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The granularity of an information system has an incumbent effect on the efficacy of the analysis
from many machine learning algorithms. An information system contains a universe of objects
characterized and categorized by condition and decision attributes. To manage the concomitant
granularity, a level of continuous value discretization ~CVD! is often undertaken. In the case of
the rough set theory ~RST! methodology for object classification, the granularity contributes to
the grouping of objects into condition classes with the same condition attribute values. This
article exposits the effect of a level of CVD on the subsequent condition classes constructed,
with the introduction of the condition class space—the domain within which the condition classes
exist. This domain elucidates the association of the condition classes to the related decision
outcomes—reflecting the inexactness incumbent when a level of CVD is undertaken. A series of
measures is defined that quantify this association. Throughout this study and without loss of
generality, the findings are made through the RST methodology. This further offers a novel
exposition of the relationship between all the condition attributes and the RST-related reducts
~subsets of condition attributes!. © 2006 Wiley Periodicals, Inc.

1. INTRODUCTION

Rough set theory ~RST!, introduced in Pawlak1,2 is a nascent technique for
data mining, in particular object classification. Central to its application is an infor-
mation system that contains a universe of objects, each characterized and cate-
gorized by condition and decision attributes, respectively. With the use of an
indiscernibility relation, condition and decision classes are constructed that group
objects together with the same condition or decision attribute values, respectively.
The outcome of an RST analysis is a set of “if . . . then . . .” decision rules, whose
sets of conditions are the values that discern the concomitant condition classes.
Reported advantages of the utilization of RST include its very clear interpretation
for the user and its independence to any statistical assumptions.3 Inspiration for
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the utilization of RST is suggested by Dünstch and Gediga4 ~p. 594!, through the
motto “Let the data speak for themselves.”

Since its introduction, a number of issues relating to RST have been eluci-
dated. One of these issues, incumbent in many machine learning algorithms, relates
to the granularity of the information system considered. The granularity describes
the level of grouping of objects into condition classes. Within RST, this granular-
ity affects the number and specificity of the decision rules constructed. To illus-
trate, a high granularity may result in a large number of decision rules being
constructed, possibly each describing only one or two objects. This large specific-
ity can affect the interpretability ~generality! exhibited in the conditions of the
decision rules. The surrounding argument is described by the well-known science
tenet—Occam’s Razor.5 In summary, it relates to the possible preference for sim-
pler models, which here may equate to the reduction in the number of conditions
in the rules and actual rules in a constructed rule set.

To allow more opportunity for interpretability, a level of continuous value
discretization ~CVD! is often employed to reduce the granularity of the associated
information system.6,7 The CVD constructs intervals over the domain of a “con-
tinuous” condition attribute, for which values of objects in an interval are consid-
ered the same. It could be argued that the utilization of a level of CVD goes against
the philosophy of the motto previously given,4 because now an object’s original
attribute values ~data! are described by a number of general interval labels. In
many cases the actual CVD is a subjective process undertaken by an expert, and as
such may include a level of bias and/or overconfidence in the operation,8 which
would impose the “voice” of the expert.

To alleviate expert bias, automated ~objective! methods of CVD have been
developed that attempt to effectively group values over a known condition attribute
domain. The general structure of these methods can be broken down into whether
they are global or local, supervised or unsupervised, and static or dynamic.9–11

Indeed, CVD methods based on RST have been constructed.12,13 Recently, Bey-
non14 introduced a number of stability measures to quantify the effectiveness of
the CVD of continuous condition attributes, irrespective of the CVD method
employed. These measures utilize the spread of the original values in each con-
structed interval. That is, although all the values in an interval are considered the
same, certain of these values may be nearer to values in the neighboring intervals
than those in its own interval. The study applied these measures in the selection of
RST related reducts with most stability ~see Section 2!; importantly, the reduct
selection criteria described was based post rule construction.

In this article, the general CVD stability measures are used to investigate the
certainty of the classification of objects in the constructed condition classes. More-
over, for a condition class ~of objects!, a set of likelihood values are evaluated that
describe its classification to each decision class ~outcome!. These sets of values
elucidate the level of clustering of condition classes that are associated with the
same decision outcome. The larger the likelihood values of condition classes to
their correct ~known! decision outcome the more stable their classification. When
these likelihood values are considered as a vector, the notion of a condition class
space is defined, for which a condition class is represented by a point in this space.
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The findings are considered on the whole set and subsets of condition
attributes, as such have a bearing on the elucidation of reducts in RST. Indeed, this
study offers a novel approach to the exposition of condition classes associated
with a reduct and their related condition classes from the whole set of condition
attributes. The well-known Iris and wine data sets are utilized to exposit the meth-
odology introduced here. As two “three-decision outcome” problems, the simplex
plot representation of data is used to further exposit the innovative analysis pre-
sented in this article.

The structure of the rest of the article is as follows: In Section 2, the funda-
mentals of RST are presented as well as stability in relation to CVD. In Section 3,
the notions of the classification stability and the condition class space are pre-
sented through the vectorization of the association of each condition class to the
decision outcomes in this space. In Sections 4 and 5, the methodology presented is
applied to the well-known Iris and wine data sets. In Section 6, conclusions are
given as well as directions for future research.

2. FUNDAMENTALS OF ROUGH SET THEORY AND
CONTINUOUS VALUE DISCRETIZATION

Central to the domain of an RST analysis is an information system or deci-
sion table. An information system is made up of a universe of objects ~U !, each
characterized by a set of condition attributes ~C! and categorized by a set of deci-
sion attributes ~D!. The nature ~value! of an attribute value to an object is a descrip-
tor value. From C and D certain equivalence classes ~condition E~C! and decision
E ~D!! are constructed through the utilization of an indiscernibility relation—
where objects in a condition or decision class have the same series of relevant
descriptor values. RST allows the association of the objects in U to a decision
outcome Yi � E~D! based on a subset of condition attributes P � C to be described
in terms of the pair of sets; lower approximation PYi and upper approximation PYi,
more formally defined by:

