
The E�ects of Training Set Size

on Decision Tree Complexity

Abstract

This paper presents experiments with 19 datasets and 5 decision tree

pruning algorithms that show that increasing training set size often

results in a linear increase in tree size, even when that additional

complexity results in no signi�cant increase in classi�cation accuracy.

Said di�erently, removing randomly selected training instances often

results in trees that are substantially smaller and just as accurate

as those built on all available training instances. This implies that

decreases in tree size obtained by more sophisticated data reduction

techniques should be decomposed into two parts: that which is due

to reduction of training set size, and the remainder, which is due to

how the method selects instances to discard. We perform this decom-

position for one recent data reduction technique, John's robust-c4.5

(John 1995), and show that a large percentage of its e�ect on tree

size is attributable to the fact that it simply reduces the size of the

training set. We conclude that random data reduction is a baseline

against which more sophisticated data reduction techniques should be

compared. Finally, we examine one possible cause of the pathological

relationship between tree size and training set size.

1 Introduction

Data preprocessing is becoming increasingly popular as a way to improve the

performance of decision tree algorithms. Often such techniques involve data

reduction, the removal of training instances prior to tree construction. For

example, some techniques identify instances that are \bad" and remove them

from the training set, while others actively build a training set from available

instances by selecting those that are \good". Whether the explicit goal of

any given technique is increased accuracy or smaller trees, the latter is invari-

ably observed. John's robust-c4.5 treats misclassi�ed training instances as
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outliers, iteratively removing them and building a new tree (John 1995). The

result over a large number of datasets is trees that are much smaller than

those built by c4.5, but that have roughly equivalent accuracy. Brodley and

Friedl developed a method to remove instances deemed mislabeled (e.g. by

transcription errors) in an e�ort to boost accuracy. They observe that such

�ltering, as an unanticipated side-e�ect, leads to substantially smaller trees

(Brodley & Friedl 1996).

In this paper we argue that, under a broad range of circumstances, all

data reduction techniques will result in some decrease in tree size with lit-

tle impact on accuracy. Section 2 o�ers detailed empirical evidence for the

validity of this claim, but an intuitive feeling for why it might be true can

be grasped by looking at Figure 1. The �gure shows plots of tree size and

accuracy as a function of training set size for the UC Irvine australian

dataset. c4.5 was used to generate the trees (Quinlan 1993) and each plot

corresponds to a di�erent pruning mechanism: error-based (ebp { the c4.5

default) (Quinlan 1993), reduced error (rep) (Quinlan 1987), minimum de-

scription length (mdl) (Quinlan & Rivest 1989), cost-complexity with the

1se rule (ccp1se) (Breiman et al. 1984), and cost-complexity without the

1se rule (ccp0se). On the left-hand side of the graphs, no training instances

are available and the best one can do with test instances is to assign them a

class label at random. On the right-hand side of the graph, the entire dataset

(excluding test instances) is available to the tree building process. Movement

from the the left to the right corresponds to the addition of randomly selected

instances to the training set. Alternatively, moving from the right to the left

corresponds to removing randomly selected instances from the training set.

(See Section 2 for a detailed description of how the graphs were generated.)

In all �ve graphs in Figure 1, accuracy peaks with small numbers of train-

ing instances, thereafter remaining almost constant. Surprisingly, tree size

continues to grow nearly linearly in three of the graphs. Growth contin-

ued despite two important facts: (1) accuracy has ceased to increase; and

(2) c4.5 is pruning the trees to avoid over�tting. The graphs clearly show

that over�tting is occurring, and it gets worse as the size of the training

set increases. For example, with ebp, accuracy peaks after only 25% of the

available training instances are seen. The tree at that point contains 22

nodes. When 100% of the available training instances are used in tree con-

struction, the resulting tree contains 64 nodes. Despite a 3-fold increase in

size over the tree built with 25% of the data, the accuracies of the two trees
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Figure 1: Plots of tree size and accuracy as a function of training set size

for the australian dataset. All trees were generated by c4.5, and each plot

corresponds to a di�erent pruning mechanism: error-based, reduced error,

minimum description length, cost complexity with the 1SE rule, and cost

complexity without the 1SE rule (0SE).
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are statistically indistinguishable.

