multivariate, nonlinear, 5 2 cv test-based omni-
variate, and classifiability-based omnivariate trees, we see that
on seven data sets out of 26, univariate trees are at least as ac-
curate as others. On 14 data sets (ANNE, BALS, BREW, CAR,
DIAB, HEAC, HEAS, LABO, LYMP, PIMA, TIC, VEHI,
WINE, ZOO), the linear trees are more accurate than univariate
trees. On 19 data sets (all 14 data sets above, plus CMC, GREG,
HEAH, IONO, IRIS), nonlinear trees are more accurate than
univariate trees. Nonlinear trees are better than linear ones on
13 data sets. Those results indicate that a univariate split is
good enough sometimes; however, a linear or a nonlinear split
is better on more cases. The 5 2 cv test-based omnivariate
trees outperform univariate trees on 13 data sets (ANNE, BALS,
BREW, CAR, DIAB, HEAC, IRIS, LABO, LYMP, TIC, VEHI,
WINE, ZOO), linear multivariate trees on six data sets (BREC,
CAR, CREG, GLAS, IRIS, VOTE), and nonlinear trees on
four data sets (ANNE, GLAS, VOTE, WINE), indicating that
they can provide better accuracy in some cases. However, they
are beaten by univariate trees on five data sets (AUTO, BREC,
COLI, IONO, PRIM), by linear trees on six data sets (BALS,
BREW, DIAB, HEAS, LABO, VEHI), and by nonlinear trees
on 14 data sets (BALS, BREW, CAR, CMC, CREG, DIAB,
HEAH, HEAS, IONO, LABO, LYMP, PIMA, PRIM, VEHI)

1554 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

TABLE III
THE FIRST TABLE GIVES TREE SIZE IN TERMS OF NUMBER OF NODES. VALUES ARE AVERAGE AND STANDARD DEVIATIONS OF TEN INDEPENDENT TEN-FOLD

CROSS-VALIDATIONS. THE SECOND TABLE CONTAINS PAIRWISE COMPARISONS WHERE (i; j) VALUES ARE THE NUMBER OF DATA SETS ON WHICH MODEL i IS

STATISTICALLY SIGNIFICANTLY BETTER THAN MODEL j. ENTRIES IN THE � COLUMN CORRESPOND TO THE NUMBER OF DATA SETS (OUT OF 26) WHERE THE

ALGORITHM ON THAT ROW OUTPERFORMS AT LEAST ONE OF THE OTHER ALGORITHMS. ENTRIES IN THE � ROW CORRESPOND TO THE NUMBER OF DATA SETS

(OUT OF 26) WHERE THE ALGORITHM ON THE COLUMN IS OUTPERFORMED BY AT LEAST ONE OF THE OTHER ALGORITHMS

PRIM), which shows that this algorithm cannot always generate
the most accurate decision trees.

Comparing 5 2 cv test-based omnivariate trees with the
proposed approach, we see that the classifiability-based omni-
variate trees outperform univariate trees on 17 data sets (ANNE,
BALS, BREW, CAR, CREG, DIAB, HEAC, HEAH, HEAS,
IONO, LABO, LYMP, PIMA, TIC, VEHI, WINE), outperform
linear trees on 11 data sets (BREC, BREW, CAR, CMC, CREG,
HEAS, IONO, LABO, PRIM, TIC, VEHI), and nonlinear trees
on three data sets (ANNE, BREW, VEHI). Furthermore, the pro-
posed algorithm gives more accurate results than a 5 2 cv

test-based algorithm on 13 data sets (BALS, BREW, CMC,
CREG, DIAB, HEAH, HEAS, IONO, LABO, LYMP, PIMA,
TIC, VEHI). It does worse than a 5 2 cv test-based algo-
rithm on only four data sets (GLAS, IRIS, VOTE, WINE). It is
only outperformed by univariate trees on four data sets (AUTO,
COLI, PRIM, VOTE), by linear trees on one data set (WINE),
and by nonlinear trees on one data set (IRIS).

The above discussion shows that among these five algorithms,
the proposed one produces decision trees with the highest accu-
racy.

C. Tree Size

The total number of nodes generated by the five methods is
reported in Table III. The number of free parameters is given in
Table IV since different split models have different complexi-
ties. We also report the number of univariate, linear, and non-
linear nodes in the omnivariate trees in Table V.

