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Abstract. We present an approach to discretizing multivariate contin-
uous data while learning the structure of a graphical model. We derive a
joint scoring function from the principle of predictive accuracy, which in-
herently ensures the optimal trade-off between goodness of fit and model
complexity including the number of discretization levels. Using the so-
called finest grid implied by the data, our scoring function depends only
on the number of data points in the various discretization levels (inde-
pendent of the metric used in the continuous space). Our experiments
with artificial data as well as with gene expression data show that dis-
cretization plays a crucial role regarding the resulting network structure.

1 Introduction

Continuous data is often discretized as part of a more advanced approach to data
analysis such as learning graphical models. Discretization may be carried out
merely for computational efficiency, or because background knowledge suggests
that the underlying variables are indeed discrete. While it is computationally
efficient to discretize the data in a preprocessing step that is independent of the
subsequent analysis [6IT0]7], the impact of the discretization policy on the subse-
quent analysis is often unclear in this approach. Existing methods that optimize
the discretization policy jointly with the graph structure [3l9] are computation-
ally very involved and therefore not directly suitable for large domains.

We present a novel and more efficient scoring function for joint optimiza-
tion of the discretization policy and the model structure. The objective relies
on predictive accuracy, where predictive accuracy is assessed sequentially as in
prequential validation [2] or stochastic complexity [12].

2 Sequential Approach

Let Y = (Y3,..,Y,...,Y,) denote a vector of n continuous variables in the
domain of interest, and y any specific instantiation of these variables. The dis-
cretization of Y is determined by a discretization policy A = (Ay, ..., Ay,): for each
variable Yy, let Ay, = (Ag1, ..., Ak,r,—1) be ordered threshold values, and ry, be the
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number of discretization levels. This determines the mapping f4 : Y — X, where
X = (Xy,..., X, ..., Xpn) is the corresponding discretized vector; for efficiency
reasons we only consider deterministic discretizations, where each continuous
value y is mapped to ezactly one discretization level, xy = fa, (yx)-

We pretend that (continuous) i.i.d. data D arrive in a sequential manner,
and then assess predictive accuracy regarding the data points along the sequence.
This is similar to prequential validation or stochastic complexity [2/12]. We recast
the joint marginal likelihood of the discretization policy A and the structure m
of a graphical model in a sequential manner,

p(D|A,m) Hp DDE=D, A,m),
=1

where DU = (=1 4(@=2) 41} denotes the data points seen prior to
step ¢ along the sequence.

For deterministic discretization we can assume that at each step
i the predicted density regarding data point y* factors according to
py DD A,m) = p(y D]z, A) p(a@ DO, m, A), where 2 = f4(y@).
It is desirable that the structure m indeed captures all the relevant (conditional)
dependences among the variables Yi,...,Y,. Assuming that the dependences
among continuous Y}, are described by the discretized distribution p(X|m, A, D),
then any two continuous variables Y, and Y} are independent conditional on X:
Py e, 4) =TTy puy” 29, Ay).

The computational feasibility of this approach depends crucially on the ef-
ficiency of the mapping between the discrete and continuous spaces. A simple
approach may use the same density to account for points y and gy’ that are
mapped to the same discretized state x, cf. [9]. Assuming a uniform probabil-
ity density is overly stringent and degrades the predictive accuracy; moreover,
this might also give rise to "empty states”, cf. [I5]. In contrast, we require only
independence of the variables Y.

3 Finest Grid Implied by the Data

The finest grid implied by the data is a simple mapping between Y and X that
retains the desired independence properties with non-uniform densities, and can
be computed efficiently.

This grid is obtained by discretizing each variable Y3 such that the corre-
sponding (new) discrete variable Zj, has as many states as there are data points,
and exactly one data point is assigned to each of those states (an extension to
the case with identical data points is straightforward; also note that this grid
is not unique, as any threshold value between neighboring data points can be
chosen). Note that, in our predictive approach, this grid is based on data D=1
at each step 1.