One clear implication of the strong relationship between training set size

and tree size is that almost any scheme for removing training instances prior

to tree construction will, on this dataset, yield smaller trees with accuracies

roughly equivalent to that obtainable from the full training set. Also, the size

of the resulting tree will depend strongly on the fraction of instances that

are discarded. The reason is that removing any instances, even randomly

selected instances (which corresponds to moving from the right-hand side of

the graphs in Figure 1 to the left), has just that e�ect, and the magnitude

of the e�ect increases with the number of training instances that are dis-

carded. Therefore, it seems likely that at least part of the reduction in tree

size observed by those studies cited earlier is attributable to the nearly linear

relationship between training set size and tree size as exhibited in Figure

1. Manipulating training set size will have an impact on tree size, regard-

less of the method used to rule training instances in or out. This suggests

that random data reduction is a baseline against which more sophisticated

data reduction techniques should be compared. The magnitude of the reduc-

tion in tree size that such techniques obtain by discarding training instances

should be decomposed into two components: that which is due to reduction

of training set size (i.e. the reduction that would result from removing the

same number of randomly selected instances), and the remainder, which is

directly attributable to how the method selects instances to remove.

The rest of the paper is organized as follows. Section 2 explores the rela-

tionship between tree size and accuracy and training set size for 5 di�erent

pruning methods on 19 datasets taken from the UC Irvine repository. Sec-

tion 3 performs the decomposition mentioned above for one data reduction

technique, and shows that a substantial percentage of the gains achieved by

that technique are due to reduction of training set size. Finally, Section 5

concludes with a discussion of additional implications of this work and future

directions.

2 Empirical Results

The experiments in this section test the hypothesis that, under a broad range

of circumstances, there is a nearly linear relationship between training set size

and tree size, even after accuracy has ceased to increase. The experiments
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generate plots of tree size and accuracy as a function of training set size for

a given dataset and pruning algorithm, �nd the training set size at which

accuracy ceases to increase, and run a linear regression on the points in the

tree size curve to the right of that training set size. In general, additional tree

structure is welcome as long as it improves classi�cation accuracy, and it is

unwelcome otherwise. Ideally, there will be no correlation between tree size

and training set size once classi�cation accuracy peaks. The linear regression

of tree size on training set size indicates the probability, p, of making an error

in rejecting the null hypothesis that there is no such correlation (that the

slope of the regression line is zero), and the amount of variance in tree size

accounted for by training set size, r2. When p is signi�cant and r
2 is high,

changes in training set size have strong and predictable e�ects on tree size.

The relationship between training set size and tree size was explored with

5 pruning methods and 19 datasets taken from the UC Irvine repository.1 The

pruning methods are error-based (ebp { the c4.5 default) (Quinlan 1993), re-

duced error (rep) (Quinlan 1987), minimum description length (mdl) (Quin-

lan & Rivest 1989), cost-complexity with the 1se rule (ccp1se) (Breiman et

al. 1984), and cost-complexity without the 1se rule (ccp0se). The majority

of extant pruning methods seem to take one of four general approaches: de-

ating accuracy estimates based on the training set (e.g. ebp); pruning based

on accuracy estimates from a pruning set (e.g. rep); creating a set of pruned

trees based on di�erent values of a parameter and then selecting the appro-

priate parameter value using a pruning set or cross-validation (e.g. ccp1se

and ccp0se); and managing the tradeo� between accuracy and complexity

(e.g. mdl). The pruning methods used in this paper were selected to be

representative of these four approaches. ccp0se was included to determine

the impact of the 1se rule in cost-complexity pruning.