PYi � $oj � U 6oj � Xp � E~P ! and Xp � Yi %

PYi � $oj � U 6oj � Xp � E~P ! and Xp � Yi � �%

In words, the lower approximation is the union of all those condition classes ~Xp �
E~P !! that are contained in Yi and the upper approximation is the union of all
those condition classes that have nonempty intersection with Yi . From their defi-
nition the objects in a PYi have a definite classification to the respective decision
outcomes. A measure denoting the quality of classification is defined by g~P, D!�
(i�1
6E~D!6 6PYi6/6U 6 and represents the proportion of objects from U that have a def-

inite classification. This measure aids the identification of subsets of condition
attributes P that have the same ~or near same! level of classification as C, defined
reducts.2,15 It is from a reduct that the respective decision rules are constructed.
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Throughout the rest of this article the case of when there are q condition
attributes c1, c2, . . . , cq ~sets of continuous values! in an information system are
considered, which have been intervalized by some predetermined CVD process.
This assumption is without loss of generality, with the proposed findings applica-
ble to the case of when an information system also contains nominal condition
attributes. The labels for the intervals constructed become the associated descrip-
tor values for the objects whose original values are in the specific intervals. In
general, the j th interval of the nth condition attribute cn~1 � n � q! is defined as
Ij

n; also rgt~Ij
n ! and lft~Ij

n ! denote its right and left boundary points. Given cn has
been discretized into kn intervals, if we consider Ir

n , then from Beynon14 the pro-
portion Sn, j, r of the estimated distribution constructed from the original data in the
j th interval actually in the rth interval is given by

Sn, j, r � �
lft~Ir

n !

rgt~Ir
n ! 1

M2mn, jp
(
i�1

mn, j 1

rgt~Ij
n !� lft~Ij

n !

� exp��
mn, j

2
� x � xi

rgt~Ij
n !� lft~Ij

n !
�2�dx

where mn, j is the number of objects whose original values lie in the Ij
n interval.

The sum of the Sn, j, r values should equal one ~(r�1
kn Sn, j, r � 1!, but because each

estimated distribution exists over the domain ~�`,`!, not all of this domain may
be attainable by the condition attribute in question. Consideration has to be given
to the extreme values lft~I1

n ! and rgt~Ikn

n !. Where defined extreme values exist,
there is no problem ~e.g., percentage with 0 and 100!, for undefined extremes; the
lft~I1

n ! and rgt~Ikn

n ! are here defined as the minimum and maximum assigned val-
ues in I1

n and Ikn

n , respectively. Importantly, in the case of finite extreme values for
a condition attribute, the Sn, j, r values should be normalized.

A value Sn, j, r ~1 � j, r � kn ! is the likelihood of an object’s value from the nth
condition attribute contained in the j th interval should actually be contained in the
rth interval. In terms of descriptor values, defined as dn, j , j � 1, . . . , kn , on cn , for
an object described by dn, j , Sn, j,r is the likelihood that it should be described by dn,r .

3. CLASSIFICATION STABILITY AND CONDITION CLASS SPACE

This section considers the effect of a level of CVD undertaken on a subset of
condition attributes, resulting in a concomitant number of condition classes. More-
over, a subset of condition attributes, defined as s � C, is made up of the condition
attributes ch

s ~h �1, . . . ,6s6!. With a level of CVD inherent, based on s, the universe
of objects is partitioned into a number of condition classes Xq

s ~q � 1, . . . ,6E~s!6!.
Each condition class Xq

s is defined by a distinct series ~list! of condition attribute
descriptor values, defined as @dq,1

s ,dq,2
s , . . . ,dq,6s6

s # . To reiterate, each term dq, h
s ~h �

1, . . . ,6s6! denotes the descriptor value of the hth condition attribute for an object
in the qth condition class associated with the subset of condition attributes s.

For an object oj � U, its set of descriptor values would associate it with a
particular condition class, say Xq

s , denoted by oj � Xq
s � @dq,1

s ,dq, s
s , . . . ,dq,6s6

s # . In
the presence of CVD, for each condition attribute there exists levels of likelihood
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in which descriptor value an object value could be associated with ~see Sec-
tion 2!.14 Furthermore, given the actual condition class an object is contained
in ~oj � Xq

s !, the individual component likelihood values that describe it and all
objects in the condition class Xq

s as possibly being in another condition class, say
Xp

s , is given by @Sc1
s ,dq,1

s ,dp,1
s , Sc2

s ,dq,2
s ,dp,2

s , . . . , Sc6s6
s ,dq,6s6

s ,dp,6s6
s # . A Sch

s ,dq, h
s ,dp, h

s value is
the likelihood that an object’s original value from ch

s , denoted by the descriptor
value dq, h

s should be described by the descriptor value dp, h
s .

These are component likelihood values, which need to be aggregated together
to quantify a condition class’s ~Xq

s ! possible transference of classification ~of
objects! to that associated with another condition class, say Xp

s. Because the mem-
bership of an object to a condition class is a conjunction based on the associated
descriptor values, a geometric mean ~aggregation! value is utilized. It follows that
the likelihood that an object contained in the condition class Xq

s should be in Xp
s is

defined as CTq, p
s ~CT: condition transference! and given by

CTq, p
s � �)

h�1

6s6

Sch
s ,dq, h

s ,dp, h
s �1/6s6

, 1 � q, p � 6E~s!6

The CTq, p
s 1 � q, p � 6E~s!6 can also be considered the containment likelihood

values of objects in all the condition classes to all other condition classes, associ-
ated with a subset of condition attributes s. The importance of these “contain-
ment” values is apparent at the decision class level. That is, a subset of condition
attributes defines a series of condition classes including objects classified to a
number of decision outcomes. Again, without loss of generality, but following the
deterministic nature of RST, here only condition classes that each contain objects
to single decision outcomes are further considered.

For the condition classes considered, they have CTq, p
s values associating

them with the different decision outcomes through their direct association with the
other condition classes. Using this relationship, a measure defined as DTq, i

s ~DT:
decision transference! is presented that quantifies the association of a condition
class Xq

s to a decision outcome, say Yi � E~D!, that includes evidence from all
condition classes, and is given by

DTq, i
s �

(
Xp

s�Yi

CTq, p
s

(
j�1

6E~D!6� (
Xp

s�Yj

CTq, p
s � �

(
Xp

s�Yi

�)
h�1

6s6

Sch
s ,dq, h

s ,dp, h
s �1/6s6

(
j�1

6E~D!6� (
Xp

s�Yj

�)
h�1

6s6

Sch
s ,dq, h

s ,dp, h
s �1/6s6�

for 1 � q � 6E~s!6 and 1 � i � 6E~D!6. A series of these values can be constructed,
DTq,1

s ,DTq,2
s , . . . ,DTq,6E~D!6

s , where DTq, i
s is the likelihood that a condition class Xq

s

found from the subset of condition attributes s � C should be associated with a
decision outcome Yi � E~D!. This expression allows each condition class to pro-
vide equal evidence, subject to their CTq, p

s values, to each other’s association with
all the possible decision outcomes. However, each condition class contains differ-
ent numbers of objects, which indicates the importance ~relevance! of the individ-
ual condition classes. To include a measure of the relevance of each condition
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class, a series of weighted DTq, i
s values, defined as wDTq, i

s , are constructed and
given by

wDTq, i
s �

(
Xp

s�Yi

~ ln6Xp
s 6CTq, p

s !