Based on this grid, we can now obtain an efficient mapping between Y and
X as follows: we assume that two points yx and yj, in the continuous space get
assigned the same density if they map to the same state of Zy; and that two
states z;, and z;, of Zj get assigned the same probability mass if they map to the
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same discretization level of X (we require that each state of Zj is mapped to
exactly one discretization level of X}, for computational efficiency). This immedi-

ately yields p(y,(:) |2, Ay) = c/N(Q), where N(Z(;l) denotes the number of data
fL'k ij

points in discretization level 1’ () of variable X r before step i along the sequence
(N(i )1) > 0). The constant ¢ absorbs the mapping from Z to Y by means of the

finest grid. Using the same grid for two models being compared, we have the
important property that ¢ is irrelevant for determining the optimal A and m.
Unfortunately, details have to be skipped here due to lack of space, see also [15].

4 Predictive Discretization

In our sequential approach, the density at data point y( is predicted strictly
without hindsight at each step i, i.e., only data D¢~1) is used. For this reason,
this leads to a fair assessment of predictive accuracy. Since i.i.d. data lack an
inherent sequential ordering, we may choose a particular ordering of the data
points. This is similar in spirit to stochastic complexity [12], where also a par-
ticular sequential ordering is used. The basic idea is to choose an ordering such
that, for all x, we have Néi_l) > 0 for all i > iy, where ig is minimal. The initial
part of this sequence is thus negligible compared to the part where ¢ = g, ..., N
when the number of data points is considerably larger than the number of dis-
cretization levels of any single variable, N > maxy|X%|4. Combining the above
equations, we obtain the following (approximate) predictive scoring function

L(A,m):
log p(D|A,m) ~ L(A,m) + ¢’ =logp(Da|m) —log G(D, A) + <, (1)

where the approximation is due to ignoring the short initial part of the se-
quence; p(D|m) is the marginal likelihood of the graph m in light of the data
D, discretized according to A. In a Bayesian approach, it can be calculated
easily for various graphical models, e.g., see [I8] concerning discrete Bayesian
networks. The second term in Eq. [ is given by

log G(D, A) = ZZlogF Zk))s

k=1 x

where I' denotes the Gamma function, I'(N (z)) = [N (zx) — 1]!, and N(z)
is the number of data points in discretization level xkl It is crucial that the con-
stant ¢/, which collects the constants ¢ from above, is irrelevant for determining
the optimal A and m. Obeying lack of space, the reader is referred to [15] for
further details.

Our scoring function £(A,m) has several interesting properties: First, the
difference between the two terms in Eq. [Il determines the trade-off dictating
the optimal number of discretization levels, threshold values and graph struc-
ture. As both terms increase with a diminishing number of discretization levels,

! Note that N(zx) > 0 is ensured in our approach, i.e., there are no "empty states”
[15].
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the second term can be viewed as a penalty for small numbers of discretization
levels. Second, L£(A,m) depends on the number of data points in the different
discretization levels only. This is a consequence of the finest grid implied by the
data. Tt has several interesting implications. First, and most important from
a practical point of view, it renders efficient evaluation of the scoring function
possible. Second, and more interesting from a conceptual perspective, £(A,m) is
independent of the particular choice of the finest grid. Apart from that, £(A, m)
is independent of the metric in the continuous space, and thus invariant under
monotonic transformations of the continuous variables. Obviously, this can lead
to considerable loss of information, particularly when the (Euclidean) distances
among the various data points in the continuous space govern the discretization
(cf. left graph in Fig.[I). On the other hand, the results of our scoring function
are not degraded if the data is given w.r.t. an inappropriate metric. In fact, the
optimal discretization w.r.t. our scoring function is based on statistical depen-
dence of the variables, rather than on the metric. This is illustrated in our toy
experiments with artificial data, cf. Section Bl Apart from that, our approach
includes as a special case quantile discretization, namely when all the variables
are independent of each other.