The plots of tree size and accuracy as a function of training set size

were generated for each combination of dataset and pruning algorithm as

follows. Typically, k-fold cross-validation is used to obtain estimates of the

true performance of decision tree algorithms. A dataset, D, with n instances

is divided into k disjoint sets, Di, each containing n=k instances. Then for

1The datasets are the same ones used in (John 1995) with two exceptions. The

crx dataset was omitted because it is roughly the same as the australian dataset,

and the horse-colic dataset was omitted because it was unclear which attribute was

used as the class label. Note that the vote1 dataset was created by removing the

physician-fee-freeze attribute from the vote dataset.
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1 � i � k, a tree is built on the instances in D � Di and tested on the

instances in Di, and the results are averaged over all k folds (Cohen 1995).

That procedure was augmented for this paper by building trees on subsets of

D�Di of various sizes, and testing them on Di. Speci�cally, 20 subsets were

created by retaining from 5% to 100% of the instances in D�Di in increments

of 5%; standard k-fold cross-validation corresponds to the case in which 100%

of the instances in D�Di are retained. The order of the instances in D was

permuted prior to creating the k = 10 folds, and the instances to be retained

were gathered sequentially starting with the �rst instance in D�Di for each

level of data reduction. In this way, 10-fold cross-validated estimates of tree

size and accuracy as a function of training set size were obtained. (Cohen

calls this incremental cross-validation.) This procedure was performed twice

for each combination of dataset and pruning method, generating complete

size and accuracy curves for two di�erent permutations of the data, and the

results were averaged. The goal was to reduce the inherent variability of

cross-validated estimates of size and accuracy. Note that the same divisions

of a given dataset were used for all of the pruning methods. With 19 datasets,

5 pruning methods, 20 levels of training set size, and 2 runs of 10-fold cross-

validation at each level of training set size, the results reported in this paper

involved running c4.5 38,000 times.

For each plot generated according to the procedure outlined above, the

training set size at which accuracy ceased to grow was found by scanning

the accuracy curve from left to right, stopping when the mean of three adja-

cent accuracy estimates was no more than 1% less than the accuracy of the

tree based on all available training data (the right-most point on the accu-

racy curve, which data reduction techniques typically use as the standard for

comparison). Averaging three adjacent accuracies makes the stopping crite-

rion robust against random variations in the accuracy curve.2 Bounding the

absolute change in accuracy from below by 1% ensures that any reduction in

tree size costs very little in terms of accuracy. Then, as described above, a

linear regression of tree size on training set size was performed on the points

in the tree size curve to the right of the training set size at which accuracy

ceased to grow.

2We did not use the mean of the �nal three points on the accuracy curve minus 1%

as the accuracy threshold because those points represent di�erent training set sizes, and

their mean is therefore not an estimate (robust or otherwise) of the accuracy of trees built

on all available training instances.
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The results for ebp are summarized in Table 1. We report the percentage

of available training instances at which accuracy ceased to grow (% Kept),

results of the linear regression of tree size on training set size (p and r
2),

the percentage decrease in tree size (� size) and the absolute di�erence in

accuracy (� accuracy) between the tree built from all available training in-

stances and the tree built from the number of instances at which accuracy

ceased to grow. Given tree Tf built from the full training set and tree Tr built

from the reduced training set, � size = 100 � (size(Tf)� size(Tr))=size(Tf),

and � accuracy = accuracy(Tf)� accuracy(Tr). Linear regression requires

at least 3 data points, so no results are reported for a dataset if accuracy

continued to grow with training set sizes larger than 90% of the available

data. Also, if there is no relationship between tree size and training set size

(i.e. if p > 0:10), then p is listed as ns (not signi�cant) and no other re-

sults are given for that dataset. The �nal row of the table gives the number

of datasets for which accuracy peaked prior to seeing 100% of the available

training instances, the number of datasets for which the relationship between

tree size and training set size is signi�cant, and the means of r2, � size and

� accuracy for those datasets with signi�cant p values.

