
Non-Disjoint Discretization for Naive-Bayes Classifiers

Ying Yang yyang@deakin.edu.au
Geoffrey I. Webb webb@deakin.edu.au

School of Computing and Mathematics, Deakin University, Vic3217, Australia

Abstract

Previous discretization techniques have dis-
cretized numeric attributes into disjoint in-
tervals. We argue that this is neither nec-
essary nor appropriate for naive-Bayes clas-
sifiers. The analysis leads to a new dis-
cretization method, Non-Disjoint Discretiza-
tion (NDD). NDD forms overlapping inter-
vals for a numeric attribute, always locating
a value toward the middle of an interval to
obtain more reliable probability estimation.
It also adjusts the number and size of dis-
cretized intervals to the number of training
instances, seeking an appropriate trade-off
between bias and variance of probability es-
timation. We justify NDD in theory and test
it on a wide cross-section of datasets. Our
experimental results suggest that for naive-
Bayes classifiers, NDD works better than al-
ternative discretization approaches.

1. Introduction

The speed of naive-Bayes classifiers has seen them
deployed in numerous classification tasks. Many of
those tasks involve numeric attributes. For naive-
Bayes classifiers, numeric attributes are often dis-
cretized (Dougherty et al., 1995). For each numeric at-
tribute A, a categorical attribute A∗ is created. Each
value of A∗ corresponds to an interval of A. When
training a classifier, the learning process uses A∗ in-
stead of A.

For naive-Bayes classifiers, one common discretiza-
tion approach is fixed k-interval discretization
(FKID) (Catlett, 1991). Another popular one is
Fayyad and Irani’s entropy minimization heuristic dis-
cretization (FID) (Fayyad & Irani, 1993). Two re-
cent alternatives are lazy discretization (LD) (Hsu
et al., 2000) and proportional k-interval discretization
(PKID) (Yang & Webb, 2001).

In this paper, we first argue that those approaches
are inappropriate for naive-Bayes classifiers. We then

propose a new discretization scheme, non-disjoint dis-
cretization (NDD). Each of FKID, FID and PKID par-
titions the range of a numeric attribute’s values offered
by the training data into disjoint intervals. Many
learning algorithms require values of an attribute to
be disjoint, the set of instances covered by one value
can not overlap that covered by another value. Naive-
Bayes classifiers do not have that requirement. Only
one value of each attribute which applies to an in-
stance is used for classifying that instance. The re-
maining values can be ignored. During classification,
each numeric value’s conditional probability given a
class is estimated from the training data by the fre-
quency of the co-ocurrence of the value’s discretized
interval and the class, and the frequency of the class.
For values near either boundary of the interval, the
estimation might not be so reliable as for values in the
middle of the interval. Accordingly, instead of forming
disjoint intervals, we form overlapping intervals to al-
ways locate a numeric value toward the middle of the
interval to which it belongs. LD also settles a value
in the middle of an interval. But because of its lazy
methodology, LD has low computational efficiency. In
contrast, NDD is eager in that it creates all intervals
during training time, resulting in more efficient com-
putation.

To evaluate NDD, we separately implement FKID,
FID, LD, PKID, and NDD to train naive-Bayes classi-
fiers. We compare the classification errors of the result-
ing classifiers. Our hypothesis is that naive-Bayes clas-
sifiers trained on data preprocessed by NDD are able to
achieve lower classification error, compared with those
trained on data preprocessed by the alternatives.

As follows, Section 2 introduces naive-Bayes classifiers.
Section 3 describes FKID, FID, LD, and PKID. Sec-
tion 4 discusses NDD. Section 5 compares the compu-
tational complexities. Section 6 presents experimental
results. Section 7 provides a conclusion.

2. Naive-Bayes Classifiers

Naive-Bayes classifiers are simple, efficient and robust
to noisy data. One limitation, however, is that naive-

Bayes classifiers utilize an assumption that attributes
are conditionally independent of each other given a
class. Although this assumption is often violated in
the real world, the classification performance of naive-
Bayes classifiers is surprisingly good compared with
other more complex classifiers. According to Domin-
gos and Pazzani (1997), this is explained by the fact
that classification estimation under zero-one loss is
only a function of the sign of the probability estima-
tion; the classification accuracy can remain high even
while the probability estimation is poor.

