Journal Contributions: Published
Jump to Year: 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1995 1993 1986
2008 |
|
Jr-S. Chen, C.-H. Cheng. Extracting classification rule of software diagnosis using modified MEPA. Expert Systems with Applications 34 (2008) 411-418 |
|
|
bib |
|
|
C.-J. Tsai, C.-I. Lee, W.-P. Yang. A discretization algorithm based on Class-Attribute Contingency Coefficient. Information Science 178:3 (2008) 714-731 |
|
|
bib |
|
2007 |
|
A. Kumar, D. Zhang. Hand-Geometry Recognition Using Entropy-Based Discretization. IEEE Transactions on Information Forensics and Security 2:2 (2007) 181-187 |
|
|
bib |
|
|
D.-D. Le, S. Satoh. Ent-Boost: Boosting using entropy measures for robust object detection. Pattern Recognition Letters 28 (2007) 1083-1090 |
|
|
bib |
|
|
C.-H. Lee. A Hellinger-based discretization method for numerica attributes in classification learning. Knowledge-Based Systems 20 (2007) 419-425 |
|
|
bib |
|
|
Q. Wu, D.A. Bell, G. Prasad, T.M. MacGinnity. A Distribution-Index-Based Discretizer for Decision-Making with Symbolic AI Approaches. IEEE Transactions on Knowledge and Data Engineering 19:1 (2007) 17-28 |
|
|
bib |
|
2006 |
|
M.J. Beynon. An Introduction of the Condition Class Space with Continuous Value Discretization and Rough Set Theory. International Journal of Intelligent Systems 21:2 (2006) 173-191 |
|
|
bib |
|
|
M. Boulle. MODL: A bayes optimal discretization method for continuous attributes. Machine Learning 65:1 (2006) 131-165 |
|
|
bib |
|
|
D. Janssens, T. Brijs, K. Vanhoof, G. Wets. Evaluating the performance of cost-based discretization versus entropy- and error-based discretization. Computers and Operations Research 33:11 (2006) 3107-3123 |
|
|
bib |
|
2005 |
|
F. Divina, E. Marchiori. Handling continuous attributes in an evolutionary inductive learner. IEEE Transactions on Evolutionary Computation 9:1 (2005) 31-43 |
|
|
bib |
|
|
X. Liu, H. Wang. A discretization algorithm based on a Heterogenity Criterion. IEEE Transactions on Knowledge and Data Engineering 17:9 (2005) 1166-1173 |
|
|
bib |
|
|
C.-T. Su, J.-H. Hsu. An extended Chi2 algorithm for discretization of real value attributes. IEEE Transactions on Knowledge and Data 17:3 (2005) 437-441 |
|
|
bib |
|
2004 |
|
M. Boulle. Khiops: A Statistical Discretization Method of Continuous Attributes. Machine Learning 55:1 (2004) 53-69 |
|
|
bib |
|
|
R. Butterworth, D.A. Simovici, G.S. Santos, L. Ohno-Machado. A greedy algorithm for supervised discretization. Journal of Biomedical Informatics 37:4 (2004) 285-292 |
|
|
bib |
|
|
T. Elomaa, J. Rousu. Efficient multisplitting revisited: Optima-preserving elimination of partition candidates. Data Mining and Knowledge Discovery 8:2 (2004) 97-126 |
|
|
bib |
|
|
L.A. Kurgan, K.J. Cios. CAIM Discretization Algorithm. IEEE Transactions on Knowledge and Data Engineering 16:2 (2004) 145-153 |
|
|
bib |
|
2003 |
|
C.-N. Hsu, H.-J. Huang, T.-T. Wong. Implications of the Dirichlet Assumption for Discretization of Continuous Variables in Naive Bayesian Classifiers. Machine Learning 53 (2003) 235-263 |
|
|
bib |
|
2002 |
|
H. Liu, F. Hussain, C.L. Tan, M. Dash. Discretization: An Enabling Technique. Data Mining and Knowledge Discovery 6:4 (2002) 393-423 |
|
|
bib |
|
2001 |
|