Summary information for all of the pruning methods (i.e. the information

contained in the last row of Table 1) in given in Table 2.

Consider Table 1, which shows the results for ebp. Accuracy peaked prior

to seeing 100% of the available training instances for 16 of the 19 datasets.

Every one of those 16 datasets exhibited a signi�cant relationship between

tree size and training set size beyond the point at which accuracy stopped

growing, and 12 of them were highly signi�cant (at the 0.001 level). In spite

of the fact that accuracy remains basically constant, tree size continues to

grow as training set size does (the slope of the regression line is positive in

all cases). The most remarkable feature of the table is the r2 column. Recall

that 100�r2 is the percentage of variance in tree size accounted for by training

set size. Across 16 datasets, the average r2 is 0.90. This result is interesting

for two reasons. First, it says that training set size has an extremely strong

and predictable e�ect on tree size. Increasing training set size invariably

leads to larger trees; decreasing training set size invariably leads to smaller

trees. Second, this e�ect is robust over a large group of datasets with widely

varying characteristics. Regardless of the default accuracy, the number and

types of attributes, the presence or absence of class and attribute noise, and

di�erences in a number of other features along which the datasets vary, ebp
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Dataset % Kept p r
2 � size � accuracy

australian 25 0.001 0.93 65.44 1.50

breast-cancer 100

breast-cancer-wisc 50 0.001 0.90 32.72 0.36

kr-vs-kp 45 0.001 0.77 19.18 0.58

cleveland 40 0.001 0.92 39.45 -0.81

diabetes 30 0.001 0.99 71.38 -1.92

german 50 0.001 0.98 47.86 -1.53

glass 45 0.001 0.99 50.76 -0.22

heart 100

hepatitis 40 0.001 0.84 38.93 -1.06

hypothyroid 20 0.001 0.64 36.00 0.45

iris 85 0.061 0.88 16.48 0.31

labor-neg 100

lymphography 85 0.061 0.88 16.70 -0.60

segment 75 0.001 0.94 16.71 0.61

sick-euthyroid 20 0.001 0.88 55.87 0.43

tic-tac-toe 85 0.017 0.97 8.04 -0.67

vote 20 0.001 0.85 32.38 0.45

vote1 20 0.001 0.97 64.81 -0.11

16 16 0.90 38.29 -0.14

Table 1: The e�ects of random data reduction on c4.5 with error-based

pruning (c4.5's default pruning method).

does not appropriately limit tree size as training set size increases.

The � size column of Table 1 shows the percent reduction in size from

trees built on all available training instances to trees built on the number

of instances in the % Kept column. The � accuracy column shows the

absolute di�erence in accuracy between those same trees. In Table 1 the

mean reduction in tree size for the 16 datasets with signi�cant p values is

38.29%, and the mean di�erence in absolute accuracy is �0:14%. By reducing

training set sizes through the removal of randomly selected instances, it is

possible, on average, to obtain trees that are 38.29% smaller, with a sacri�ce

in accuracy of less than two tenths of one percent. Note that accuracy was

higher with reduced training sets in 8 cases, and it was lower in 8 cases.

The results for rep and mdl (Table 2) are qualitatively the same as those

for ebp. For rep, 17 datasets show a signi�cant relationship between tree
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Pruning % Kept Mean Mean Mean

Method < 100 p < 0:1 r
2 � size � accuracy

EBP 16 16 0.90 38.29 -0.14

REP 17 17 0.75 39.32 -0.32

MDL 18 17 0.88 44.03 -0.37

CCP1SE 19 10 0.62 30.11 -0.06

CCP0SE 17 11 0.58 47.84 -0.06

Table 2: Summary of the e�ects of random data reduction for all of the

pruning methods.

size and training set size (12 at the 0.001 level) and the mean r
2 is 0.75. The

average reduction in tree size obtainable via random data reduction is 39.32%

with an average loss in accuracy of less than four tenths of one percent.