In classification learning, each instance is described
by a vector of attribute values and its class can take
any value from some predefined set of values. A set
of instances with their classes, the training data, is
provided. A test instance is presented. The learner
is asked to predict its class according to the evidence
provided by the training data. We define:

• C as a random variable denoting the class of an
instance,

• X < X1, X2, · · · , Xk > as a vector of random
variables denoting the observed attribute values
(an instance),

• c as a particular class label,

• x < x1, x2, · · · , xk > as a particular observed at-
tribute value vector (a particular instance),

• X = x as shorthand for X1 = x1∧X2 = x2∧· · ·∧
Xk = xk.

Expected classification error can be minimized by
choosing argmaxc(p(C = c |X = x)) for each x.
Bayes’ theorem can be used to calculate:

p(C = c |X = x) =
p(C = c) p(X = x |C = c)

p(X = x)
. (1)

Since the denominator in (1) is invariant across classes,
it does not affect the final choice and can be dropped:

p(C = c |X = x) ∝ p(C = c) p(X = x |C = c). (2)

p(C = c) and p(X = x |C = c) need to be estimated
from the training data. Unfortunately, since x is usu-
ally an unseen instance which does not appear in the
training data, it may not be possible to directly esti-
mate p(X = x |C = c). So a simplification is made:
if attributes X1, X2, · · · , Xk are conditionally indepen-
dent of each other given the class, then:

p(X = x |C = c) = p(∧Xi = xi |C = c)

=
∏

p(Xi = xi |C = c). (3)

Combining (2) and (3), one can further estimate the
most probable class by using:

p(C = c |X = x) ∝ p(C = c)
∏

p(Xi = xi |C = c).
(4)

Classifiers using (4) are called naive-Bayes classifiers.
The independence assumption embodied in (3) makes
the computation of naive-Bayes classifiers more effi-
cient than the exponential complexity of non-naive
Bayes approaches because it does not use attribute
combinations as predictors (Yang & Liu, 1999).

3. Discretize Numeric Attributes

An attribute is either categorical or numeric. Val-
ues of a categorical attribute are discrete. Values
of a numeric attribute are either discrete or contin-
uous. (Johnson & Bhattacharyya, 1985)

p(Xi = xi |C = c) in (4) is modeled by a single real
number between 0 and 1, denoting the probability that
the attribute Xi will take the particular value xi when
the class is c. This assumes that attribute values are
discrete with a finite number, as it may not be pos-
sible to assign a probability to any single value of an
attribute with an infinite number of values. Even for
discrete attributes that have a finite but large number
of values, as there will be very few training instances
for any one value, it is often advisable to aggregate
a range of values into a single value for the purpose
of estimating the probabilities in (4). In keeping with
normal terminology of this research area, we call the
conversion of a numeric attribute to a categorical at-
tribute, discretization, irrespective of whether this nu-
meric attribute is discrete or continuous.

A categorical attribute often takes a small number
of values. So does the class label. In consequence,
p(C = c) and p(Xi = xi |C = c) can be estimated
with reasonable accuracy from the frequency of in-
stances with C = c and the frequency of instances
with Xi = xi ∧ C = c in the training data. In our
experiment,

Laplace-estimate (Cestnik, 1990) is used to estimate
p(C = c): nc+k

N+n∗k , where nc is the number of instances
satisfying C = c, N is the number of training in-
stances, n is the number of classes, and k = 1.

M-estimate (Cestnik, 1990) is used to estimate
p(Xi = xi |C = c): nci+mp

nc+m , where nci is the num-
ber of instances satisfying Xi = xi ∧ C = c, nc is the
number of instances satisfying C = c, p is p(Xi = xi)
(estimated by the Laplace-estimate), and m = 2.