(
j�1

6E~D!6� (
Xp

s�Yj

~ ln6Xp
s 6CTq, p

s !�

�

(
Xp

s�Yi

�ln6Xp
s 6�)

h�1

6s6

Sch
s ,dq, h

s ,dp, h
s �1/6s6�

(
j�1

6E~D!6� (
Xp

s�Yj

�ln6Xp
s 6�)

h�1

6s6

Sch
s ,dq, h

s ,dp, h
s �1/6s6��

The ln6Xp
s6 term is a level of grouping of the objects. In the limit, a condition class

containing one object ~possible outlier! would mean ln6Xp
s 6 � 0; hence the condi-

tion class contributes nothing in support to the classification of the condition class
in question. As the size of a condition class increases, so ln6Xq

s 6 also increases, but
not linearly. In summary, the expressions presented in this section are a conse-
quence of the need to have undertaken a level of CVD on the condition attributes
in an information system. The DTq, i

s and wDTq, i
s 1 � q � 6E~s!6, 1 � i � 6E~D!6

values are constructed from the evidence of all the considered condition classes on
the association of a condition class to each decision outcome. This possibility of
supporting evidence from other condition classes is a consequence of the inexact-
ness of interval association of object values in the intervals constructed from the
CVD undertaken.

For a single condition class Xq
s , the list @DTq,1

s ,DTq,2
s , . . . ,DTq,6E~D!6

s # can be

considered a vector, defined as DTq
s ~similar for wDTq

s!, representing its associa-
tion with all the decision outcomes. The respective series of DTq

s ~or wDTq
s! q �

1, . . . ,6E~s!6 vectors place the condition classes in relation to each other, in terms
of their classification. Moreover, they place each condition class in the respective
condition class space for the problem in question. For an information system with
6E~D!6 decision outcomes, the optimum vectors @1,0,0, . . . ,0,0# , @0,1,0, . . . ,0,0# , . . . ,
@0,0,0, . . . ,0,1# would define where a condition class has definite ~certain! associ-
ation to a single decision outcome.

This vectorization allows one more exposition of the effectiveness of the CVD
undertaken. That is, it allows the quantification of the level of overall certainty in
the correct classification of the objects in the information system ~post CVD!.
This quantification is simply the aggregations of the distances of each condition
class vector to their optimum representation—certainty in classification. Hence a
measure of the influence of CVD is the overall distances of the DTq

s or wDTq
s, q �

1, . . . ,6E~s!6 vectors for each condition class Xq
s from their respective optimum

vector. Moreover, a mean Euclidean distance could be used in each case, defined
as j s and jw

s , which is the mean of the respective distances.
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4. APPLICATION OF THE CONDITION CLASS STABILITY
ANALYSIS WITH THE IRIS DATA SET

In this section, the findings presented in Section 3 are applied to the well-
known Iris data set. This data set is made up of three classes of 50 plants each,
where a decision class ~outcome! refers to a particular type of Iris plant ~i.e., Iris
Setosa, Iris Versicolour, and Iris Virginica!. Four continuous characteristics ~con-
dition attributes! are used to describe each plant, namely sepal length ~c1!, sepal
width ~c2 !, petal length ~c3 !, and petal width ~c4 !. For brevity we consider the
paper16 that includes a level of CVD on the Iris data set to reduce the overall
granularity of the associated information system ~see Table I!.

In Table I, the interval boundary values defining the CVD of each condition
attribute are reported.3,16 Also presented ~in parentheses! are the number of origi-
nal values in each defined interval. Following Ref. 14, a series of estimated distri-
butions can be constructed for each set of objects ~plants! in the intervals. This
uses the method of Parzen windows,17 with its functional form included in the
expression for Sn, j, r ~in Section 2!, the results are reported in Figure 1.

In Figure 1, the graphs of the constructed estimated distributions are pre-
sented; also included are vertical dashed lines defining the boundaries between
intervals ~from Table I!. An initial inspection of the graphs show a level of overlap
in the estimated distributions; this is due to their domains each being over ~0, `!
but highlights possible indecisiveness in the boundaries constructed. To illustrate
the caution that should be taken when deciding on the interval boundary values,
the intervals “3” and “4” of the c2 attribute are further considered ~see Figure 2!.

Table I. Intervalization of the condition attributes in the Iris data set.16

Very small ~1! Small ~2! Large~3! Very Large ~4!

c1 x � 50 ~22! 50 � x � 60 ~61! 60 � x � 70 ~54! 70 � x ~13!
c2 x � 24 ~8! 24 � x � 31 ~75! 31 � x � 38 ~55! 38 � x ~12!
c3 x � 30 ~50! 30 � x � 40 ~11! 40 � x � 55 ~61! 55 � x ~28!
c4 x � 10 ~50! 10 � x � 14 ~28! 14 � x � 21 ~49! 21 � x ~23!

Figure 1. Estimated distributions of attribute values in each constructed interval.
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In Figure 2, the estimated distributions associated with the “3” and “4” inter-
vals are presented with the positions and frequencies of the original values also
shown ~on the top axis!. To illustrate, 12 plants have the value 31 mm for c2 ~sepal
width!. These values show that the boundary point between these intervals is at the
lowest value in the “4” interval and away from the larger values in the “3” inter-
val. This boundary value was chosen by an expert and its effect on the “4” interval
is noticeable. That is, its estimated distribution spreads considerably into the domain
of the “3” interval, a consequence of a majority of the values in the “4” interval
being close to the ~left! boundary value. This then offers a level of likelihood that
values in the “4” interval should be in the “3” interval. This indecisiveness can be
quantified, with the Sn, j, r values associated with each condition attribute interval-
ized ~see Table II!.