As expected, the order of the tree size in terms of the number
of tree nodes is Uni Lin Nonlin. The order of tree size
in terms of the number of free parameters is exactly the oppo-
site. An omnivariate tree using a 5 2 cv test has a fairly
large number of nodes but less than univariate trees; an om-
nivariate tree induces by classifiability measure has relatively
small number of tree nodes. Insofar as the the number of free
parameters is concerned, we found both omnivariate trees out-
perform linear trees on ten data sets (five of them are the same);
5 2 cv test-based omnivariate trees outperform nonlinear
trees on 13 data sets, and classifiability-based omnivariate trees
outperform nonlinear trees on nine data sets (eight of them are
the same). Classifiability-based omnivariate trees produce trees
with fewer parameters than a 5 2 cv test-based one on
four data sets while the latter one outperforms the previous one

LI et al.: CLASSIFIABILITY BASED OMNIVARIATE DECISION TREES 1555

TABLE IV
THE FIRST TABLE GIVES TREE SIZE IN TERMS OF FREE PARAMETERS. VALUES ARE AVERAGE AND STANDARD DEVIATIONS OF TEN INDEPENDENT TEN-FOLD

CROSS-VALIDATIONS. THE SECOND TABLE CONTAINS PAIRWISE COMPARISONS WHERE (i; j) VALUES ARE THE NUMBER OF DATA SETS ON WHICH MODEL i IS

STATISTICALLY SIGNIFICANTLY BETTER THAN MODEL j. ENTRIES IN THE � COLUMN CORRESPOND TO THE NUMBER OF DATA SETS (OUT OF 26) WHERE THE

ALGORITHM ON THAT ROW OUTPERFORMS AT LEAST ONE OF THE OTHER ALGORITHMS. ENTRIES IN THE � ROW CORRESPOND TO THE NUMBER OF DATA SETS

(OUT OF 26) WHERE THE ALGORITHM ON THE COLUMN IS OUTPERFORMED BY AT LEAST ONE OF THE OTHER ALGORITHMS

on eight data sets. Generally speaking, these two algorithms
generate decision trees with a similar number of free parame-
ters. However, for 5 2 cv test-based omnivariate trees, 11
data sets (ANNE, AUTO, BREC, COLI, HEAH, HEPA, IONO,
LABO, LYMP, PIMA, VOTE) out of 26 have large deviations
(more than 50%). At the same time, no data set has deviations
larger than 50% for classifiability based omnivariate trees. The
reason is that only half of the instances reaching a particular
node are tested for model selection in the 5 2 cv test (the
other half of the instances are used for classifier training), which
leads to less generality. For classifiability-based induction, the
whole subproblem is evaluated to produce a data complexity
measure with more generality, which leads to a relatively stable
architecture.

Table V shows the nodes distribution for both kinds of omni-
variate trees on univariate splits, linear multivariate splits, and
nonlinear splits. From Table V, we see that 5 2 cv test-based
omnivariate trees contain 68.84% of univariate nodes in average,
and only 7.55% are nonlinear nodes. This indicates that the in-
duction mainly choose the univariate model to construct a de-
cision hyperplane. Our results are consistent with [13]. For the

proposed algorithm, the portion of univariate nodes is 43.61%
and the nonlinear portion is 37.77%, indicating that the pro-
posed method of decision tree induction does not necessarily
choose simple nodes, as is the case with 5 2 cv . Our experi-
ments also show the node distribution is greatly improved by the
introduction of the sparsity factor . Without the sparsity factor,
the classifiability measure may have a low value near the leaf
nodes where the amount of data is substantially reduced. Con-
sequently a decision tree with a large number of nonlinear nodes
might be produced and may cause overfitting given the sparsity
of data. Such a problem is solved by sparsity factor since it sig-
nificantly amplifies the classifiability measure in such cases.