When a continuous numeric attribute Xi has a large or

even an infinite number of values, as do many discrete
numeric attributes, suppose Si is the value space of
Xi, for any particular xi ∈ Si, p(Xi = xi) will be
arbitrarily close to 0. The probability distribution of
Xi is completely determined by a density function f
which satisfies (Scheaffer & McClave, 1995):

1. f(xi) ≥ 0,∀xi ∈ Si;

2.
∫

Si
f(Xi)dXi = 1;

3.
∫ bi

ai
f(Xi)dXi = p(ai < Xi ≤ bi),∀(ai, bi] ∈ Si.

p(Xi = xi |C = c) can be estimated from f (John &
Langley, 1995). But for real-world data, f is usually
unknown. Under discretization, a categorical attribute
X∗

i is formed for Xi. Each value x∗i of X∗
i corresponds

to an interval (ai, bi] of Xi. X∗
i instead of Xi is em-

ployed for training classifiers. p(X∗
i = x∗i |C = c) is es-

timated as for categorical attributes. In consequence,
probability estimation for Xi is not bounded by some
specific distribution assumption. But the difference
between p(Xi = xi|C = c) and p(X∗

i = x∗i |C = c) may
cause information loss.

3.1 Fixed k-Interval Discretization (FKID)

FKID (Catlett, 1991) divides the sorted values of a
numeric attribute into k intervals, where (given n ob-
served instances) each interval contains n/k (possibly
duplicated) adjacent values. k is determined with-
out reference to the properties of the training data1.
This method ignores relationships among different val-
ues, thus potentially suffers much attribute informa-
tion loss. But although it may be deemed simplis-
tic, this technique works surprisingly well for naive-
Bayes classifiers. One suggestion is that discretiza-
tion approaches usually assume that discretized at-
tributes have Dirichlet priors and “Perfect Aggrega-
tion” of Dirichlets can ensure that naive-Bayes with
discretization appropriately approximates the distri-
bution of a numeric attribute (Hsu et al., 2000).

3.2 Fayyad and Irani’s Entropy Minimization
Heuristic Discretization (FID)

For a numeric attribute, FID (Fayyad & Irani, 1993)
evaluates as a candidate cut point the midpoint be-
tween each successive pair of the sorted values. For
each evaluation of a candidate cut point, the data
are discretized into two intervals and the resulting
class information entropy is calculated. A binary dis-
cretization is determined by selecting the cut point for

1In practice, k is often set as 5 or 10.

which the entropy is minimal amongst all candidate
cut points. This binary discretization is applied recur-
sively, always selecting the best cut point. A minimum
description length criterion (MDL) is applied to decide
when to stop discretization.

FID is developed in the particular context of top-down
induction of decision trees. It tends to form categori-
cal attributes with few values. For decision tree learn-
ing, it is important to minimize the number of val-
ues of an attribute, so as to avoid the fragmentation
problem (Quinlan, 1993). If an attribute has many
values, a split on this attribute will result in many
branches, each of which receives relatively few train-
ing instances, making it difficult to select appropriate
subsequent tests. Naive-Bayes learning considers at-
tributes independent of one another given the class,
hence is not subject to the same fragmentation prob-
lem if there are many values for an attribute. So FID’s
bias towards forming small number of intervals may
not be so well justified for naive-Bayes classifiers as
for decision trees (Yang & Webb, 2001).

Another unsuitability of FID for naive-Bayes classifiers
is that FID discretizes a numeric attribute by calcu-
lating the class information entropy as if the naive-
Bayes classifiers only use that single attribute after
discretization. FID hence makes a form of attribute
independence assumption when discretizing. There is
a risk that this might reinforce the attribute indepen-
dence assumption inherent in naive-Bayes classifiers,
further reducing their capability to accurately classify
in the context of violation of the attribute indepen-
dence assumption.

3.3 Lazy Discretization (LD)

LD (Hsu et al., 2000) delays probability estimation
until classification time. It waits until a test instance
is presented to determine the cut points for each nu-
meric attribute. For a numeric attribute value from
the test instance, it selects a pair of cut points such
that the value is in the middle of its corresponding in-
terval whose size is the same as created by FKID with
k = 10. However 10 is an arbitrary number which has
never been justified as superior to any other value.

LD tends to have high memory and computational re-
quirements because of its lazy methodology. Eager
learning only keeps training instances to estimate the
probabilities required by naive-Bayes classifiers during
training time and discards them during classification
time. In contrast, LD needs to keep training instances
for use during classification time, which demands high
memory, especially when the training data is large.
Besides, LD defers until classification time estimating

p(Xi = xi |C = c) in (4) for each attribute of each
test instance. In consequence, where a large number
of instances need to be classified, LD will incur large
computational overhead and execute the classification
task much more slowly than eager approaches.