Accuracy was higher with reduced training sets in 12 of the 17 cases. For

mdl, 17 datasets had signi�cant p values (14 at the 0.001 level), the average

r
2 was 0.88, and trees based on reduced training sets were on average 44.03%

smaller and less than four tenths of one percent less accurate. Note that for

one dataset, hypothyroid, there is no signi�cant relationship between tree

size and training set size past the point at which accuracy stopped growing.

In this one case, mdl appropriately limits tree size by not adding structure

to the tree unless a concomitant increase in classi�cation accuracy occurs.

The results for ccp1se and ccp0se (Table 2) indicate that they ap-

propriately limit tree growth much more frequently than the previous three

pruning methods. Consider ccp1se. Accuracy peaked for all 19 datasets

prior to seeing 100% of the available training instances. However, only about

half of the time (10 out of 19 datasets) was there a signi�cant relationship be-

tween tree size and training set size after accuracy stopped growing. ccp1se

appropriately limits tree growth for 9 datasets, whereas ebp and rep never

did so, and mdl did so once. For the 10 datasets that exhibited signi�cant

relationships between tree size and training set size, random data reduction

still leads to substantially smaller trees (30.11% on average) with little loss

in accuracy (less than one tenth of one percent on average). The results for

ccp0se are qualitatively the same.
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3 A Case Study

The results of the previous section show that there is often a strong rela-

tionship between tree size and training set size, even when there is no such

relationship between accuracy and training set size. Furthermore, reducing

tree size by randomly removing training instances costs little or nothing in

terms of accuracy over some (often large) range of training set sizes. This

suggests that all data reduction techniques will see some decrease in tree size

simply because they are reducing the size of the training set. Clearly, one

would like to know how much of the decrease in tree size obtained by a given

data reduction method is due to how the method selects instances to remove,

and how much of the decrease is due to the fact that the method is reducing

the size of the training set. In this section, we investigate that question for

one of the data reduction methods mentioned earlier, John's robust-c4.5

(rc4.5) (John 1995).

The idea behind rc4.5 is that when a pruning algorithm turns a test node

into a leaf, it is in e�ect making a local decision to ignore those instances

that don't belong to the majority class. John reasoned that if those instances

are not informative locally, at the node where the decision to prune is made,

they may also be uninformative globally, higher up in the tree. This insight is

incorporated into the rc4.5 algorithm by removing training instances that

the pruned tree misclassi�es, and rebuilding the tree on the new, reduced

training set. This procedure is repeated, removing additional instances and

rebuilding the tree, until a tree is created the correctly classi�es all of the

remaining training instances. The result over a large number of datasets

(using c4.5 with ebp to build and prune trees) is trees that are much smaller

than those built by the standard c4.5 algorithm, but that have roughly

equivalent accuracy.

To determine how much of rc4.5's e�ect on tree size for a given dataset is

due to reduction of training set size, we need to know four items of informa-

tion: the size of the tree that c4.5 builds on the entire dataset (c4.5 Size);

the size of the tree that c4.5 builds on the reduced dataset generated by

rc4.5 (rc4.5 Size); the percentage of training instances retained by rc4.5

(% Kept); and the size of the tree that c4.5 builds when the same percentage

of randomly selected training instances are retained (rdr Size). The percent-

age of rc4.5's e�ect on tree which is due to reduction in training set size can

then be computed as 100 � (c4.5 Size�rdr Size)=(c4.5 Size�rc4.5 Size).
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To obtain estimates of c4.5 Size, rc4.5 Size and % Kept for a given

dataset, we generated 10-fold cross-validated estimates of those quantities

on 20 di�erent permutations of the data, and averaged the results over the

20 permutations. The goal of averaging the results over multiple runs of cross-

validation was to reduce the variance in our estimates. Given an estimate

of the number of training instances that rc4.5 can be expected to discard

for a dataset, rdr Size was estimated via 10-fold cross-validation on 20 new

permutations of the data where each of the 10 training sets in each run of

cross-validation were reduced by randomly discarding the same number of

instances that rc4.5 would discard.