D. Training Time

It takes time for training a univariate node,
for training a linear multivariate node, and

for training a nonlinear node, where is the number of
instances at that node, is the number of epochs, is the number
of classes, and is the number of attributes. Thus, constructing
a nonlinear tree, which contains very complex internal nodes,
is greatly time consuming, especially when the data set has a

1556 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

TABLE V
NODE DISTRIBUTION. VALUES ARE AVERAGE AND STANDARD DEVIATIONS OF TEN-FOLD CROSS-VALIDATION. THE TOTAL NUMBER AND

PERCENTAGE OF NODES OF EACH TYPE ARE SUMMARIZED IN THE LAST TWO ROWS

large number of attributes and classes. A univariate tree contains
simple internal nodes with only one (index of split attribute) or
two (split attribute with the threshold) parameters; it takes the
least learning time though such a model intends to produce large
trees in terms of tree nodes.

Table VI shows the learning time of constructing univariate,
linear multivariate, nonlinear multivariate, 5 2 cv test-based
omnivariate, and classifiability-based omnivariate trees, respec-
tively. Table VI shows that the fastest algorithm among those
five is the univariate model. It outperforms all the others. Non-
linear tree outperforms linear tree only on one data set (CAR).
From Table VI, we also see that 5 2 cv test-based induction
is the slowest algorithm. It beats none of the other algorithms on
any data set. More precisely, it takes about 10 to 20 times (12.4
times in average) longer than the corresponding nonlinear algo-
rithm. The proposed algorithm, on the other hand, is much faster
than the 5 2 cv test. It not only outperforms nonlinear al-
gorithm on most data sets (14 out of 26) but also outperforms
linear algorithm on two data sets (CAR, IRIS). Actually, it only
takes 4.7% in average of the time taken by the 5 2 cv test
algorithm in constructing an omnivariate decision tree.

The reason is obvious. For the 5 2 cv test, in order
to make a model selection at a particular decision node, each
one of the three models, univariate, linear, and nonlinear, has
to be tested ten times with five runs of two-fold cross-valida-
tion on the instances at this node. The entire process is very
slow. Moreover, such an algorithm usually generates big deci-
sion trees with large percentage of univariate nodes. The ratio
of nonlinear nodes in such trees is small, usually less than 10%

(shown in Table III), but testing a nonlinear model at every in-
ternal node (including univariate ones) is computationally very
intensive and makes a major contribution to the total time spent
for training. Therefore, statistical-based model selection is not
an efficient approach for omnivariate tree constructing.

Comparatively, classifiability-based algorithm only needs a
single run to capture the complexity of the data at a decision
node. Since we need to compute (1) distances to count the
points that are within the neighborhood of pattern , each
run will take time. In addition, when the distance is
computed using some efficient data structures, the actual com-
plexity can be quite modest. In other words, the proposed algo-
rithm is substantially superior than the 5 2 cv test in terms
of learning speed for model selection.

VII. CONCLUSION AND DISCUSSION

In this paper, we proposed a classifiability measure for model
selection in constructing omnivariate decision trees. The clas-
sifiability measure is strongly realted to the Bayes error and
the boundary complexity. A sparsity factor allows the classi-
fiability measure to perform superior model selection partic-
ularly near the leaf nodes where the number of examples are
greatly reduced. Experiment results over 26 data sets show that,
on average, our algorithm can significantly improve the learning
speed when compared with the conventional approach using
combined 5 2 cv statistical test while achieving better clas-
sification accuracy.

LI et al.: CLASSIFIABILITY BASED OMNIVARIATE DECISION TREES 1557

TABLE VI
THE FIRST TABLE GIVES LEARNING TIME IN SECONDS ON A PENTIUM IV 2.4 G PC. VALUES ARE AVERAGE AND STANDARD DEVIATIONS OF TEN INDEPENDENT

TEN-FOLD CROSS-VALIDATIONS. THE SECOND TABLE CONTAINS PAIRWISE COMPARISONS WHERE (i; j) VALUES ARE THE NUMBER OF DATA SETS ON WHICH

MODEL i IS STATISTICALLY SIGNIFICANTLY BETTER THAN MODEL j. ENTRIES IN THE � COLUMN CORRESPOND TO THE NUMBER OF DATA SETS (OUT OF 26)
WHERE THE ALGORITHM ON THAT ROW OUTPERFORMS AT LEAST ONE OF THE OTHER ALGORITHMS. ENTRIES IN THE � ROW CORRESPOND TO THE NUMBER OF

DATA SETS (OUT OF 26) WHERE THE ALGORITHM ON THE COLUMN IS OUTPERFORMED BY AT LEAST ONE OF THE OTHER ALGORITHMS

APPENDIX I

In this section, we will prove Theorem 1, i.e.: For a given data
distribution, the sum of the primary classifiability measure
and the Bayes error is a constant, with a simplified example.
In the proof, we use an uppercase to denote a probability
mass function and use a lowercase to denote a probability
density function.

