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We discuss problems associated with induction of decision rules from data with numeri-
cal attributes. Real-life data frequently contain numerical attributes. Rule induction from
numerical data requires an additional step called discretization. In this step numerical
values are converted into intervals. Most existing discretization methods are used before
rule induction, as a part of data preprocessing. Some methods discretize numerical
attributes while learning decision rules. We compare the classification accuracy of a
discretization method based on conditional entropy, applied before rule induction, with
two newly proposed methods, incorporated directly into the rule induction algorithm
LEM2, where discretization and rule induction are performed at the same time. In all
three approaches the same system is used for classification of new, unseen data. As a
result, we conclude that an error rate for all three methods does not show significant
difference, however, rules induced by the two new methods are simpler and stronger.
� 2001 John Wiley & Sons, Inc.

1. INTRODUCTION

Classification systems may be created by means of machine learning tech-
niques. In this approach an expert provides a set of learning examples. A
learning algorithm is used to induce the classification knowledge from the
learning set. In this paper, knowledge is expressed in the form of decision rules.
A number of various algorithms have been already developed to induce rules.1 � 3

The LEM2 algorithm,4 based on rough set theory,5,6 is one of such rule induction
algorithms.

Rule induction techniques should not be applied initially to data bases
containing numerical attributes, i.e., attributes with real number or integer
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domains. Rules induced directly from numerical attributes are of poor quality
Ž .very short, weak and numerous . Discretization techniques, converting numerical
attributes into discrete ones, are used to solve this problem. During discretiza-
tion a number of cut-points are determined dividing the attribute domains into

Žconsecutive subintervals. Many discretization methods see overviews in Ref.
.7�9 can be applied as a preprocessing step before rule induction. Frequently,

discretization is used for single numerical attributes applying Equal Interval
Width, Equal Interval Frequency, or Minimal Entropy methods, see Ref. 7.
Other approaches include Minimal Description Length,4 discretization based on
cluster analysis,7 and other methods, e.g., Ref. 10. In general, no one discretiza-
tion method is optimal for all situations.

In the past, LEM2 was extended to handle pre-discretized numerical
attributes, see. Ref. 11. The extension of LEM2 attempted to extend intervals of
attribute-value pairs in rules while inducing rules by LEM2. This version of
LEM2 was used for discretization, as reported in Ref. 12. However, experimen-
tal results showed that it worked more efficiently for pre-discretized data.

We present a new approach to manipulate numerical data. Numerical
attributes are not discretized before performing rule induction. Instead, a
modified version of LEM2, called MODLEM, is applied directly to data with
numerical attributes. Discretization and rule induction is performed simultane-
ously. Two versions of MODLEM, using different measures to evaluate elemen-
tary conditions: class entropy and Laplacian accuracy, are presented. We evalu-
ated all of these approaches experimentally. Rule sets induced by both versions
of MODLEM were compared with rule sets obtained in traditional way, i.e.,
discretization based on conditional entropy first and then rule induction by the
‘pure’ LEM2. For MODLEM and preliminary discretization plus LEM2 the
same system was used for classifying testing data.

In the next section, the discretization technique based on conditional
entropy is presented. Then, the basic version of LEM2 is cited. Section 4
describes the new algorithm MODLEM. Results of comparative experiments
are given in Section 5. Discussion of these results and conclusions are presented
in the final section.

2. DISCRETIZATION BASED ON ENTROPY

Ž .Most rule induction algorithms are restricted to discrete symbolic data.
Before using these algorithms, a preliminary step must be performed called
discretization. To be more specific, if a variable has numerical values from an

� � � . � .interval a, b , then this interval is divided into subintervals a , a , a , a , . . . ,1 2 2 3
� �a , a , where a � a, a � a , for i � 2, 3, . . . , m, and a � b. These newm� 1 m 1 i�1 i m
subintervals may be replaced by new names or may be used as intervals, the only
difference is syntactic. Thus the original, numerical variable is transformed into
a discrete one. Numbers a , a , . . . , a are called cut-points.2 3 m�1

In our experiments we used a discretization method in which first the best
attribute was selected on the basis of minimal conditional entropy then the best
cut-point was selected using the same criterion. Conditional entropy is defined
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by

��m p a ��n p d � a �log p d � aŽ . Ž . Ž .j�1 j i�1 i j i j

� 4 � 4where a , a , . . . , a is the domain of an attribute a and d , d , . . . , d is the1 2 m 1 2 n
domain of a decision d. Thus, first the best attribute is selected taking into
account information about all attributes and the decision. Then, for a selected
attribute, the best cut-point is computed, again, taking into account the decision.
The chosen cut-point divides the set of all examples into two subsets, S and S .1 2
The remaining cut-points are selected by recursion on both S and S . The1 2
algorithm terminates when the discretized data set becomes consistent. In our
study, we use first the above discretization technique, then the LEM2 algorithm
is applied to induce decision rules from transformed data.