Although LD achieves comparable performance to
FKID and FID (Hsu et al., 2000), the high memory
and computational overhead might impede it from fea-
sible implementation for classification tasks with large
amounts of training or test data.

3.4 Proportional k-Interval Discretization
(PKID)

PKID (Yang & Webb, 2001) adjusts discretization bias
and variance by tuning the interval size and number,
and further adjusts the probability estimation bias and
variance of naive-Bayes classifiers to achieve lower clas-
sification error.

The larger the interval (ai, bi], the more instances in it,
the lower the discretization variance, hence the lower
the variance of naive-Bayes’ probability estimation.
However, the larger the interval, the less distinguishing
information is obtained about the particular value xi of
attribute Xi, the higher the discretization bias, hence
the higher the bias of the probability estimation. So,
increasing interval size (decreasing interval number)
will decrease variance but increase bias. Conversely,
decreasing interval size (increasing interval number)
will decrease bias but increase variance.

PKID aims to resolve this conflict by adjusting the
interval size and number proportional to the number
of training instances. With the number of training
instances increasing, both discretization bias and vari-
ance tend to decrease. Bias can decrease because the
interval number increases. Variance can decrease be-
cause the interval size increases. This means PKID
has greater capacity to take advantage of the addi-
tional information inherent in large volume of training
data than either FKID or FID. FKID is fixed in the
number of intervals, while FID tends to minimize the
number of resulting intervals and does not tend to in-
crease interval number accordingly.

Given a numeric attribute, supposing there are N
training instances with known values for the attribute,
the expected interval size is s (the number of instances
in each interval) and the expected interval number is
t, PKID employs (5) to calculate s and t:

s× t = N

s = t. (5)

PKID then divides the sorted values into intervals,

each of which containing s instances. Thus PKID
seeks to give equal weight to discretization bias re-
duction and variance reduction by setting the interval
size equal to the interval number (s = t ≈ b

√
Nc).

Experiments show that PKID can significantly reduce
classification error of naive-Bayes classifiers in compar-
ison with FKID and FID.

4. Non-Disjoint Discretization

4.1 Overlapping Attribute Values

For a numeric attribute value xi, discretization forms
an interval (a, b] 3 xi, and estimates p(Xi = xi|C = c)
in (4) by

p(Xi = xi|C = c) ≈ p(a < Xi ≤ b |C = c). (6)

FKID, PKID and FID are disjoint discretizations, re-
sulting in several disjoint intervals of a numeric at-
tribute’s values. No intervals overlap. When xi is near
either boundary of (a, b], p(a < Xi ≤ b |C = c) is less
likely to provide relevant information about xi than
when xi is in the middle of (a, b]. In this situation, it
is questionable to substitute (a, b] for xi.

In contrast, if discretization always locates xi in the
middle of (a, b], it is reasonable to expect more distin-
guishing information about xi by substituting (a, b]
for xi, thus better classification performance from
the resulting naive-Bayes classifiers. Lazy discretiza-
tion (Hsu et al., 2000) embodies this idea to some ex-
tent. But we suggest that “lazy” learning is not neces-
sary and propose the idea of Non-Disjoint Discretiza-
tion (NDD), which “eagerly” discretizes a numeric
attribute’s values into overlapping intervals. Since
the test instances are independent of each other, dis-
cretization does not need to form a uniform set of dis-
joint intervals for a numeric attribute, applying it to
the attribute’s entire range of values presented by the
whole test instance set. Instead, it should form an in-
terval most appropriate to the single value offered by
the current test instance. Accordingly, for a numeric
attribute, the discretized intervals formed for its two
different values might overlap with each other because
they are used for different test instances independently.

NDD can be implemented on the basis of FKID or
PKID. Since previous experiments suggest that PKID
reduces naive-Bayes classification error better than
FKID does, we base the interval size determination
strategy of NDD on that of PKID.

When discretizing a numeric attribute, given N , s,
and t defined or calculated as in (5), NDD iden-
tifies among the sorted values t′ atomic intervals,

(a′1, b
′
1], (a

′
2, b

′
2], ..., (a

′
t′ , b

′
t′], each with size equal to s′,

so that2

s′ =
s

3
s′ × t′ = N. (7)

One interval is formed for each set of three consecutive
atomic intervals, such that the kth (1 ≤ k ≤ t′ − 2)
interval (ak, bk] satisfies ak = a′k and bk = b′k+2. Each
value v is assigned to interval (a′i−1, b

′
i+1] where i is

the index of the atomic interval (a′i, b
′
i] such that a′i <

v ≤ b′i, except when i = 1 in which case v is assigned
to interval (a′1, b

′
3] and when i = t′ in which case v is

assigned to interval (a′t′−2, b
′
t′]. Figure 1 illustrates the

procedure.