Consider a two-class classification problem with the classes
characterized by the fixed but unknown density functions

and defined on the input . Fig. 4 shows such
a problem in one dimension. By Bayes rule, we have

(18)

and

(19)

The Bayes decision boundary is then given by

(20)
Fig. 4. A simple classification problem and the associated Bayes decision
boundary (broken line).

1558 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Let the Bayes decision boundary for the one-dimensional
problem shown in Fig. 2 be given by . The Bayes error
can then be calculated as

(21)

For arbitrary densities, (21) can be generalized to

(22)
where

(23)

in areas and

(24)

in areas .
Equation (22) can be extended to the discrete distribution of
by replacing integrals with corresponding sums and prob-

ability density functions with corresponding probability mass
functions

(25)
For primary classifiability, from (7) and (8), we have

(26)

Note that and in (26) are identical to
and in (25), and a given pattern belongs to

either class or to class . Equation (26) can be rewritten as

(27)

where is a pattern in the neighborhood of pattern and we
have

(28)

in areas and

(29)

Fig. 5. A two-class (! and !) classification problem with zero Bayes error
and uniform distribution. B: decision boundary. r: size of neighborhood. E
and E are two ends of the boundary.

in areas .
Note that and in (27) are the same as and in (25)

and corresponding to each other. Thus, using (27) and (25), we
get

(30)

For a given distribution, it is obvious that
is a constant.

Equation (30) shows that the sum of the Bayes error and the
primary classifiability is a constant. In other words, an increase
in the Bayes error implies a lower primary classifiability and a
decrease in Bayes error corresponds to an increase in the pri-
mary classifiability.

APPENDIX II

In this section, we will prove Theorem 2.
Consider a two-class (and) classification problem

with two features, as shown in Fig. 5. To examine the relation
between the classifiability measure and the decision boundary
complexity without the effect of other factors, we choose a
problem with zero Bayes error, that is, there is a classifier that
can perfectly separate the two classes. Suppose the ends of
the boundary are fixed: the boundary complexity thus can be
represented by its length. In the following, we show that the
classifiability measure is inversely related to the boundary
length.

As shown in Fig. 5, only patterns within the neighborhood
(within a distance) of the decision boundary contribute to the

LI et al.: CLASSIFIABILITY BASED OMNIVARIATE DECISION TREES 1559

off-diagonal elements of the co-occurrence matrix in (10). Let
denote a pattern within the neighborhood of another pattern

, the probability of occurrence of , and the
posterior probability. The sum of the off-diagonal elements of

before normalization can be computed as follows:

(31)

where is the neighborhood area of the decision boundary.
Without loss of generality, we assume that the decision
boundary length satisfies . The sum of can be
approximated with integral over , such that (31) can be
rewritten as

(32)

where is the probability of occurrence of and is indepen-
dent to the boundary itself. Thus, (32) can be rewritten as

(33)

where

On the other hand, classifiability measure is of the form

(34)

where .
Finally, we have

(35)

For a given distribution, and are constants. Equation (35)
shows that classifiability measure is strongly and inversely re-
lated to boundary complexity in terms of the boundary size,
which is the boundary length in this particular case. In a real-
world situation, a classification problem might be multidimen-
sional and multiclass, implying that the decision boundary could
be one or more multidimension surface with ambiguous shape.
Correspondingly, the size of decision boundary is represented
by the area of the surface. It is easy to see that the same relation-
ship exists between the classifiability measure and the boundary
size in those cases.

REFERENCES

[1] J. R. Quinlan, “Induction of decision trees,” Machine Learn., vol. 1, pp.
81–106, 1986.

[2] L. Breiman, J. H. Friedman, J. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Belmont, CA: Wadsworth, 1984.

[3] H. Guo and S. B. Gelfand, “Classification trees with neural network fea-
ture extraction,” IEEE Trans. Neural Netw., vol. 3, pp. 923–933, 1992.