In Table II, the values ~in bold! on the leading diagonals represent the stabil-
ity ~Sn, j, j values! of the intervals in question. That is, the likelihood that an object’s
original value is in the correct interval ~described by the correct descriptor value!.
The lowest of these is associated with I4

2 , the “4” interval of the c2 attribute
~S2,4,4 � 0.6883!. Explanation for this low value is given, in part, with the discus-
sion accompanying Figure 2 presented earlier. The other values Sn, j, r ~ j � r! are
the likelihood that an object’s original value should be in another ~neighboring!
interval. Understandably these other likelihood values are largest with the imme-
diate neighbor intervals of the Sn, j, j values. All the Sn, j, r values are then used to
define the levels of classification of each condition class.

Figure 2. Detailed information on the “3” and “4” intervals of the c2 condition attribute.

Table II. Sn, j, r values for the different intervals describing condition attributes.

Intervals Intervals

Sn, j, r value “1” “2” “3” “4” Sn, j, r value “1” “2” “3” “4”

c1 “1” 0.9082 0.0918 0.0000 0.0000 c3 “1” 1.0000 0.0000 0.0000 0.0000
“2” 0.1182 0.8630 0.0188 0.0000 “2” 0.0872 0.7552 0.1576 0.0000
“3” 0.0000 0.0890 0.8878 0.0232 “3” 0.0000 0.0694 0.9111 0.0195
“4” 0.0000 0.0000 0.1282 0.8718 “4” 0.0000 0.0000 0.1751 0.8249

c2 “1” 0.8503 0.1497 0.0000 0.0000 c4 “1” 1.0000 0.0000 0.0000 0.0000
“2” 0.0320 0.9297 0.0384 0.0000 “2” 0.1357 0.8204 0.0439 0.0000
“3” 0.0000 0.1453 0.8458 0.0089 “3” 0.0001 0.1224 0.8555 0.0221
“4” 0.0000 0.0000 0.3117 0.6883 “4” 0.0000 0.0000 0.1484 0.8516
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Using these constructed intervals with all condition attributes C ~� $c1, c2,
c3, c4 %! there exist 34 condition classes. Of these, 30 include objects categorized
to the same decision outcomes within an individual condition class. The associated
quality of classification is g~C, D!� 0.7733, indicating 116 out of the 150 plants
are assigned a definite classification. Concentrating on these 30 condition classes,
their respective CTq, p

s 1 � q, p � 6C 6 values are next found ~a total of 900 individ-
ual values!. Due to the number of these values, they are not presented. Moving on
from the containment likelihood values, the association of condition classes to
each of the decision outcomes is investigated. Table III reports the DTq

C and
wDTq

C ~q � 1, . . . ,30! vectors for the 30 condition classes considered.
In Table III, for each of the condition classes the descriptor values that de-

fine it and the number of objects it contains are also presented. With three deci-
sion outcomes, each condition class is described by a vector DTq

C � @DTq,1
C ,

DTq,2
C ,DTq,3

C # ~similarly for wDTq
C!. Inspection of these vectors shows the spe-

cific DTq, i
C value of the actual ~known! decision outcome each condition class is

Table III. Stability details on condition classes Xq
C , q � 1, . . . ,30.

q E~D! Xq
C : 6Xq

C 6 @DTq,1
C ,DTq,2

C ,DTq,3
C # @wDTq,1

C ,wDTq,2
C ,wDTq,3

C #

1 1 @1, 1, 1, 1# : 1 0.9980, 0.0020, 0.0000 0.9976, 0.0024, 0.0000
2 1 @1, 2, 1, 1# : 6 0.9983, 0.0017, 0.0000 0.9991, 0.0009, 0.0000
3 2 @1, 2, 2, 2# : 1 0.2487, 0.6707, 0.0000 0.3907, 0.6093, 0.0000
4 3 @1, 2, 3, 3# : 1 0.0005, 0.5704, 0.4291 0.0015, 0.9982, 0.0004
5 1 @1, 3, 1, 1# : 13 0.9991, 0.0009, 0.0001 0.9997, 0.0003, 0.0000
6 2 @2, 1, 2, 2# : 2 0.1331, 0.8390, 0.0279 0.0748, 0.9246, 0.0006
7 2 @2, 1, 3, 2# : 1 0.0027, 0.9347, 0.0626 0.0014, 0.9791, 0.0195
8 1 @2, 2, 1, 1# : 1 0.9980, 0.0020, 0.0000 0.9981, 0.0019, 0.0000
9 2 @2, 2, 2, 2# : 7 0.1866, 0.7745, 0.0389 0.2125, 0.7869, 0.0006

10 2 @2, 2, 2, 3# : 1 0.0175, 0.7865, 0.1960 0.0322, 0.9408, 0.0270
11 2 @2, 2, 3, 2# : 10 0.0041, 0.8954, 0.1005 0.0045, 0.9729, 0.0226
12 3 @2, 2, 3, 4# : 1 0.0000, 0.2150, 0.7850 0.0000, 0.0000, 1.0000
13 1 @2, 3, 1, 1# : 19 0.9991, 0.0009, 0.0000 0.9995, 0.0005, 0.0000
14 2 @2, 3, 3, 3# : 1 0.0004, 0.6412, 0.3584 0.0014, 0.7520, 0.2466
15 1 @2, 4, 1, 1# : 10 0.9999, 0.0001, 0.0000 0.9999, 0.0001, 0.0000
16 2 @3, 1, 3, 2# : 2 0.0007, 0.9485, 0.0508 0.0000, 0.9315, 0.0685
17 2 @3, 2, 3, 2# : 5 0.0015, 0.8881, 0.1104 0.0011, 0.9143, 0.0846
18 3 @3, 2, 3, 4# : 1 0.0000, 0.1253, 0.8747 0.0000, 0.0000, 1.0000
19 3 @3, 2, 4, 3# : 4 0.0000, 0.2665, 0.7335 0.0000, 0.2926, 0.7074
20 3 @3, 2, 4, 4# : 4 0.0000, 0.0393, 0.9607 0.0000, 0.0000, 1.0000
21 3 @3, 3, 3, 4# : 4 0.0000, 0.1741, 0.8259 0.0000, 0.0000, 1.0000
22 3 @3, 3, 4, 3# : 1 0.0000, 0.2142, 0.7858 0.0000, 0.2121, 0.7879
23 3 @3, 3, 4, 4# : 7 0.0000, 0.0733, 0.9267 0.0000, 0.0000, 1.0000
24 2 @4, 2, 4, 3# : 4 0.0000, 0.1677, 0.8323 0.0000, 0.1336, 0.8664
25 3 @4, 2, 4, 4# : 4 0.0000, 0.0438, 0.9562 0.0000, 0.0000, 1.0000
26 2 @4, 3, 3, 3# : 1 0.0000, 0.3970, 0.6029 0.0000, 0.2571, 0.7429
27 3 @4, 3, 4, 3# : 1 0.0000, 0.1657, 0.8343 0.0000, 0.0971, 0.9029
28 3 @4, 3, 4, 4# : 1 0.0000, 0.0753, 0.9247 0.0000, 0.0000, 1.0000
29 3 @4, 4, 4, 3# : 1 0.0000, 0.1440, 0.8560 0.0000, 0.0369, 0.9631
30 3 @4, 4, 4, 4# : 1 0.0000, 0.0788, 0.9212 0.0000, 0.0000, 1.0000
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associated with is given in bold and the largest value in each vector is underlined.
For an illustration of the construction of a vector, see later in this section. A brief
inspection of the vectors shows three DTq