As a result, except in the case of falling into the first
or the last atomic interval, a numeric value is always
toward the middle of its corresponding interval. Thus,
we prevent any numeric value from being near either
boundary of its corresponding interval, making the
probability estimation in (6) more reliable. Each in-
terval has size equal to that of PKID by comprising
three atomic intervals. Thus, we retain the advantage
of PKID: giving the same weight to bias and variance
reduction of naive-Bayes’ probability estimation.

When implementing NDD, we follow rules listed below:

• Discretization is limited to known values of a nu-
meric attribute. When applying (4) for an in-
stance, we drop any attributes with an unknown
value for this instance from the right-hand side.

• For some attributes, different training instances
may hold identical values. We keep identical val-
ues in a single atomic interval. Thus although ide-
ally each atomic interval should include exactly s′

instances, its actual size may vary.

• We hold s′ as the standard size of an atomic in-
terval. We do not allow smaller size. We allow
larger size only when it is because of the presence
of identical values, or to accommodate the last
interval if its size is between s′ and s′ × 2.

4.2 Overlapping Attributes

There are interesting distinctions between our work
and the work of ? (?). For a numeric attribute
Xi, ? first find out its k cut points using either

2Theoretically any odd number k is acceptable in 7 as
long as the same number k of atomic intervals are grouped
together later for the probability estimation. For simplic-
ity, we take k = 3 for demonstration.

Figure 1. Atomic Intervals Compose Actual Intervals

FID or FKID. Then Xi is substituted by k binary
attributes so that the jth attribute corresponds to
the test Xi ≤ cutpointj , (j = 1, . . . , k). ? thus
convert each value into a bag of tokens. The closer
two values are, the more overlapping their bags. The
goal is to keep some ordinal information of each nu-
meric attribute. The degree of ‘overlap’ measures
the ordinal dissimilarity between two numeric values.
This method is not designed for naive-Bayes classi-
fiers. It creates a large number of inter-dependent at-
tributes and hence is likely to compound naive-Bayes’
attribute inter-dependence problem. In contrast, our
approach involves only one attribute, with overlapping
values, and hence does not add to the attribute inter-
dependence problem.

It is also interesting to contrast our work to the work of
? (?). ? propose to decompose an image into overlap-
ping sub-regions when detecting faces or cars in the im-
age. Each sub-region is an attribute and naive-Bayes
classifiers are used to do classification. Like ? (?), ?
use overlapping attributes while we use overlapping at-
tribute values. ?’s approach exacerbates the attribute
inter-dependence problem while ours does not.

5. Algorithm Complexity Comparison

Suppose the number of training instances3 and classes
are n and m respectively. The complexity of each al-
gorithm is as follows.

• NDD, PKID, and FKID are dominated by sorting.
Their complexities are all O(n log n).

• FID does sorting first, an operation of complexity
O(n log n). It then goes through all the training
instances a maximum of log n times, recursively
applying “binary division” to find out at most n−
1 cut points. Each time, it will estimate n − 1
candidate cut points. For each candidate point,
probabilities of each of m classes are estimated.
The complexity of that operation is O(mn log n),

3Only instances with known values of the numeric at-
tribute are under consideration.

which dominates the complexity of the sorting,
resulting in complexity of order O(mn log n).

• LD performs discretization separately for each
test instance and hence its complexity is O(nl),
where l is the number of test instances.

Accordingly NDD has the same order of complexity as
PKID and FKID, and lower than FID and LD.

6. Experiments

We want to evaluate whether NDD can better reduce
the classification errors of naive-Bayes classifiers, com-
pared with FKID10 (FKID with k = 10), FID, PKID
and LD. Suppose N is the number of training instances
with known values of the numeric attribute to be dis-
cretized, the initial LD uses the same interval size as
FKID10 (Hsu et al., 2000). Since according to previ-
ous experiments comparing PKID and FKID10, dis-
cretization with interval size b

√
Nc performs better

than with interval size bN/10c (Yang & Webb, 2001),
and NDD also adopts b

√
Nc as its interval size, for the

sake of fair comparison, we include another version of
lazy discretization, which uses b

√
Nc as the standard

interval size. We name the initial lazy discretization
LD10, while our new variation is LD

√
N .