3. RULE INDUCTION ALGORITHM LEM2
1 Ž .LERS Learning from Examples using Rough Sets is a rule induction

algorithm that uses rough set theory 5,6 to handle inconsistent data sets. Given
an inconsistent data set, LERS computes the lower approximation and the upper
approximation for each decision concept. LEM2 algorithm1,3 of LERS induces a
set of certain rules from the lower approximation, and a set of possible rules
from the upper approximation. The procedure for inducing the rules is the same
in both cases. The algorithm LEM2 uses the following ideas.

Let B be a non-empty lower or upper approximation of a concept repre-
Ž . Ž .sented by a decision-value pair d, w . Let t be an attribute-value pair a, � , and

� �let T be a set of attribute-value pairs. Then the block of t, denoted t , is the set
of examples for which attribute a has value �. Set B depends on a set T , of
attribute-value pairs, if and only if:

� � � �� � T � t � B�
t�T

A set T is a minimal complex of B if and only if B depends on T , and no proper
subset T � of T exists such that B depends on T �. Let T be a non-empty
collection of non-empty sets of attribute value pairs. Then T is a local co�ering
of B if and only if the following conditions are satisfied:

1. Each member T of T is a minimal complex of B.
� �2. � T � B.T � T

3. T is minimal, i.e., T has the smallest possible number of members.

The algorithm LEM2 is based on computing a single local covering for each
approximation of the concept from the decision table. The user may select an
option of LEM2 with or without taking into account attribute priorities. The
other option differs from the one presented below in the selection of a pair

Ž .t � T G in the inner loop WHILE. When LEM2 does not take attribute
priorities into account, the first criterion is ignored. In our experiments all
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attribute priorities were equal to each other. The procedure LEM2 with at-
tribute priority is presented below.

Procedure LEM2
Žinput: a set B;

.output: a single local covering T of set B ;
begin

G � B;
T � �;
while G � � do

begin
T � �;
Ž . � � � 4T G � t � t � G � � ;

Ž� � .while T � � or not T � B do
begin

Ž .select a pair t � T G with the highest attribute priority, if a tie
Ž . �� � �occurs, select a pair t � T G such that t � G is maximum; if

Ž .another tie occurs, select a pair t � T G with the smallest
� �cardinality of t ; if a further tie occurs, select first pair;

� 4T � T 	 t ;
� �G � t � G;

Ž . � � � 4T G � t � t � G � � ;
Ž . Ž .T G � T G � T ;
� 4end; while

for each t in T do
� � 4� � 4if T � t � B then T � T � t ;

� 4T � T 	 T ;
� �G � B � � T ;T � T

� 4end while ;
for each T � T do

� � � 4if � S � B then T � T � T ;S� T��T 4
� 4end procedure .

4. MODLEM ALGORITHM

Preliminary discretization of numerical attributes is not required by MOD-
Ž .LEM. The algorithm MODLEM first version proposed in Ref. 13 handles

these attributes during rule induction, when elementary conditions of a rule are
created. A similar idea of processing numerical data is also considered in other
learning systems, e.g., C4.5 performs discretization and tree induction at the
same time.14

In general, MODLEM algorithm is analogous to LEM2. MODLEM also
uses rough set theory to handle inconsistent examples and computes a single
local covering for each approximation of the concept. However, an elementary
condition t is defined in a different way. In the original version of LEM2

Ž .elementary conditions are pairs a, � , while in MODLEM t for numerical
Ž . Ž .attributes are presented in the form of either a � � or a 
 � , where � is a

kind of threshold on the attribute domain. For a given attribute the choice of
Ž . Ž . � �the form, t � a � � or t � a 
 � , depends on which block t covers more

training examples from B, an approximation of the concept. A minimal complex
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T is a conjunction of such conditions. If the same attribute is chosen twice while
Ž � ..building a single rule, one may also obtain the condition a � � , � that1 2

Ž . Ž .results from an intersection of two conditions a � � and a 
 � such that2 1
� � � . Moreover, algorithm MODLEM looks for such modified conditions in a1 2
different way, as presented in procedure Find best condition.