C ~q � 4, 24, and 26! and three wDTq
C

~q � 4, 24, and 26! that have different values in bold and underlined. These incon-
gruencies identify where the majority association to a decision outcome based on
“neighbor” condition classes ~because of CVD! is different from its known classi-
fication. This highlights the possible detrimental impact of the CVD undertaken.

When the condition classes are considered through these vectors, their
relationship to each other requires an understanding of the domain they can
exist in. The domain in this case is defined as the condition class space ~see
Section 3!. For the Iris data set, each vector sums to one ~e.g., (i�1

3 DTq, i
C � 1!;

with three decision outcomes the condition class space ~using DTq
C or wDTq

C!
can be represented by a simplex plot ~see Figure 3!.

In Figure 3a, the simplex plot includes simplex coordinates ~denoted by
circles! that each represent an ordered vector DTq

C � @DTq,1
C ,DTq,2

C ,DTq,3
C # ,

q � 1, . . . ,30 ~similar for wDTq
C; see Figure 3b!. The dashed lines present the

boundaries that partition where in a simplex plot a single value in a DTq
C vector is

the largest, the “1,” “2,” and “3” labels at the vertices denoting the ~ith! index of
the ~dominant! decision outcomes Y1, Y2, and Y3, respectively. Hence, for correct
classification, a condition class associated with the decision outcome Yi � E~D!
should be in the region, nearest to the ith labeled vertex.

The presented simplex plots elucidate a number of features associated with
the DTq

C and wDTq
C vectors. First, the nearer a simplex coordinate is to a vertex

the increased dominance of a single DTq, i
C or wDTq, i

C value is apparent, the more
association of a condition class to a single decision outcome. Second, a simplex
coordinate along an edge indicates an association to only two decision classes
~from the three possible!. In this case the lack of simplex coordinates inside the
simplex plot shows a limited presence of association of condition classes to all
three decision outcomes. This identifies in the condition classes considered that
their clustering within the condition class space is mostly in groups that are asso-
ciated with single or pairs of decision outcomes. To quantify the effect of the CVD

Figure 3. Simplex plot representation of the classification stability of each condition class.
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and the condition class’s classification to their correct decision outcomes, the jC

and jw
C distance measures are considered. As a consequence of the CVD under-

taken on all four condition attributes in the Iris data set, the resultant distance
values are jC � 0.2128 and jw

C � 0.1743.
Until now the introduction of the condition class space has included the vec-

torization of the individual condition classes from C and their association to each
decision outcome. We next consider the vectorization of condition class’s classifi-
cation associated with proper subsets of condition attributes, in particular reducts
~in RST!. In the investigation of reducts in this case, no proper subset ~P � C!
offers the same level of quality of classification as C. Here consideration is given
to proper subsets of condition attributes that offer a similar level of quality of
classification.15 Investigation showed $c1, c3, c4% is a “near” reduct, defined as r1,
with g~$c1, c3, c4 %, D!� 0.7667 ~one less plant given a definite classification than
with C!. For this reduct it has 17 condition classes, of which 15 include objects
categorized to the same decision outcome within their individual condition classes
~see Table IV!.

In Table IV, each of the 15 condition classes considered is defined based on
its set of descriptor values and also the number of objects contained therein ~ranges
from 1 to 30!. The number of objects in the condition classes sum to 115, which
confirms the quality of classification value g~$c1, c3, c4 %, D!� 0.7667 for the reduct
r1 � $c1, c3, c4%. The DTq

r1 and wDTq
r1 vectors are also presented for each condition

class. This reduct only has the condition attribute c2 missing from the whole set of
condition attributes. It follows that the condition classes Xq

C q � 1, . . . ,30 may be
individually associated with one of the condition classes Xq

r1 q � 1, . . . ,15, by the
removal of the c2 condition attribute. Hence, also shown in Table IV ~last column!
are the condition class indexes of Xq

C , which are associated with the respective Xq
r1

condition classes. Inspection of these values shows the condition class X14
C is not

Table IV. Stability details on condition classes Xq
r1 , q � 1, . . . ,15.

q E~D! Xq
r1 : 6Xq

r16 @DTq,1
r1 ,DTq,2

r1 ,DTq,3
r1 # @wDTq,1

r1 ,wDTq,2
r1 ,wDTq,3

r1 # Xq
C

1 1 @1, 1, 1#: 20 0.9996, 0.0004, 0.0000 0.9999, 0.0001, 0.0000 1, 2, 5
2 2 @1, 2, 2#: 1 0.1547, 0.7571, 0.0882 0.4206, 0.5794, 0.0000 3
3 3 @1, 3, 3#: 1 0.0000, 0.4024, 0.5976 0.0002, 0.9998, 0.0000 4
4 1 @2, 1, 1#: 30 0.9996, 0.0004, 0.0000 0.9998, 0.0002, 0.0000 8, 13, 15
5 2 @2, 2, 2#: 9 0.1277, 0.8359, 0.0364 0.2511, 0.7488, 0.0001 6, 9
6 2 @2, 2, 3#: 1 0.0050, 0.8008, 0.1942 0.0201, 0.9430, 0.0369 10
7 2 @2, 3, 2#: 11 0.0007, 0.9024, 0.0969 0.0014, 0.9866, 0.0120 7, 11
8 3 @2, 3, 4#: 1 0.0000, 0.1230, 0.8770 0.0000, 0.0001, 0.9999 12
9 2 @3, 3, 2#: 7 0.0003, 0.9313, 0.0684 0.0005, 0.9393, 0.0603 16, 17