% of RC4.5 E�ect

Dataset C4.5 Size RC4.5 Size % Kept RDR Size Due to RDR

australian 61.58 48.48 92.19 58.89 20.53

breast-cancer-wisc 20.25 18.25 97.48 20.08 8.5

cleveland 44.61 35.13 88.58 41.70 30.70

diabetes 124.96 65.99 83.11 107.24 30.05

german 157.37 108.65 84.01 131.11 53.90

glass 50.21 41.33 89.34 46.02 47.18

heart 44.26 36.28 90.68 41.31 36.97

hepatitis 14.02 11.5 90.32 14.27 -9.92

lymphography 26.10 23.98 90.14 23.62 116.98

segment 83.05 78.47 98.48 82.48 12.45

tic-tac-toe 131.55 119.67 89.44 119.35 102.69

vote1 21.96 18.32 93.17 20.14 50.00

Table 3: A decomposition of the e�ect of rc4.5 on tree size into components

attributable to reduction in training set size and to the method for choosing

which training instances to discard.

Table 3 shows the results for datasets for which rc4.5 achieved a 5% or

greater reduction in tree size over c4.5. On the hepatitis dataset, ran-

dom data reduction actually results in a larger tree than the one that c4.5

builds on the full dataset. Reduction of training set size accounts for only

about 10% of rc4.5's e�ect on two of the datasets (breast-cancer-wisc and

segment), and it accounts for 100% of rc4.5's e�ect on two other datasets

(lymphography and tic-tac-toe). On average, 41.67% of the decrease in

tree size that rc4.5 obtains is attributable to the fact that it is simply re-
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ducing the size of the training set.

What do these results mean? First, it is clear that tree sizes obtained

through random data reduction should serve as a baseline against which other

data reduction techniques measure their success, much as default accuracy or

Holte's one-rules serve as a baseline for classi�cation accuracy (Holte 1993).

If a data reduction technique improves accuracy, or obtains smaller trees rel-

ative to trees built by eliminating a comparable number of randomly selected

instances, then our con�dence in that technique's ability to identify \bad"

instances is boosted. Second, these results by themselves do not shed any

additional light on the merits of rc4.5. We know that for the 12 datasets

listed in Table 3, 42% of rc4.5's e�ect is due to reduction of training set size,

and 58% is due to rc4.5's method of selecting instances to remove. Clearly,

substantial reductions in tree size are directly attributable to the method.

rc4.5's approach to selecting training instances is highly e�ective in some

cases (e.g. segment), and highly ine�ective in others (e.g. tic-tac-toe).

Note that the algorithm's lack of success with the tic-tac-toe dataset is

not unexpected because that dataset is noise-free, and anything removed

as an \outlier" is probably an infrequent pattern rather than an anoma-

lous instance. We cannot judge whether decreases in tree size achieved by

rc4.5 after accounting for the e�ect of reducing training set size are bet-

ter or worse than those achieved by other data reduction techniques until

those other techniques undergo experiments similar to the one reported in

this section.

4 Bias in Reduced Error Pruning

Why would any of the �ve pruning methods explored earlier exhibit a patho-

logical relationship between tree size and training set size? This section

examines one form of bias inherent in several pruning methods that explains

part of that relationship. This bias is discussed in the context of REP for

concreteness and clarity, and an empirical demonstration of its e�ects is pre-

sented.

Recall that REP builds a tree with a set of growing instances, and then

prunes the tree bottom-up with a disjoint set of pruning instances. The

number of classi�cation errors that a subtree rooted at node N makes on

the pruning set, ET (N), is compared to the number of errors made when the
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subtree is collapsed to a leaf, EL(N). If ET (N) � EL(N), then N is turned

into a leaf.

Note that EL(N) is independent of the structure of the subtree rooted at

N . To compute EL(N), all of the instances in the pruning set that match

the attribute tests on the path from the root of the tree to N are treated as

a set. The number of instances in this set that do not belong to the majority

class of the set is the number of errors that the subtree would make as a leaf.