First, values of a numerical attribute a for all examples are sorted in
increasing order. The candidates for cut-points as mid-points between successive
values of points in the sorted order. We consider only mid-points between values
characterizing examples belonging to different decision classes, following a
result from Ref. 15. This property reduces the number of candidates for
cut-points. Any cut-point is evaluated using minimal class entropy technique4

and the best cut-point is found. Having the best cut-point we choose a condition
Ž . Ž .a � � or a 
 � that covers more positive examples from the set B. The
procedure is repeated for all other attributes. As a result, the best condition is
found. If it is not sufficient for completing the rule, the strategy is repeated until
the complete rule is induced.

The general schema of the MODLEM algorithm is given below. It is
iteratively repeated for each set B being an approximation of a decision class.

Procedure MODLEM
Žinput: a set B; a set C of attributes;

.output: a single local covering T of set B ;
begin

G � B;
T � �;
while G � � do
begin

� 4T � �; candidate for condition part of the rule
� 4S � U; set of objects currently covered by T

Ž . Ž� � .while T � � or not T � B do
begin

� 4t � �; candidate for elementary condition
� 4t e�al � �; evaluation measure for t

for each attribute a � C do
begin

Ž . ŽFind best condition a, S, new t, e�al new t ; look for best condition
4for a

�if e�al new t � t e�al then evaluate if new condition is better than
4previous

begin
t � new t;
t e�al � new e�al;

end;
� 4end; for

� 4T � T 	 t ;
� �S � S � t ;

� Ž� � .4end; while not T � B
for each elementary condition t � T do

� � 4� � 4if T � t � B then T � T � t ;
� 4T � T 	 T ;

� �G � B � � T ;T � T
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� 4end; while G � �
for each T � T do

� � � 4if � S � B then T � T � T ;S� T��T 4
� 4end procedure .

procedure Find best condition
Žinput attribute a;

set S of objects;
output current best condition best t

.evaluation measure e�al best t of the best condition ;
begin

best t � �;
e�al best t � �;

�sort H; create a list of values for attribute a and objects from S sorted
Ž . 4according to increasing values; H i is the ith value in the list

Ž .for i � 1 to length H � 1 do
begin

Ž Ž . Ž .. �� � H i � H i � 1 �2; consider only mid-points between values
characterizing examples belonging to

4different classes
� Ž . 4 � Ž . 4S � x � S � a x � � ; a x is the value of attribute a for object x1
� Ž . 4S � x � S � a x 
 � ;2

Ž � � � �. Ž . Ž � � � �. Ž .e�al t � S � S 	 S �Ent S � S � S 	 S �Ent S ;1 1 2 1 2 1 2 2
� 4Ent�entropy calculated for Sj

if e�al t � e�al best then
begin

� � � �if G � S 
 G � S then2 1
Ž . Ž .best t � c 
 � else best t � c � � ;

e�al best t � e�al t
� 4end if

end
� 4end procedure .

In the above presentation we use the minimal class entropy measure to
evaluate conditions. Optionally, the user can choose another measure called
Laplacian accuracy.16 This additional option is based on the fact that for some
data, entropy has a tendency to induce ‘pure’ rules covering small number of
examples, while the user may want to discover rules covering more examples.

Ž . .Laplacian accuracy is defined as n � 1 �n � k , where k is the number ofc tot
classes in the data set, n is the number of examples in the predicted class Bc

Ž .covered by the rule or conditions from T , and n is the total number oftot
examples covered by the rule. To the contrary to entropy, the higher values of
Laplacian accuracy are more preferred to lower. The Laplacian accuracy was
used previously in the modified CN27 to avoid entropy bias, with good results. In
this paper the MODLEM algorithm was used in two versions, MODLEM-Ent-
ropy and MODLEM-Laplace, depending on the used evaluation measures.

The above description of the MODLEM algorithm was presented only for
numerical attributes. However, MODLEM can also handle the combination of
nominal and numerical attributes. For nominal attributes elementary conditions

Ž .are presented in the usual form a � � . In function Find best condition each
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� Ž .value � of the nominal attribute is considered, two subsets: S � x � S � a x �1
4� , S � S � S are calculated and used for evaluation.2 1

5. CLASSIFICATION OF TESTING EXAMPLES

For both rule induction systems we use the same LERS classification
system.17 It is a modified bucket brigade algorithm.18,19 The decision to which
concept an example belongs to is made on the basis of three factors: strength,
specificity, and support. They are defined as follows: Strength is the total number
of examples correctly classified by the rule during training. Specificity is the total
number of attribute-value pairs on the left-hand side of the rule. The matching
rules with a larger number of attribute-value pairs are considered more specific.
The third factor, support, is defined as the sum of scores of all matching rules
from the concept. The concept C for which the support, i.e., the following
expression:

Strength factor R �Specify factor RŽ . Ž .Ý
R�Rul

is the largest is the winner and the example is classified as being a member of C,
where Rul denotes the set of all matching rules R describing C.