10 3 @3, 3, 4#: 5 0.0000, 0.1198, 0.8802 0.0000, 0.0000, 1.0000 18, 21
11 3 @3, 4, 3#: 5 0.0000, 0.2467, 0.7533 0.0000, 0.2250, 0.7750 19, 22
12 3 @3, 4, 4#: 11 0.0000, 0.0331, 0.9669 0.0000, 0.0000, 1.0000 20, 23
13 2 @4, 3, 3#: 1 0.0000, 0.6456, 0.3544 0.0000, 0.3131, 0.6869 26
14 3 @4, 4, 3#: 6 0.0000, 0.2696, 0.7304 0.0000, 0.0824, 0.9176 24, 27, 29
15 3 @4, 4, 4#: 6 0.0000, 0.1097, 0.8903 0.0000, 0.0000, 1.0000 25, 28, 30
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included in an Xq
r1 condition class, the reason being that it is now included with

“still” not considered condition classes of C ~of which there are four!.
For a single condition class, namely X13

r1 , different wDT13, i
r1 values within

the wDT13
r1 vector are in bold and underlined in Table IV. In the wDT13

r1 vector,
the most dominant decision outcome ~d1 � 3, underlined! it is associated with is
different from its actual decision outcome ~d1 � 2, in bold!. This condition class is
made up of a single object, thus highlighting the possible outlier nature of it. With
a manageable number of condition classes considered, the construction of the
wDT13

r1 vector @wDT13,1
r1 ,wDT13,1

r1 ,wDT13,3
r1 # is next presented, with the numerator

parts of the individual wDT13, i
r1 , i �1, 2, and 3, expressions only given ~note some

0.0000 values are small values!:

(
Xp

r1�Y1

�ln6Xp
r1 6�)

h�1

6r16

Sch
r1 ,d13, h

r1 ,dp, h
r1 �1/6r16�

� ln6X1
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d1, h
r1 �1/3

� ln6X4
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d4, h
r1 �1/3

� ln6X1
r1 6~S1,4,1 � S3,3,1 � S4,3,1!

1/3 � ln6X4
r1 6~S1,4,2 � S3,3,1 � S4,3,1!

1/3

� ln~20!~0.0000 � 0.0000 � 0.0001!1/3

� ln~30!~0.0890 � 0.0000 � 0.0001!1/3

� 2.9957 � 0.0000 � 3.4012 � 0.0000

� 0.0000 � 0.0000

� 0.0000

(
Xp

r1�Y2

�ln6Xp
r1 6�)

h�1

6r16

Sch
r1 ,d13, h

r1 ,dp, h
r1 �1/6r16�

� ln6X2
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d2, h
r1 �1/3

� ln6X5
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d7, h
r1 �1/3

� ln6X6
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d6, h
r1 �1/3

� ln6X7
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d7, h
r1 �1/3

� ln6X9
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d9, h
r1 �1/3

� ln6X13
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d13, h
r1 �1/3

� ln6X2
r1 6~S1,4,1 � S3,3,2 � S4,3,2 !

1/3 � ln6X5
r1 6~S1,4,2 � S3,3,2 � S4,3,2 !

1/3

� ln6X6
r1 6~S1,4,2 � S3,3,2 � S4,3,3 !

1/3 � ln6X7
r1 6~S1,4,2 � S3,3,3 � S4,3,2 !

1/3

� ln6X9
r1 6~S1,4,3 � S3,3,3 �S4,3,2 !

1/3 � ln6X13
r1 6~S1,4,4 � S3,3,3 � S4,3,3 !

1/3
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� ln~1!~0.0000 � 0.0694 � 0.1224!1/3

� ln~9!~0.0000 � 0.0694 � 0.1224!1/3

� ln~1!~0.0000 � 0.0694 � 0.8555!1/3

� ln~11!~0.0000 � 0.9111 � 0.1224!1/3

� ln~7!~0.1282 � 0.9111 � 0.1224!1/3

� ln~1!~0.8718 � 0.9111 � 0.8555!1/3

� 0.0000 � 0.0000 � 2.1972 � 0.0029 � 0.0000 � 0.0056

� 2.3979 � 0.0069 � 1.9459 � 0.2427 � 0.0000 � 0.8792

� 0.0000 � 0.0064 � 0.0000 � 0.0166 � 0.4723 � 0.0000

� 0.4953

(
Xp

r1�Y3

�ln6Xp
r1 6�)

h�1

6r16

Sch
r1 ,d13, h

r1 ,dp, h
r1 �1/6r16�

� ln6X3
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d3, h
r1 �1/3

� ln6X8
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d8, h
r1 �1/3

� ln6X10
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d10, h
r1 �1/3

� ln6X11
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d11, h
r1 �1/3

� ln6X12
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d12, h
r1 �1/3

� ln6X14
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d14, h
r1 �1/3

� ln6X15
r1 6�)

h�1

3

Sch
r1 ,d13, h

r1 ,d15, h
r1 �1/3

� ln6X3
r1 6~S1,4,1 � S3,3,3 � S4,3,3 !

1/3 � ln6X8
r1 6~S1,4,2 � S3,3,3 � S4,3,4 !

1/3

� ln6X10
r1 6~S1,4,3 � S3,3,3 � S4,3,4 !

1/3 � ln6X11
r1 6~S1,4,3 � S3,3,4 � S4,3,3 !

1/3

� ln6X12
r1 6~S1,4,3 � S3,3,4 � S4,3,4 !

1/3 � ln6X14
r1 6~S1,4,4 � S3,3,4 � S4,3,3 !

1/3

� ln6X15
r1 6~S1,4,4 � S3,3,4 � S4,3,4 !