[4] G. P. J. Schmitz, C. Aldrich, and F. S. Gouws, “ANN-DT: an algorithm
for extraction of decision trees from artificial neural networks,” IEEE
Trans. Neural Netw., vol. 10, no. 6, pp. 1392–1401, 1999.

[5] M. A. Sánchez-Montañés and F. J. Corbacho, “A new information pro-
cessing measure for adaptive complex systems,” IEEE Trans. Neural
Netw., vol. 15, no. 4, pp. 917–927, 2004.

[6] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[7] S. K. Murthy and S. Salzberg, “Lookahead and pathology in decision
tree induction,” in Proc. 14th Int. Conf. Artificial Intelligence, San
Mateo, California, 1995, pp. 1025–1031.

[8] C. E. Brodley and P. E. Utgoff, “Multivariate decision trees,” Machine
Learn., vol. 19, pp. 45–77, 1995.

[9] W.-Y. Loh and N. Vanichsetakul, “Tree-structured classification via
generalized discriminant analysis,” J. Amer. Statist. Assoc., vol. 83, pp.
715–728, 1988.

[10] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Anal-
ysis, 3rd ed, E. Cliks, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1992.

[11] A. Bermak and D. Martinez, “A compact 3-d VLSI classifier using bag-
ging treshold network ensembles,” IEEE Trans. Neural Netw., vol. 14,
no. 5, pp. 1097–1109, 2003.

[12] I. Sethi, “Neural implementation of tree classifiers,” IEEE Trans. Syst.,
Man, Cybern., vol. 25, no. 8, pp. 1243–1249, 1995.

[13] O. T. Yıldız and E. Alpaydın, “Omnivariate decision tree,” IEEE Trans.
Neural Netw., vol. 12, no. 6, pp. 1539–1546, 2001.

[14] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,” J. Artif. Intell. Res., vol. 2, pp. 1–32, 1994.

[15] E. Alpaydın, “Combined 5� 2 cv F test for comparing supervised clas-
sification learning algorithms,” Neural Comput., vol. 11, pp. 1885–1892,
1999.

[16] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer, 1995.

[17] B. Karacali and H. Krim, “Fast minimization of structural risk by nearest
neighbor rule,” IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 127–137,
2003.

[18] C. Blake and C. Merz. (1998) UCI repository of machine learning
databases. [Online]http://www.ics.uci.edu/~mlearn/MLRepository.html

[19] M. Dong and R. Kothari, “Look-ahead based fuzzy decision tree induc-
tion,” IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 461–468, 2001.

[20] , “Texture based look-ahead for decision-tree induction,” in Proc.
Int. Conf. Advances Pattern Recognition, S. Singh, Ed., 2001.

[21] R. M. Haralick, “Statistical and structural approaches to texture,” Proc.
IEEE, vol. 67, pp. 786–804, 1980.

[22] A. R. Rao, A Taxonomy for Texture Description and Identifica-
tion. New York: Springer-Verlag, 1990.

[23] I. H. Witten and E. Fank, Data Mining: Practical Machine Learning
Tools With Java Implementations, D. D. Cerra, Ed. San Mateo, CA:
Morgan Kaufmann, 1999.

[24] T. K. Ho and M. Basu, “Complexity measures of supervised classifica-
tion problems,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no.
3, pp. 289–300, 2002.

1560 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

[25] P. J. Verveer and R. P. W. Duin, “An evaluation of intrinsic dimension-
ality estimators,” IEEE Trans. Pattern Anal. Machine Intell., vol. 17, no.
1, pp. 81–86, 1995.

[26] N. Wyse, R. Dubes, and A. K. Jain, “A critical evaluation of in-
trinsic dimensionality algorithms,” in Pattern Recognition in Practice,
E. Gelsema and L. N. Kanal, Eds. Amsterdam, the Netherlands:
North-Holland, 1980, pp. 415–425.

[27] S. P. Smith and A. K. Jain, “A test to determine the multivariate nor-
mality of a data set,” IEEE Trans. Pattern Anal. Machine Intell., vol. 10,
no. 5, pp. 757–761, 1988.

[28] D. S. Broomhead, R. Jones, and G. P. King, “Topological dimension and
local coordinates,” J. Phys. A Math. Gen., vol. 20, no. 6, pp. 563–569,
1987.

[29] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” Prob. Inform. Transmission, vol. 1, pp. 4–7, 1965.