If complete matching is impossible, all partially matching rules are identi-
fied. These are rules with at least one attribute-value pair matching the corre-
sponding attribute-value pair of an example. For any partially matching rule R,

Ž .the additional factor, called Matching factor R , defined as a ratio of matching
conditions to all conditions in the rule is computed. In partial matching, the
concept C for which the following expression

Matching factor R �Strength factor R �Specify factor RŽ . Ž . Ž .Ý
�R�Rul

is the largest is the winner and the example is classified to C, where Rul� is the
set of all partially matching rules R describing C.

6. EXPERIMENTS

In order to compare the performance of all three approaches to handle
numerical data we performed experiments on several real-life data sets. Table I
gives the summary of data statistics. Most of these data sets are well-known data
previously used for testing learning systems. They are available at the University
of California at Irvine repository. The other data sets are taken from rough set
applications. The next three tables, Tables II, III, IV present results of our
experiments. Rule sets for all three methods are characterized in terms of their

Ž .cardinality, the total number of conditions in a rule set the lower the better
and average strength of the rule, i.e., average number of learning examples

Ž . Žcovered by a single rule the higher the better . Also, the accuracy the higher
.the better , computed by ten-fold cross validation, is listed.
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Table I. Data sets.

Number Number of Number of
Data Set of Cases Attributes Concepts

Bank 66 5 2
Bupa 345 6 2
Buses 76 8 2
Glass 214 9 6
HSV 122 11 2
Iris 150 4 3
Pima 768 8 2
Bricks 216 10 2
Segmentation 210 19 7

Ž .German numeric 1000 24 2

Table II. MODLEM-Laplace.

Number Number of Average Accuracy
� �Data Set of Rules Conditions Strength %

Bank 6 7 22 94
Bupa 101 228 5.6 68
Buses 5 5 35 97
Glass 80 139 3.6 58
HSV 54 96 2.9 63
Iris 12 24 19.8 91
Pima 188 400 9.1 74
Bricks 22 38 17.7 91
Segmentation 47 80 5.3 72

Ž .German numeric 253 774 8.4 73

Table III. MODLEM-Entropy.

Number Number of Average Accuracy
� �Data Set of Rules Conditions Strength %

Bank 3 16 28 94
Bupa 79 219 6.5 66
Buses 4 5 35.3 97
Glass 43 111 6.8 72
HSV 35 92 4.7 57
Iris 10 20 20.3 94
Pima 125 426 13 74
Bricks 16 33 25.2 91
Segmentation 22 45 10.5 85

Ž .German numeric 182 751 9.3 73
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Table IV. Discretization based on entropy and LEM2.

Number Number of Average Accuracy
� �Data Set of Rules Conditions Strength %

Bank 10 13 7.5 97
Bupa 169 501 2.4 66
Buses 3 4 33.3 99
Glass 111 262 2.2 67
HSV 62 206 2.3 56
Iris 14 33 12.6 97
Pima 252 895 4.6 74
Bricks 25 61 9.2 92
Segmentation 108 322 2 64

Ž .German numeric 290 1226 5.5 74

7. CONCLUSIONS

Results of our experiments were pairwise compared using a nonparametric
test: the two-tailed Wilcoxon matched-pair signed rank test for the 5% signifi-
cance level.

� Total number of rules: the best method is MODLEM-Laplace, then MODLEM-
Entropy, the worst method is first discretization based on entropy then LEM2.

� Total number of conditions in a rule set: MODLEM-Laplace and MODLEM-
Entropy are of the same quality; the remaining method, first discretization based
on entropy then LEM2, is worse.

� Average rule strength; the best method is MODLEM Entropy, then MODLEM
Laplace, the worst method is first discretization based on entropy then LEM2.

� Accuracy: the differences for all three methods are statistically nonsignificant.

The MODLEM algorithm discretizes numerical attributes during rule in-
duction. Thus the search space for MODLEM is bigger than the search space
for original LEM2, which generates rules from already discretized attributes.
Consequently, rule sets induced by MODLEM are much simpler and stronger.
Some users may appreciate the fact that MODLEM does not require prepro-

Žcessing of data in the sense that the discretization is not visible as an indepen-
.dent part of the algorithm . In addition, the quality of rule sets measured by

accuracy is indistinguishable for all three methods.
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