For a given pruning set, EL(N) depends only on the structure of the tree

above N , and therefore does not depend on how pruning set instances are

partitioned by additional tests below N . As a consequence, EL(N) remains

constant as the structure beneath N changes due to the e�ects of bottom-up

pruning.

In contrast to EL, ET (N) is highly dependent on the structure of the

subtree rooted at N . ET (N) is de�ned to be the number of errors made

by that subtree on the pruning set, and its value can change as pruning

takes place beneath N . Consider a subtree rooted at N
0, where N

0 is a

descendant of N . If ET (N
0) < EL(N

0) then N
0 is not pruned, and because

the structure beneath N remains unchanged, ET (N) also remains unchanged.

The alternative is that ET (N
0) � EL(N

0), in which case N 0 is turned into a

leaf. This structural change either causes ET (N) to remain unchanged (when

ET (N
0) = EL(N

0)) or to decrease (when ET (N
0) > EL(N

0)).

EL and ET are estimates of the accuracy of a subtree, as a leaf and as

a tree respectively, on the population of instances from which the pruning

set was drawn. Each time pruning occurs beneath N , EL(N) remains in-

variant and ET (N) usually decreases. This systematic deation of ET , a

statistical bias inherent in REP, produces two e�ects: (1) pruning beneath

N increases the probability that ET (N) < EL(N) and that N will therefore

not be pruned; (2) ET for the �nal pruned tree tends to be an overestimate.

These e�ects should be larger for large unpruned trees, because they a�ord

many opportunities to prune and to deate ET . These e�ects should also

be larger for small pruning sets because they increase the variance in esti-

mates of EL and ET . Highly variable estimates make it more likely that,

by random chance, ET (N) � EL(N) and the subtree rooted at N will be

pruned, thereby boosting ET for all parents of N . Note that it is also more

likely that, by random chance, ET (N) < EL(N), resulting in no change in

ET for the parents of N and the retention of the structure beneath N . In

either case, the net result is larger trees, either from the explicit retention of
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structure or increases in the bias of ET which often leads to the retention of

structure higher in the tree.

We empirically explored the e�ects of the bias described above in a series

of experiments with arti�cial data. All datasets contained instances with 30

binary attributes with uniformly distributed values. The class label for each

instance was the value of the �rst attribute, and the class label was com-

plemented to simulate noise with probability p 2 f0:0; 0:1; 0:2; 0:3; 0:4; 0:5g.

Trees were built by c4.5 and pruned with REP, and their accuracy on the

pruning set was measured. The size of the growing set was varied from 100 to

1000 instances in increments of 100, as was the size of the pruning set. This

led to 100 distinct experimental conditions (a fully factorial experiment).

For each experimental condition, 15 replicates were performed. As might be

expected from the experiments in Section 2, training set size is an almost

perfect proxy for the size of the unpruned tree. The correlation between the

two for all levels of noise exceeded 0.99.

With no noise in the data (p = 0:0), all trees contained 3 nodes (a test on

the value of the �rst attribute and two leaves) and were 100% accurate on the

pruning set, regardless of the size of the growing and pruning sets. However,

for all other noise levels, a two-way analysis of variance (ANOVA) revealed

main e�ects of growing set size and pruning set size, and an interaction

e�ect, all signi�cant at the 0.01 level. The theoretical limit on the accuracy

of the trees is 1 � p, which was always attained with the smallest growing

set (100 instances) and the largest pruning set (1000 instances). To the

extent that accuracy exceeds 1 � p, ET is a biased estimate of the accuracy

of the tree on the population. Inspection of the group means generated by

the ANOVA revealed that increasing the size of the growing set increased

bias, as did decreasing the size of the pruning set (the main e�ects found

by the ANOVA). Said di�erently, larger trees and smaller pruning sets each

lead to increased bias. Bias peaked (i.e. the overestimate of ET was the

greatest) with the largest training set size and the smallest pruning set size

(the interaction e�ect found by the ANOVA).