[30] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its
Applications, 2nd ed. Berlin, Germany: Springer-Verlag, 1997.

[31] G. J. Chaitin, “A theory of program size formally identical to informa-
tion theory,” J. ACM, vol. 22, pp. 329–340, 1975.

[32] M. Gell-Mann, “What is complexity?,” Complexity, vol. 1, no. 1, pp.
16–19, 1995.

[33] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[34] A. Sankar and R. J. Mammone, “Growing and pruning neural tree net-
works,” IEEE Trans. Comput., vol. 42, no. 3, p. 291, 1993.

[35] M. Zwitter and M. Soklic. (1988) Breast cancer data. [Online]. Avail-
able: http://www.ics.uci.edu/~mlearn/MLRestricted.html

[36] , (1988) Lymphography domain. [Online]. Available:
http://www.ics.uci.edu/~mlearn/MLRestricted.html

[37] , (1988) Primary tumor domain. [Online]. Available:
http://www.ics.uci.edu/~mlearn/MLRestricted.html

[38] D. Mowforth and B. Shepherd. (1988) Vehicle silhouettes. [Online].
Available: http://www.ics.uci.edu/~mlearn/MLRestricted.html

Yuanhong Li (S’03) received the B.S. and Ph.D. de-
grees in condensed state physics from the University
of Science and Technology of China, Hefei, China,
in 1994 and 1999, respectively. He is now pursuing
the Ph.D. degree in the Machine Vision and Pattern
Recognition Laboratory, Department of Computer
Science, Wayne State University, Detroit, MI.

His research interests include pattern recognition,
machine learning, and data clustering.

Ming Dong (S’00–M’02) received the B.S. degree
from Shanghai Jiao Tong University, Shanghai,
China, in 1995 and the Ph.D. degree from the
University of Cincinnati, Cincinnati, Ohio, in 2001,
all in electrical engineering.

He joined the Faculty of Wayne State University,
Detroit, MI, in 2002 and is currently an Assistant
Professor in the Department of Computer Science.
He is also Director of the Machine Vision and
Pattern Recognition Laboratory. His research inter-
ests include pattern recognition, computer vision,

multimedia, and financial engineering. He is a member of the Editorial Board
of the International Journal on Semantic Web and Information Systems and
has been a Program Committee Member of various conferences. He is a Board
Member of the Association for Information Systems SIG on Semantic Web
and Information Systems.

Ravi Kothari (S’89–M’91–SM’99) received the
B.E. degree (with distinction) from Birla Institute of
Technology, India, the M.S. degree from Louisiana
State University, Baton Rouge, and the Ph.D. degree
from West Virginia University, Morgantown, all in
electrical engineering.

He joined the Department of Electrical and Com-
puter Engineering and Computer Science (ECECS),
University of Cincinnati (UC), Cincinnati, OH,
in 1992 as an Assistant Professor, where he later
became a tenured Associate Professor and Director

of the Artificial Neural Systems Laboratory. Since 2002, he has been with
IBM-India Research Laboratory, New Delhi, India. His areas of interest
include pattern recognition, machine learning, and data mining. He has been an
Editorial Board Member of Pattern Analysis and Applications and a Program
Committee Member of numerous conferences.

Dr. Kothari is a member of Sigma Xi, Eta Kappa Nu, and Phi Kappa Phi.
He is an IEEE Distinguished Visitor (2003–2005). He received the William E.
Restemeyer Teaching Excellence Award from the Department of ECECS at UC
in 1994 and the Eta Kappa Nu Outstanding Professor of the Year Award from the
Department of ECECS at UC in 1995. He serves or has served as an Associate
Editor of the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,
the IEEE TRANSACTIONS ON NEURAL NETWORKS.

	toc
	Classifiability-Based Omnivariate Decision Trees
	Yuanhong Li, Student Member, IEEE, Ming Dong, Member, IEEE, and
	I. I NTRODUCTION

	Fig.€1. Example of univariate (solid line), linear multivariate
	II. A C LASSIFIABILITY M EASURE

	Fig.€2. A two-class classification problem (top panel) and the v
	Definition 1: The primary classifiability measure for patterns d
	Definition 2: The primary classifiability measure L_{0} for th
	III. H ANDLING N OMINAL A TTRIBUTES AND M ISSING V ALUES
	IV. R ELATIONSHIP B ETWEEN C LASSIFIABILITY M EASURE AND D ATA C
	A. Classifiability Measure Versus Bayes Error
	Theorem 1: For a given data distribution, the sum of the primary