6.1 Experimental Design

We run our experiments on 29 datasets from the UCI
machine learning repository (Blake & Merz, 1998) and
KDD archive (Bay, 1999), listed in Table 1. This ex-
perimental suite comprises 3 parts. The first part is
composed of all the UCI datasets used by Fayyad and
Irani (1993) when publishing the entropy minimiza-
tion heuristic discretization. The second part is com-
posed of all the datasets with numeric attributes used
by Domingos and Pazzani (1997) for studying naive-
Bayes classification. The third part is composed of
larger datasets employed by Yang and Webb (2001)
for evaluating the performance of PKID on larger
datasets, so that we can check whether NDD maintains
PKID’s superiority on larger datasets by basing its in-
terval size determination strategy on that of PKID’s.

Table 1 gives a summary of the characteristics of each
datasets, including the number of instances (Size), nu-
meric attributes (Num.), categorical attributes (Cat.)
and classes (Class). For each dataset, we implemented
naive-Bayes classification by conducting a 10-trial, 3-
fold cross validation. In each fold, we discretized the
training data using each discretization method and ap-
plied the intervals so formed to the test data. We
evaluated the performance of each method in terms

of average classification error (the percentage of incor-
rect predictions) in the test across trials, which is also
listed in Table 1, except that results could not be ob-
tained for LD10 and LD

√
N on the Forest-Covertype

data due to excessive computation time.

6.2 Experimental Statistics

We employ three statistics to evaluate the experimen-
tal results in Table 1.

Mean error is the mean of errors across all datasets,
except Forest-Covertype for which not all algorithms
could complete. It provides a gross indication of rela-
tive performance. It is debatable whether errors in dif-
ferent datasets are commensurable, and hence whether
averaging errors across datasets is very meaningful.
Nonetheless, a low average error is indicative of a ten-
dency toward low errors for individual datasets. Re-
sults are presented in the “ME” row of Table 1.

Geometric mean error ratio has been explained
in detail by Webb (2000). It allows for the relative
difficulty of error reduction in different datasets and
can be more reliable than the mean error ratio across
datasets. The “GM” row of Table 1 lists the geometric
mean error ratios of PKID, FID, FKID10, LD10 and
LD

√
N against NDD respectively. Results for Forest-

Covertype are excluded from this calculation because
it could be completed neither by LD10 nor by LD

√
N .

Win/Lose/Tie record shows respectively the num-
ber of datasets for which NDD obtained better, worse
or equal performance outcomes, compared with the al-
ternative algorithms on a given measure. A one-tailed
sign test can be applied to the record. If the sign test
result is significantly low (here we use the 0.05 critical
level), it is reasonable to conclude that it is unlikely
that the outcome is obtained by chance and hence that
the record of wins to losses represents a systematic un-
derlying advantage to NDD with respect to the type of
datasets on which they have been tested. The results
are listed in Table 2.

6.3 Experimental Results

• NDD and LD
√

N both achieve the lowest mean
error among the six discretization methods.

• The geometric mean error ratios of the alterna-
tives against NDD are all larger than 1. This sug-
gests that NDD enjoys an advantage in terms of
error reduction over the type of datasets studied
in this research.

• With respect to the win/lose/tie records, NDD is
better at reducing classification error than PKID,