5 Discussion

Experiments with 5 pruning methods and 19 datasets demonstrated that tree

size is strongly dependent on training set size. As the percentage of available

14



instances used to build the tree is increased from 0% to 100%, accuracy often

peaks quickly. Despite the fact that adding more training instances has little

e�ect on accuracy, doing so has a large e�ect on tree size. Trees built with

100% percent of the available training instances are often much larger, and no

more accurate, than trees built on a small subset of the training instances.

Given the strong relationship between tree size and training set size, any

technique that removes training instances prior to tree construction could

result in smaller trees just because it is reducing the size of the training set.

The realization that small numbers of training instances su�ce to build

small, accurate trees, in addition to yielding a useful tree-simpli�cation tool,

frees data previously used in tree construction for other purposes. For ex-

ample, many pruning techniques divide the training set into two disjoint

subsets, one for building the tree and another for pruning (Quinlan 1987;

Cestnik & Bratko 1991; Mingers 1989). Larger pruning sets result in better

estimates of classi�cation accuracy and, therefore, more e�ective pruning.

Random data reduction simultaneously produces smaller trees and makes

mores data available for pruning.

Random data reduction can also serve as a method for evaluating new

pruning techniques. Continued growth in tree size with no associated increase

in accuracy points to a problem with over�tting, and experiments such as

the one described in Section 2 can be used to determine the extent of the

problem for a given pruning method. In addition, random data reduction

can be used to estimate the size of the \right" tree. One can assess whether

a pruning method results in trees of appropriate size on arti�cial datasets

by comparing the trees to tree-based representations of the function used to

compute the class label. However, that approach is not possible for real-

world data, where the function used to assign class labels is unknown (thus

the need to construct decision trees). Random data reduction can be used

to �nd the smallest tree that results in accuracy equivalent to that possible

with the full dataset, yielding an estimate of the size of the \right" tree.

Future research will include additional investigation of why three of the

pruning methods tested in this paper do not avoid over�tting as training

set size increases. One of the authors has identi�ed multiple testing in tree

construction and pruning as one source of problems, and has implemented

a promising solution (Removed for blind review. 1997). Also, decision trees

are but one type of model, and we intend to investigate the extent to which

other model construction algorithms fall victim to a pathological relationship
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between model complexity and the amount of data used to build the model.

References

Breiman, L.; Friedman, J.; Olshen, R.; and Stone, C. 1984. Classi�cation

and Regression Trees. Wadsworth International.

Brodley, C. E., and Friedl, M. A. 1996. Identifying and eliminating misla-

beled training instances. In Proceedings of the Thirteenth National Confer-

ence on Arti�cial Intelligence.

Cestnik, B., and Bratko, I. 1991. On estimating probabilities in tree pruning.

In Proceedings of the Fifth European Working Session on Learning, 138{150.

Cohen, P. R. 1995. Empirical Methods for Arti�cial Intelligence. The MIT

Press.

Holte, R. C. 1993. Very simple classi�cation rules perform well on most

commonly used dataset. Machine Learning 11:63{90.

Removed for blind review. 1997. Adjusting for multiple testing in decision

tree pruning. In Preliminary Papers of the Sixth International Workshop

on Arti�cial Intelligence and Statistics.

John, G. H. 1995. Robust decision trees: Removing outliers from databases.

In Proceedings of the First International Conference on Knowledge Discov-

ery and Data Mining.

Mingers, J. 1989. An empirical comparison of pruning methods for decision

tree induction. Machine Learning 4:227{243.

Quinlan, J. R., and Rivest, R. 1989. Inferring decision trees using the min-

imum description length principle. Information and Computation 80:227{

248.

Quinlan, J. R. 1987. Simplifying decision trees. International Journal of

Man-Machine Studies 27:221{234.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan

Kaufmann.

16