	B. Classifiability Measure Versus Decision Boundary Complexity
	Theorem 2: The classifiability measure ${\cal L}$ and the decisi

	C. Classifiability Measure Versus Data Density

	V. M ODEL S ELECTION B ASED ON C LASSIFIABILITY M EASURE

	TABLE€I D ESCRIPTION OF THE D ATA S ETS . d I S THE N UMBER OF
	VI. E XPERIMENTAL R ESULTS

	Fig.€3. Average normalized performance on different threshold pa
	A. Optimal Thresholds
	TABLE€II T HE F IRST T ABLE G IVES T ESTING A CCURACY . V ALUES

	B. Testing Accuracy

	TABLE€III T HE F IRST T ABLE G IVES T REE S IZE IN T ERMS OF N U
	C. Tree Size

	TABLE€IV T HE F IRST T ABLE G IVES T REE S IZE IN T ERMS OF F RE
	D. Training Time

	TABLE€V N ODE D ISTRIBUTION . V ALUES A RE A VERAGE AND S TANDAR
	VII. C ONCLUSION AND D ISCUSSION

	TABLE€VI T HE F IRST T ABLE G IVES L EARNING T IME IN S ECONDS O
	Fig.€4. A simple classification problem and the associated Bayes

	Fig. 5. A two-class (ω_{1} and ω_{2}) classifica
	J. R. Quinlan, Induction of decision trees, Machine Learn., vol
	L. Breiman, J. H. Friedman, J. A. Olshen, and C. J. Stone, Class
	H. Guo and S. B. Gelfand, Classification trees with neural netwo
	G. P. J. Schmitz, C. Aldrich, and F. S. Gouws, ANN-DT: an algori
	M. A. Sánchez-Montañés and F. J. Corbacho, A new information pro
	J. R. Quinlan, C4.5: Programs for Machine Learning . San Mateo,
	S. K. Murthy and S. Salzberg, Lookahead and pathology in decisio
	C. E. Brodley and P. E. Utgoff, Multivariate decision trees, Mac
	W.-Y. Loh and N. Vanichsetakul, Tree-structured classification v
	R. A. Johnson and D. W. Wichern, Applied Multivariate Statistica
	A. Bermak and D. Martinez, A compact 3-d VLSI classifier using b
	I. Sethi, Neural implementation of tree classifiers, IEEE Trans.
	O. T. Yıldız and E. Alpaydın, Omnivariate decision tree, IEEE Tr
	S. K. Murthy, S. Kasif, and S. Salzberg, A system for induction
	E. Alpaydın, Combined 5 \times 2 cv F test for comparing sup
	V. N. Vapnik, The Nature of Statistical Learning Theory . New Yo
	B. Karacali and H. Krim, Fast minimization of structural risk by
	C. Blake and C. Merz . (1998) UCI repository of machine learning
	M. Dong and R. Kothari, Look-ahead based fuzzy decision tree ind
	R. M. Haralick, Statistical and structural approaches to texture
	A. R. Rao, A Taxonomy for Texture Description and Identification
	I. H. Witten and E. Fank, Data Mining: Practical Machine Learnin
	T. K. Ho and M. Basu, Complexity measures of supervised classifi
	P. J. Verveer and R. P. W. Duin, An evaluation of intrinsic dime
	N. Wyse, R. Dubes, and A. K. Jain, A critical evaluation of intr
	S. P. Smith and A. K. Jain, A test to determine the multivariate
	D. S. Broomhead, R. Jones, and G. P. King, Topological dimension
	A. N. Kolmogorov, Three approaches to the quantitative definitio
	M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity a
	G. J. Chaitin, A theory of program size formally identical to in
	M. Gell-Mann, What is complexity?, Complexity, vol. 1, no. 1, p
	J. R. Quinlan, C4.5: Programs for Machine Learning . San Mateo,
	A. Sankar and R. J. Mammone, Growing and pruning neural tree net
	M. Zwitter and M. Soklic . (1988) Breast cancer data . [Online]
	D. Mowforth and B. Shepherd . (1988) Vehicle silhouettes . [Onli