Table 1. Experimental Datasets and Results
Error

Dataset Size Num. Cat. Class

NDD PKID FID FKID10 LD10 LD
√

N
Labor-Negotiations 57 8 8 2 7.0 7.2 9.5 8.9 10.0 7.7
Echocardiogram 74 5 1 2 26.6 25.3 23.8 29.2 29.2 26.2
Iris 150 4 0 3 7.2 7.5 6.8 7.5 6.7 6.7
Hepatitis 155 6 13 2 14.4 14.6 14.5 14.7 14.2 14.2
Wine-Recognition 178 13 0 3 3.3 2.2 2.6 2.1 2.9 3.8
Sonar 208 60 0 2 26.9 25.7 26.3 25.2 26.4 27.3
Glass-Identification 214 9 0 3 38.8 40.4 36.8 39.4 22.0 22.2
Heart-Disease-(Cleveland) 270 7 6 2 18.6 17.5 17.5 17.1 17.6 17.8
Liver-Disorders 345 6 0 2 37.7 38.0 37.4 37.1 36.9 38.0
Ionosphere 351 34 0 2 10.2 10.6 11.1 10.2 10.8 11.3
Horse-Colic 368 7 14 2 20.0 20.9 20.7 20.9 20.8 19.7
Credit-Screening-(Australia) 690 6 9 2 14.4 14.2 14.5 14.5 13.9 14.7
Breast-Cancer-(Wisconsin) 699 9 0 2 2.6 2.7 2.7 2.6 2.6 2.7
Pima-Indians-Diabetes 768 8 0 2 25.8 26.3 26.0 25.9 25.4 26.4
Vehicle 846 18 0 4 38.5 38.2 38.9 40.5 38.1 38.7
Annealing 898 6 32 6 1.8 2.2 1.9 2.3 2.1 1.6
German 1000 7 13 2 25.4 25.5 25.1 25.4 25.3 25.0
Multiple-Features 2000 3 3 10 31.6 31.5 32.6 31.9 31.2 31.2
Hypothyroid 3163 7 18 2 1.7 1.8 1.7 2.8 2.3 1.7
Satimage 6435 36 0 6 17.5 17.8 18.1 18.9 18.4 17.5
Musk 6598 166 0 2 7.7 8.3 9.4 19.2 15.4 7.8
Pioneer-1-Mobile-Robot 9150 29 7 57 1.6 1.7 14.8 10.8 11.4 1.7
Handwritten-Digits 10992 16 0 10 12.1 12.0 13.5 13.2 12.8 12.1
Australian-Sign-Language 12546 8 0 3 35.8 35.8 36.5 38.2 36.4 35.8
Letter-Recognition 20000 16 0 26 25.6 25.8 30.4 30.7 27.9 25.5
Adult 48842 6 8 2 17.0 17.1 17.2 19.2 18.1 17.1
Ipums.la.99 88443 20 40 13 18.6 19.9 20.1 20.5 19.8 19.1
Census-Income 299285 8 33 2 23.3 23.3 23.6 24.5 25.0 23.6
Forest-Covertype 581012 10 44 7 31.4 31.7 32.1 32.9 - -

ME - - - - 18.3 18.4 19.1 19.8 19.3 18.3
GM - - - - 1.00 1.01 1.11 1.16 1.14 1.01

FID, and FKID10 with frequency significant at
0.05 level.

• NDD is expected to maintain PKID’s superior
classification performance since it produces the
same interval size as PKID does. It is further
expected to exceed PKID since it produces more
reliable probability estimation by setting values
towards the middle of their intervals. This has
been verified by the experiments. Compared with
FID, among the 17 datasets where PKID wins,
NDD also wins with only two exceptions. Among
the 12 datasets where PKID does not win, NDD
still can win 5 of them.

• NDD has more, but not significantly more wins
than LD10 or LD

√
N since they are similar in

terms of locating an attribute value toward the
middle of a discretized interval. But from the
view of feasibility, NDD is overwhelmingly supe-
rior over LD algorithms. Table 3 lists out the
computation time of training and testing a naive-
Bayes classifier on data preprocessed by NDD,
LD10 and LD

√
N respectively in one fold out

of 10-trial 3-fold cross validation for some larger
datasets4. NDD is much faster than the LD algo-
rithms.

4For Forest-Covertype, after 864000 seconds, neither

Table 2. Win/Lose/Tie Records

- PKID FID FKID10 LD10 LD
√

n

NDD Win 19 20 22 15 14
NDD Lose 8 8 4 12 10
NDD Tie 2 1 3 1 4
Sign Test 0.03 0.02 0.01 0.35 0.27

Table 3. Running Time for One Fold (Seconds)

- NDD LD10 LD
√

N
Adult 0.7 6069 6025
Ipums.la.99 13 710607 691089
Census-Income 10 415026 510859
Forest-Covertype 60 > 864000 > 864000

• LD
√

N has lower error than LD10 more of-
ten than the reverse, with Win/Lose/Tie record
15/10/3, although a sign test reveals that this is
not significant at 0.05 level (Sign Test = 0.21).