1/3

� ln~1!~0.0000 � 0.9111 � 0.8555!1/3

� ln~1!~0.0000 � 0.9111 � 0.0221!1/3

� ln~5!~0.1282 � 0.9111 � 0.221!1/3

� ln~5!~0.1282 � 0.0195 � 0.8555!1/3
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� ln~11!~0.1282 � 0.0195 � 0.221!1/3

� ln~6!~0.8718 � 0.0195 � 0.8555!1/3

� ln~6!~0.8718 � 0.0195 � 0.0221!1/3

� 0.0000 � 0.0000 � 0.0000 � 0.0039

� 1.6094 � 0.1371 � 1.6094 � 0.1289

� 2.3979 � 0.0381 � 1.7918 � 0.2442 � 1.7918 � 0.0722

� 0.0000 � 0.0000 � 0.2207 � 0.2075 � 0.0913 � 0.4376 � 0.1293

� 1.0864

Normalizing these values 0.0000, 0.4953, and 1.0864 gives @wDT13,1
r1 ,

wDT13,2
r1 ,wDT13,3

r1 # � @0.0000, 0.3131, 0.6869# , as reported in Table IV. As with
the whole set of condition attributes, the DTq

r1 and wDTq
r1 vectors can be repre-

sented as simplex coordinates in a simplex plot ~see Figure 4!.
In Figure 4, the clustering of the DTq

r1 and wDTq
r1 vectors is similar to those

presented in the respective simplex plots concerned with DTq
C and wDTq

C. An
interesting example of the relationship between the condition classes associated
with C and r1 is that of X5

r1 and its relatives X6
C and X9

C ~see Tables III and IV!. The
term relative identifies X6

C and X9
C have the same descriptor values for the condi-

tion attributes in r1 but are augmented with descriptor values from c2. In the sim-
plex plots in Figure 3, the simplex coordinates of the associated DT6

C and DT9
C

~wDT6
C and wDT9

C! vectors are near to each other, and, importantly, near the
respective simplex coordinate of the DT5

r1 ~wDT5
r1! vector in the simplex plots

presented in Figure 4.
One further concern is about the j r1 and jw

r1 measures of certainty in overall
classification that can be found for the condition classes associated with r1. These
are found to be j r1 � 0.2248 and jw

r1 � 0.1774. For both C and r1, the jw
C and jw

r1

Figure 4. Simplex plot representation of the classification stability of each condition class.
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values are less than their respective jC and j r1 values. This indicates that the use
of relevance weighting has secured more certainty in classification of the condi-
tion classes. The exception is again with the X13

r1 condition class and its relative
X26

C ~see Table IV!, because the simplex coordinate of X13
r1 is nearer the incorrect

“3” vertex than X26
C previously was. The exposition here has been on the associa-

tion of condition classes from subsets of condition attributes to the decision out-
comes when a level of CVD is undertaken.

5. APPLICATION OF THE CONDITION CLASS STABILITY
ANALYSIS WITH THE WINE DATA SET

To further illustrate the findings in this article on the effect of CVD, a slightly
larger information system is briefly investigated. In this case the well-known
wine data set is utilized.18 Here, four condition attributes ~of the 13! are utilized to
characterize the 178 wines to one of three decision outcomes ~wine cultivation
approaches!. The four condition attributes ~and all 13! are continuous in nature;
hence, without a level of CVD undertaken, a large level of granularity is inherent.
Here, a naïve method of CVD is employed, which in this case is equal width CVD,
on each of the four condition attributes. This is an unsupervised CVD technique
that takes no account of the decision outcome values of each object ~wine!. For
brevity, the details of the CVD process are included in the respective sets of esti-
mated distributions describing the spread of the actual values in the intervals for
each condition attribute, reported in Figure 5, found using the method of Parzen
windows ~as in Section 3!.

Figure 5. Sets of pdfs describing the four condition attributes in the wine data set.
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In Figure 5, the four sets of estimated distributions again show ~as in Sec-
tion 4! the level of overlap between the possible intervalizations undertaken. The
evidence for this overlap is found in the positions and frequencies of the individ-
ual attribute values, shown across the top of each set of estimated distributions.
The subsequent series of Sn, j, r likelihood values can be constructed ~see Table V!.

Based on the CVD of the four condition attributes, with RST a total of 36
condition classes were identified, of which 26 individually included objects to
the same decision outcome. The DTq

C and wDTq
C vectors for these 26 condition

classes are then constructed ~see Table VI!.

Table V. Sn, j, r values for the different intervals describing condition attributes.

Interval Interval

Sn, j, r value “1” “2” “3” Sn, j, r value “1” “2” “3”

c1 “1” 0.9702 0.0298 0.0000 c3 “1” 0.8861 0.1139 0.0000
“2” 0.0374 0.9414 0.0213 “2” 0.0472 0.9341 0.0187
“3” 0.0004 0.3221 0.6775 “3” 0.0000 0.1479 0.8520

c2 “1” 0.9206 0.0792 0.0000 c4 “1” 0.9553 0.0447 0.0000
“2” 0.0553 0.9009 0.0438 “2” 0.1059 0.8681 0.0260
“3” 0.0000 0.0766 0.9234 “3” 0.0000 0.2031 0.7968

Table VI. Stability details on condition classes Xq
C , q � 1, . . . ,26.

q E~D! Xq
C : 6Xq

C 6 @DTq,1
C ,DTq,2

C ,DTq,3
C # @wDTq,1

C ,wDTq,2
C ,wDTq,3

C #

1 3 @1, 1, 1, 2# : 5 0.1318, 0.1297, 0.7384 0.1261, 0.1363, 0.7376
2 3 @1, 1, 1, 3# : 1 0.1050, 0.0178, 0.8773 0.1121, 0.0208, 0.8670
3 2 @1, 1, 2, 1# : 3 0.0817, 0.5995, 0.3188 0.1094, 0.6364, 0.2542
4 3 @1, 1, 2, 2# : 1 0.1345, 0.2711, 0.5945 0.1914, 0.3061, 0.5025
5 3 @1, 2, 1, 2# : 6 0.1274, 0.1713, 0.7013 0.1144, 0.1558, 0.7298
6 3 @1, 2, 1, 3# : 7 0.0986, 0.0228, 0.8785 0.0871, 0.0204, 0.8925
7 2 @1, 2, 2, 1# : 3 0.0723, 0.6469, 0.2808 0.1111, 0.6612, 0.2278
8 3 @1, 2, 2, 2# : 2 0.1205, 0.2965, 0.5830 0.1883, 0.3082, 0.5034
9 2 @1, 2, 3, 1# : 1 0.0604, 0.7755, 0.1641 0.1209, 0.7651, 0.1140