J.W. Grzymala-Busse, J. Stefanowski. Three discretization methods for rule induction. International Journal of Intelligent Systems 16:1 (2001) 29-38 |
|
|
bib |
|
2000 |
|
E.J. Clarke, B.A. Barton. Entropy and MDL discretization of continuous variables for Bayesian belief networks. International Journal of Intelligent Systems 15:1 (2000) 61-92 |
|
|
bib |
|
|
K. Kim, I. Han. Genetic algorithms approach to feature discretization in artificial neural netweoks for the prediction of stock price index. Expert Systems and Applications 19 (2000) 125-132 |
|
|
bib |
|
1999 |
|
D. Coppersmith, S.J. Hong, J.R.M. Hosking. Partitioning Nominal Attributes in Decision Trees. Data Mining and Knowledge Discovery 3 (1999) 197-217 |
|
|
bib |
|
1995 |
|
J.Y. Ching, A.K.C. Wong, K.C.C. Chan. Class-Dependent Discretization for Inductive Learning from Continuous and Mixed-Mode Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 17:7 (1995) 641-651 |
|
|
bib |
|
1993 |
|
R.C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 (1993) 63-91 |
|
|
bib |
|
1986 |
|
J.R. Quinlan. Induction of Decision Trees. Machine Learning 1 (1986) 81-106 |
|
|
bib |
|
Conference Contributions
Jump to Year: 2006 2005 2004 2003 2002 2001 1998 1997 1995 1993 1992 1991
2006 |
|
A. Ekbal. Improvement of Prediction Accuracy Using Discretization and Voting Classifier. 18th International Conference on Pattern Recognition, 2006 (ICPR 2006). (2006) 695-698 |
|
|
bib |
|
|
Y. Kang, S. Wang, X. Liu, H. Lai, H. Wang, B. Miao. Practical Approximation of Optimal Multivariate Discretization. Knowledge Science, Engineering and Management 2006 (KSEM 2006). Lecture Notes in Computer Science 4092, 2006 (2006) 556-562 |
|
|
bib |
|
|
J. Lu, Y. Yang, G.I. Webb. Incremental discretization for naïve-bayes classifier. Advanced Data Mining and Applications 2006 (ADMA 2006). Lecture Notes in Computer Science 4093, 2006 (2006) 223-238 |
|
|
bib |
|
|
G. Schmidberger, E. Frank. Unsupervised Discretization using Tree-based Density Estimation. Accepted in XVIth European Conference on Machine Learning (ECML05). Porto (Portugal, 2006)
|
|
bib |
|
|
Q. Wu, J. Cai, G. Prasad, T.M. McGinnity, D. Bell, J. Guan. A Novel Discretizer for Knowledge Discovery Approaches Based on Rough Sets. Rough Sets and Knowledge Technology 2006 (RSKT 2006). Lecture Notes in Computer Science 4062, 2006 (2006) 241-246 |
|
|
bib |
|
2005 |
|
S. Ferrandiz, M. Boull. Multivariate discretization by recursive supervised bipartition of graph. IV International Conference in Machine Learning and Data Mining in Pattern Recognition (MLDM05). Lecture Notes in Computer Science 3587, Springer-Verlag 2005, Leipzig (Germany, 2005) 253-264 |
|
|
bib |
|
|
C.-H. Lee. Discretizing continuous attributes using information theory. Computer and Information Sciences 2005 (ISCIS 2005). Lecture Notes in Computer Science 3733, 2005 (2005) 493-502 |
|
|
bib |
|
2004 |
|
J.S. Aguilar-Ruiz, J. Bacardit, F. Divina. Experimental Evaluation of Discretization Schemes for Rule Induction. Genetic and Evolutionary Computation Conference (GECCO04). Lecture Notes in Computer Science 3102, Springer-Verlag 2004, Seattle (Washington USA, 2004) 828-839 |
|
|
bib |
|
|