LD10 nor LD
√

N was able to obtain the classification re-
sults. Allowing for their feasibility for real-world classifi-
cation tasks, it was meaningless to keep them running. So
we stopped their processes, resulting in no precise records
for the running time.

7. Conclusion

Unlike many other learning algorithms, naive-Bayes
classifiers do not require that the values of a numeric
attribute be disjoint. Rather, due to the independence
assumption, they require that only one value of an
attribute be utilized for classification of a given in-
stance. Based on this insight, we have proposed a
new discretization method, Non-Disjoint Discretiza-
tion (NDD). NDD forms a series of overlapping inter-
vals for a numeric attribute. When discretizing a value
of a numeric attribute for a given instance, it selects
the discretized interval that places this value toward
its center. This makes the substitution of the interval
for the value more reliable for Naive-Bayes’ probabil-
ity estimation. It also seeks a good trade-off between
the bias and variance of naive-Bayes’ probability es-
timation by adjusting both the number and size of
the discretized intervals to the quantity of the train-
ing data provided. Our experiments with an extensive
selection of UCI and KDD datasets suggest that NDD
provides lower classification error for Naive-Bayes clas-
sifiers than PKID, FID and FKID. It delivers compa-
rable classification accuracy to the lazy discretization
techniques but with much greater efficiency.

References

Bay, S. D. (1999). The UCI KDD archive
[http://kdd.ics.uci.edu]. Department of Informa-
tion and Computer Science, University of California,
Irvine.

Blake, C. L., & Merz, C. J. (1998). UCI
repository of machine learning databases
[http://www.ics.uci.edu/∼mlearn/mlrepository.html].
Department of Information and Computer Science,
University of California, Irvine.

Catlett, J. (1991). On changing continuous attributes
into ordered discrete attributes. Proceedings of the
European Working Session on Learning (pp. 164–
178).

Cestnik, B. (1990). Estimating probabilities: A cru-
cial task in machine learning. Proceedings of the
European Conference on Artificial Intelligence (pp.
147–149).

Domingos, P., & Pazzani, M. (1997). On the optimal-
ity of the simple Bayesian classifier under zero-one
loss. Machine Learning, 29, 103–130.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Su-
pervised and unsupervised discretization of contin-
uous features. Proceedings of the Twelfth Interna-

tional Conference on Machine Learning (ICML’95)
(pp. 194–202). Morgan Kaufmann Publishers, Inc.

Fayyad, U. M., & Irani, K. B. (1993). Multi-interval
discretization of continuous-valued attributes for
classification learning. IJCAI-93: Proceedings of the
13th International Joint Conference on Artificial In-
telligence (pp. 1022–1027). Morgan Kaufmann Pub-
lishers, Inc.

Hsu, C.-N., Huang, H.-J., & Wong, T.-T. (2000).
Why discretization works for naive Bayesian clas-
sifiers. Machine Learning, Proceedings of the Seven-
teenth International Conference (ICML’2000) (pp.
309–406). Morgan Kaufmann Publishers, Inc.

John, G. H., & Langley, P. (1995). Estimating continu-
ous distributions in Bayesian classifiers. Proceedings
of the Eleventh Conference on Uncertainty in Ar-
tificial Intelligence. Morgan Kaufmann Publishers,
Inc.

Johnson, R., & Bhattacharyya, G. (1985). Statistics:
Principles and methods. John Wiley & Sons.

Quinlan, J. R. (1993). C4.5: Programs for machine
learning. Morgan Kaufmann Publishers, Inc.

Scheaffer, R. L., & McClave, J. T. (1995). Proba-
bility and statistics for engineers, chapter Continu-
ous Probability Distributions, 186. Duxbury Press.
Fourth edition.

Webb, G. I. (2000). Multiboosting: A technique for
combining boosting and wagging. Machine Learn-
ing, 40, 159–196.

Yang, Y., & Liu, X. (1999). A re-examination of text
categorization methods. Proceedings of ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval (SIGIR1999) (pp. 42–49).

Yang, Y., & Webb, G. I. (2001). Proportional k-
interval discretization for naive-Bayes classifiers.
12th European Conference on Machine Learning
(ECML’01) (pp. 564–575). Springer.