5 Experiments

In our first two experiments, we show that our approach discretizes the data
based on statistical dependence rather than on the metric in the continuous
space. Consider the left two panels in Fig. [} when the variables are indepen-
dent, our approach may not find the discretization suggested by the clusters;
instead, our approach assigns the same number of data points to each discretiza-
tion level (with one discretization level being optimal). Note that discretization
of independent variables is, however, quite irrelevant when learning graphical
models: the optimal discretization of each variable Y}, depends on the variables
in its Markov blanket, and Y} is (typically strongly) dependent on those vari-
ables. When the variables are dependent in Fig. [l our scoring function favours
the ”correct” discretization (solid lines), as this entails best predictive accuracy
(even when disregarding the metric). However, dependence of the variables it-
self does not necessarily ensure that our scoring function favours the ”correct”
discretization, as illustrated in the right two panels in Fig. [l (as a constraint,
we require two discretization levels): given low noise levels, our scoring function
assigns the same number of data points to each discretization level, however, a
sufficiently high noise level in the data can actually be beneficial, permitting our
approach to find the ”correct” discretization, cf. Fig. [ (right).

Our third experiment demonstrates that our scoring function favours less
complex models (i.e., sparser graphs and fewer discretization levels) when given
smaller data sets. This is desirable in order to avoid overfitting when learning
from small samples, leading to optimal predictive accuracy. We considered a pair
of normally distributed random variables Yy and Y; with correlation coefficient
corr(Yp, Y1) = 1/4/2. Note that this distribution does not imply a 'natural’
number of discretization levels; due to the dependence of Yy and Y; one may
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Fig. 1. Left two panels: each cluster comprises 100 points sampled from a Gaussian
distribution; Yy and Y; are independent on the left, and dependent on the right. Right
two panels: when Yp and Y7 are dependent, moise may help in finding the ’correct’
discretization.

hence expect the learned number of discretization levels to rise with growing
sample size. Indeed, Fig. [2] shows exactly this behavior. Moreover, the learned
graph structure implies independence of Y; and Y; when given very small samples
(fewer than 30 data points in our experiment), while Yy and Y; are found to be
dependent for all larger sample sizes.

In our fourth experiment, we were concerned with gene expression data. In
computational biology, regulatory networks are often modeled by Bayesian net-
works, and their structures are learned from discretized gene-expression data,
see, e.g., [6l11[7]. Obviously, one would like to recover the ”true” network struc-
ture underlying the continuous data, rather than a degraded network struc-
ture due to a suboptimal discretization policy. Typically, the expression levels
have been discretized in a preprocessing step, rather than jointly with the net-
work structure, [6/TT7]. In our experiment, we employed our predictive scoring
function (cf. Eq. [[) and re-analyzed the gene expression data concerning the
pheromone response pathway in yeast [7], comprising 320 measurements con-
cerning 32 continuous variables (genes) as well as the mating type (binary vari-
able). Based on an error model concerning the micro-array measurements, a
continuously differentiable, monotonic transformation is typically applied to the
raw gene expression data in a preprocessing step. Since our predictive scoring
function is invariant under this kind of transformation, this has no impact on
our analysis, so that we are able to work directly with the raw data.

Instead of using a search strategy in the joint space of graphs and discretiza-
tion policies — the theoretically best, but computationally most involved ap-
proach — we optimize the graph m and the discretization policy A alternately
in a greedy way for simplicity: given the discretized data D ,, we use local search
to optimize the graph m, like in [8]; given m, we optimize A iteratively by im-
proving the discretization policy regarding a single variable given its Markov
blanket at a time. The latter optimization is carried out in a hierarchical way
over the number of discretization levels and over the threshold values of each
variable. Local maxima are a major issue when optimizing the predictive scoring
function due to the (strong) interdependence between m and A. As a simple
heuristic, we alternately optimize A and m only slightly at each step.

The marginal likelihood p(D 4|m), which is part of our scoring function, con-
tains a free parameter, namely the so-called scale-parameter « regarding the
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Fig. 2. The number of discretization levels (mean and standard deviation, averaged
over 10 samples of each size) depends on the sample size (cf. text for details).