J. Bacardit, J.M. Garrell. Analysis and improvements of the Adaptive Discretization Intervals knowledge representation. Genetic and Evolutionary Computation Conference (GECCO04). Lecture Notes in Computer Science 3103, Springer-Verlag 2004, Seattle (Washington USA, 2004) 726-738 |
|
|
bib |
|
|
J. Bacardit, J.M. Garrell. Evolving multiple discretizations with adaptive intervals for a Pittsburgh Rule-Based Learning Classifier System. Genetic and Evolutionary Computation Conference (GECCO03). Lecture Notes in Computer Science 2724, Springer-Verlag 2004, Chicago (Illinois USA, 2004) 1818-1831 |
|
|
bib |
|
|
J.W. Grzymala-Busse. Three strategies to rule induction from data with numerical attributes. Transactions on Rough Sets II. Lecture Notes in Computer Science 3135, Springer-Verlag 2004 (2004) 54-62 |
|
|
bib |
|
|
H. Steck, T. Jaakkola. Predictive discretization during model selection. XXVI Symposium In Pattern Recognition (DAGM04). Lecture Notes in Computer Science 3175, Springer-Verlag 2004, Tbingen (Germany, 2004) 1-8 |
|
|
bib |
|
2003 |
|
|
|
|
bib |
|
2002 |
|
T. Elomaa, J. Rousu. Fast Minimum Training Error Discretization. XIX International Conference on Machine Learning (ICML02). Sydney (Australia, 2002) 131-138 |
|
|
bib |
|
|
|
|
bib |
|
|
Y. Yang, G.I. Webb. Non-Disjoint Discretization for Naive-Bayes Classifiers. XIX International Conference on Machine Learning (ICML02). Sydney (Australia, 2002) 666-673 |
|
|
bib |
|
2001 |
|
|
|
bib |
|
1998 |
|
K. Wang, B. Liu. Concurrent Discretization of Multiple Attributes. 5th Pacific Rim International Conference on Topics in Artificial Intelligence (PRICAI98). Lecture Notes in Computer Science 1531, Springer-Verlag 1998, Singapore (Singapore, 1998) 250-259 |
|
|
bib |
|
1997 |
|
J. Cerquides, R. Lopez. Proposal and Empirical Comparison of a Parallelizable Distance-Based Discretization Method. III International Conference on Knowledge Discovery and Data Mining (KDDM97). Newport Beach (California USA, 1997) 139-142 |
|
|
bib |
|
|
K.M. Ho, P.D. Scott. Zeta: A Global Method for Discretization of Continuous Variables. III International Conference on Knowledge Discovery and Data Mining. Newport Beach (California USA, 1997) 191-194 |
|
|
bib |
|
|
A.V. Kozlov, D. Koller. Nonuniform Dynamic Discretization in Hybrid Networks. Thirteenth Annual Conference on Uncertainty in AI (UAI97). Providence (Rhode Island USA, 1997) 314-325 |
|
|
bib |
|
1995 |
|
H. Liu, R. Setiono. Chi2: Feature selection and discretization of numeric attributes. VII IEEE International Conference on Tools with Artificial Intelligence (ICTAI95). Whashington DC (USA, 1995) 388-391 |
|
|
bib |
|
1993 |
|
|
|
bib |
|
1992 |
|
R. Kerber. ChiMerge: Discretization of Numeric Attributes. X National Conference on Artifical Intelligence American Association for Artificial Intelligence (AAAI92). San Jose (California USA, 1992) 123-128 |
|
bib |
|
1991 |
|
J. Catlett. On changing continuous attributes into ordered discrete attributes. European Working Session on Learning (EWSL91). Lecture Notes in Computer Science 482, Springer-Verlag 1991, Porto (Portugal, 1991) 164-178 |
|
bib |
|
|
C.C. Chan, C. Batur, A. Srinivasan. Determination of quantization intervals in rule based model for dynamic systems. Conference on Systems, Man, and Cybernetics. Virginia (USA, 1991) 1719-1723 |
|
|
bib |
|
|