10 3 @1, 3, 1, 3# : 2 0.1069, 0.0312, 0.8619 0.0568, 0.0299, 0.9133
11 2 @1, 3, 2, 1# : 4 0.0568, 0.7030, 0.2402 0.0698, 0.7979, 0.1323
12 3 @1, 3, 2, 2# : 1 0.0935, 0.3181, 0.5884 0.1337, 0.4201, 0.4461
13 3 @1, 3, 2, 3# : 2 0.0781, 0.0457, 0.8762 0.1203, 0.0650, 0.8147
14 3 @1, 3, 3, 3# : 1 0.0455, 0.0536, 0.9008 0.1798, 0.1046, 0.7156
15 1 @2, 1, 1, 2# : 2 0.4683, 0.1146, 0.4171 0.4640, 0.0836, 0.4523
16 2 @2, 1, 3, 1# : 2 0.2807, 0.6580, 0.0613 0.3111, 0.6510, 0.0379
17 1 @2, 1, 3, 2# : 2 0.5342, 0.3442, 0.1216 0.5860, 0.3372, 0.0768
18 1 @2, 2, 2, 2# : 7 0.4098, 0.2937, 0.2965 0.5249, 0.2276, 0.2475
19 2 @2, 2, 3, 1# : 2 0.2151, 0.7158, 0.0691 0.2806, 0.6725, 0.0470
20 2 @2, 3, 1, 1# : 1 0.2102, 0.6863, 0.1035 0.1968, 0.6367, 0.1664
21 1 @2, 3, 1, 2# : 1 0.3718, 0.3337, 0.2945 0.2966, 0.2637, 0.4397
22 2 @2, 3, 2, 1# : 2 0.1523, 0.7360, 0.1117 0.2049, 0.7226, 0.0725
23 2 @3, 1, 2, 1# : 1 0.3975, 0.5498, 0.0527 0.5698, 0.3595, 0.0706
24 1 @3, 1, 2, 2# : 2 0.6534, 0.2484, 0.0982 0.7613, 0.1320, 0.1067
25 1 @3, 1, 3, 2# : 1 0.6966, 0.2652, 0.0382 0.6990, 0.2689, 0.0321
26 1 @3, 2, 3, 2# : 1 0.6407, 0.2956, 0.0638 0.6413, 0.3066, 0.0521
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An inspection of the vectors constructed shows that only two wDTq
C vectors

~wDT21
C and wDT23

C ! include different values in bold and underlined. Because the
wine data set is a three decision outcome problem, these vectors can also be rep-
resented in a series of simplex plots ~see Figure 6!.

In Figure 6 the individual DTq
C and wDTq

C vectors ~shown as circles, with
condition class index! are considerably more spread out across the whole of the
respective simplex plot than in Figures 3 and 4, associated with the Iris data set.
This shows that their simplex coordinates are farther away from the edges of the
simplex plot, indicating that the uncertainty in their classification is to more than
just two decision outcomes. Also shown in Figure 6 are the simplex coordinates of
the DTq

r1 and wDTq
r1 vectors of a “near” reduct r1 associated with C, namely r1 �

$c1, c2, c4 % , for which the specific details of the vectors ~and condition classes! are
reported in Table VII. In this case, these vectors are denoted by asterisks, with the
condition class index shown in bold and underlined. Also included in brackets are
the Xq

C relatives of each Xq
r1 condition class.

Inspection of Table VII allows the further exposition of the simplex plots and
the relationship between condition classes associated with different subsets of

Figure 6. Simplex plot representation of the classification stability of each condition class.

Table VII. Stability details on condition classes Xq
r1 , q � 1, . . . ,10.

q E~D! Xq
r1 : 6Xq

r1 6 @DTq,1
r1 ,DTq,2

r1 ,DTq,3
r1 # @wDTq,1

r1 ,wDTq,2
r1 ,wDTq,3

r1 # Xq
C

1 3 @1, 1, 2# : 6 0.0682, 0.0000, 0.9318 0.0829, 0.0000, 0.9171 1, 4
2 3 @1, 1, 3# : 1 0.0359, 0.0000, 0.9641 0.0621, 0.0000, 0.9379 2
3 3 @1, 2, 2# : 8 0.1763, 0.0234, 0.8003 0.1436, 0.0147, 0.8417 5, 8
4 3 @1, 2, 3# : 7 0.0929, 0.0012, 0.9059 0.0824, 0.0008, 0.9168 6
5 3 @1, 3, 3# : 5 0.1421, 0.0047, 0.8532 0.0525, 0.0032, 0.9443 10, 13, 14
6 1 @2, 2, 2# : 7 0.6217, 0.0995, 0.2788 0.5933, 0.0570, 0.3496 18
7 2 @2, 3, 1# : 3 0.3294, 0.6365, 0.0342 0.2018, 0.7246, 0.0736 20, 22
8 1 @2, 3, 2# : 1 0.6431, 0.2221, 0.1348 0.4323, 0.2775, 0.2902 21
9 2 @3, 1, 1# : 1 0.3168, 0.6538, 0.0294 0.8830, 0.0000, 0.1170 23

10 1 @3, 1, 2# : 3 0.6709, 0.2475, 0.0816 0.8729, 0.0000, 0.1271 24, 25
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condition attributes. For example, the cluster of X10
r1 and its relatives X24

C and X25
C

in Figure 6a ~near “1” vertex!. With respect to the overall levels of certainty in the
classification of the condition classes, the respective distance values are consid-
ered. For the four condition attributes in C, jC � 0.4184 and jw

C � 0.4403; also for
the r1 � $c1, c2, c4 %, j r1 � 0.3055 and jw

r1 � 0.3716. These sets of values show the
jw

• values to be consistently more than the respective j • values. This is in contrast
to the values in the Iris data set ~see Section 4!. One reason for these differences
may be in the actual condition classes associated with C, which are not present in
the condition classes associated with r1, a possibility left for future research.

6. CONCLUSIONS

This article has investigated the effect of continuous value discretization
~CVD! on the strength of the known classification of a condition class to a single
decision outcome. Central to this notion is the modeling of the distribution of the
values in each of the intervals constructed from the CVD undertaken. This distri-
bution allows levels of likelihood on the association of the objects inside an inter-
val to that interval and the other possible intervals constructed. The notion of
likelihood of association is further considered at the more general condition class
level with the possibility of the associated classification of condition classes to
their known decision outcomes being uncertain. These findings could in future
studies be used to allow further measurement of the effectiveness of the CVD
undertaken.

The vectorization of the association of condition classes allows the introduc-
tion of the notion of the condition class space. In the case of three decision out-
comes, the simplex plot representation allows a visual understanding of the
classification stability. This is taken further with the relationship between condi-
tion classes from different subsets of condition attributes. The ability to quantify
the level of overall certainty in the classification of objects is shown. Although a
number of “near” reducts are considered ~from RST!, the role of the findings in
this study in reduct selection still needs to be formally exposited. Whether these
measures aid in the selection of reducts in RST will depend on the acknowledge-
ment of “inexactness” inherent with CVD.
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