Dirichlet prior over the model parameters, e.g., cf. [8]. As outlined in [13], its
value has a decisive impact on the resulting number of edges in the network, and
must hence be chosen with great care. Assessing predictive accuracy by means
of 5-fold cross validation, we determined o ~ 25.

Fig. [3] shows the composite graph we learned from the used gene expres-
sion data, employing our predictive scoring function, cf. Eq. MA This graph is
compiled by averaging over several Bayesian network structures in order to ac-
count for model uncertainty prevailing in the small data set. Instead of exploring
model uncertainty by means of Markov Chain Monte Carlo in the model space,
we used a non-parametric re-sampling method, as the latter is independent of
any model assumptions. While the bootstrap has been used in [BIAJGIT], we
prefer the jackknife when learning the graph structure, i.e., conditional indepen-
dences. The reason is that the bootstrap procedure can easily induce spurious
dependencies when given a small data set D; as a consequence, the resulting
network structure can be considerably biased towards denser graphs [14]. The
jackknife avoids this problem. We obtained very similar results using three differ-
ent variants of the jackknife: delete-1, delete-30, and delete-64. Averaging over
320 delete-30 jackknife sub-samples, we found 65.7 & 8 edges. Fig. Bl displays
65 edges: the solid ones are present with probability > 50%, and the dashed
ones with probability > 34%. The orientation of an edge is indicated only if
one direction is at least twice as likely as the contrary one. Apart from that,
our predictive scoring function yielded that most of the variables have about 4
discretization levels (on average over the 320 jackknife samples), except for the
genes MCM1, MFALPHA1, KSS1, STE5, STE11, STE20, STE50, SWI1, TUP1
with about 3 states, and the genes BAR1, MFA1, MFA2, STE2, STE6 with ca.
5 states.

In Fig.[3 it is apparent that the genes AGA2, BAR1, MFA1, MFA2 STE2,
and STE6 (magenta) are densely interconnected, and so is the group of genes
MFALPHA1, MFALPHA2, SAG1 and STE3 (red). Moreover, both of those
groups are directly connected to the mating type, while the other genes in the
network are (marginally) independent of the mating type. This makes sense

2 We imposed no constraints on the network structure in Fig. B. Unfortunately, the
results we obtained when imposing constraints derived from location data have to
be skipped due to lack of space.
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Fig. 3. This graph is compiled from 320 delete-30 jackknife samples (cf. [7] for the
color-coding).

from a biological perspective, as the former genes (magenta) are only expressed
in yeast cells of mating type A, while the latter ones (red) are only expressed in
mating type ALPHA; the expression level of the other genes is rather unaffected
by the mating type. Due to lack of space, a more detailed (biological) discussion
has to be omitted here.

Indeed, this grouping of the genes is supported also when considering corre-
lations as a measure of statistical dependence:ﬁ we find that the absolute value
of the correlations between the mating type and each gene in either group from
above is larger than 0.38, while any other gene is only weakly correlated with
the mating type, namely less than 0.18 in absolute value.

The crucial impact of the used discretization policy A and scale-parameter
a on the resulting network structure becomes apparent when our results are
compared to the ones reported in [7]: their network structure resembles a naive
Bayesian network, where the mating type is the root variable. Obviously, their
network structure is notably different from ours in Fig.[3, and hence has very
different (biological) implications. Unlike in [7], we have optimized the discretiza-
tion policy A and the network structure m jointly, as well as the scale-parameter
a. As the value of the scale-parameter o mainly affects the number of edges
present in the learned graph [13], this suggests that the major differences in the
obtained network structures are actually due to the discretization policy.

6 Conclusions

We have derived a principled yet efficient method for determining the resolution
at which to represent continuous observations. Our discretization approach relies
on predictive accuracy in the prequential sense and employs the so-called finest

3 Note that correlations are applicable here, even though they measure only linear
effects. This is because the mating type is a binary variable.
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grid implied by the data as the basis for finding the appropriate levels. Our
experiments show that a suboptimal discretization method can easily degrade
the obtained results, which highlights the importance of the principled approach
we have proposed.
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