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Abstract. Discretization is an important preprocessing technique in data mining 
tasks. Univariate Discretization is the most commonly used method. It 
discretizes only one single attribute of a dataset at a time, without considering 
the interaction information with other attributes. Since it is multi-attribute rather 
than one single attribute determines the targeted class attribute, the result of 
Univariate Discretization is not optimal. In this paper, a new Multivariate 
Discretization algorithm is proposed. It uses ICA (Independent Component 
Analysis) to transform the original attributes into an independent attribute 
space, and then apply Univariate Discretization to each attribute in the new 
space. Data mining tasks can be conducted in the new discretized dataset with 
independent attributes. The numerical experiment results show that our method 
improves the discretization performance, especially for the nongaussian 
datasets, and it is competent compared to PCA-based multivariate method. 
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1   Introduction 

Discretization is one of preprocessing technique used frequently in many data 
warehousing and data mining applications. It is a process of converting the continuous 
attributes of a data set into discrete ones. In most of databases, data is usually stored in 
mixed format: the attribute can be nominal, discrete or continuous. In practice, con-
tinuous attribute needs to be transformed discrete one so that some machine learning 
methods can operate on it. Furthermore, discrete values are more concise to represent 
and specify and easier to process and comprehend, because they are closer to 
knowledge-level representation. Therefore, discretization can highlight classification 
tasks and improve predictive accuracy in most cases[1]. 

Univariate Discretization is one of commonly used discretization strategy. It aims 
to find a partition of a single continuous explanatory attribute of a dataset at one time. 
But attributes in multivariate datasets are usually correlated with each other, discretiz-
ing them without considering the interaction between them can not get a global 
optimal result. Thus, Multivariate Discretization, which means discretizing attributes 
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simultaneously or considering multiple attributes at the same time, draws more and 
more attention in recent years. However, few effective algorithms of Multivariate 
Discretization have been provided until now. 

As the dataset usually comes with correlated attributes, to make them independent 
but the attribute information is not lost is a possible way for Multivariate Discretization. 
In this paper, a new Multivariate Discretization Algorithm using ICA (Independent 
Components Analysis) is presented. In this algorithm, we transform the original 
attributes into a new attributes space with ICA, and then conduct Univariate 
Discretization on the attributes of new space one by one as they are independent of each 
other after transform. Finally, a global optimal discretization results can be obtained. 
ICA is a statistical method, which can extract independent features from database, and 
then the database can be newly reformed approximately by the independent features as 
attributes. The accuracy of classification on this discretization results with the 
Multivariate Discretization algorithm proposed in this paper shows that this algorithm is 
competent to the published Multivariate Discretization approaches such as PCA-based 
Multivariate Discretization [2], especailly for nongaussian data.  

The remainder of the paper is organized as follows: Section 2 gives an overview of 
related work, in Section 3 we discuss our transformation algorithm, and in Section 4 
we report our experimental results. Finally we give our conclusion in Section 5. 

2   Related Work 

A large number of discretization algorithms have been proposed in past decades. Most 
of them are the Univariate Discretization methods. Univariate Discretization can be 
categorized in several dimensions: supervised or unsupervised, global or local, 
dynamic or static, merging(bottom-up) or splitting(top-bottom)[3]. For example, 
Chimerge[4] is a supervised, bottom-up algorithm, Zeta[5]is a supervised splitting 
algorithm, and Binning is a unsupervised splitting one. In discretization algorithms, 
stop criteria is an important factor. Most commonly used discretization criteria are 
Entropy measure, Binning, Dependency, Accuracy and so on [1]. Except that, 
recently Liu [6] provided Heterogeneity as another new criteria to evaluate a 
discretization scheme.  

In the Univariate Discretization algorithms, each attribute is viewed as indepen-
dently determining the class attribute. Therefore, it can not generate global optimal 
intervals by discretizing all the involved attributes in a multivariate dataset one by 
one. A solution to this problem is to discretize attributes simultaneously, that is to 
consider multiple attribute at a time, which is known as Multivariate Discretization. 
Several approaches about this have been presented. 

Ferrandiz＇[7] discussed the multivariate notion of neighborhood, which is extending 
the univariate notion of interval. They proposed Bipartitions based on the Minimum 
Description Length (MDL) principle, and apply it recursively. This method is thus able 
to exploit correlations between continuous attributes. However it reduces predictive 
accuracy as it makes only local optimization. 

Bay [8] provided an approach to the Multivariate Discretization problem 
considering interaction among attributes. His approach is to finely partition each 
continuous attribute into n basic regions and iteratively merge adjacent intervals with 
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similar multivariate distribution. However, this approach is not very effective because 
of its high computational complexity.  

Sameep [2] proposed a PCA-based Multivariate Discretization method. His method 
first computes a positive semi-defined correlation matrix from the dataset. Suppose its 
eigenvalues are λ 1 ≥ λ 2 ≥ L ≥ λ d of which the corresponding eigenvectors are e1, 
e2, …, ed. Only the first k (k<d) eigenvectors with greater variance from the data are 
retained. Then all the data in original space are projected to the eigenspace which is 
spanned by the retained eigenvectors. Since each dimension in eigenspace is not 
correlated, the new attributes can be discretized separately by simple Distance-based 
Clustering or the Frequent Item Sets method. Once cut points are obtained, they are 
projected to the original data set which correlated most closely with this corresponding 
eigenspace dimension. This approach considers the correlation information among 
attributes through PCA transform. But PCA which relies on second-order statistics of 
the data often fails where the data are nongaussian [9]. 

In this paper, a new ICA-based multivariate discretization algorithm is proposed. The 
original attributes are transformed into a new attributes space with ICA, and then 
conduct Univariate Discretization on the attributes of new space one by one. The 
numerical experiment results show that this method impoves discretization 
performance, especially for the nongaussian datasets, and it is competent to other 
Multivariate Discretization method, such as PCA-based method. 

3   ICA-Based Multivariate Discretization Algorithm 

This section gives a detailed description of our algorithm and the background of it 
will also be introduced. 

3.1   ICA (Independent Component Analysis) 

ICA is on the base of Central Limit Theorem which tells that a sum of independent 
variables tends to follow a Gaussian distribution. Assuming there are n features, we 

denote jx
 as the j-th feature and X as the random vector composed of x1, …, xn. The 

objective of ICA is to find n independent components is
of X: 

1 1 2 2 ...j j j jn nx a s a s a s= + + + , for all j (1) 

Let A be the matrix with element ija and S be the vector ( 1s , …, ns ), then the above 

equation can be rewritten as follows: 

X=AS (2) 

S=A-1X=WX (3) 

where W denotes the weighed matrix of X which is the inverse of A. All we observe is 
the random vector X, but we must estimate both A and S from it. The final aim of this 
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estimation process is to obtain the values of W that can make S maximally 
nongaussianity, and they are just the independent components of X. 

Since there are many ICA algorithms provided by researchers such as Kernel [10], 
Hyvärinen and Oja [11], and Comon [12], in this paper we adopted FastICA 
algorithm which was introduced by Hyvärinen and Oja[11] due to low linear 
computational complexity. 

From Central Limit Theorem it is known that the sum of two independent variables 
is more Gaussian than themselves. So X is more Gaussian than S. In other words, S is 
more nongaussian than X. As the linear sum of Gaussian distribution components still 
follows Gaussian distribution, ICA is only fit for nongaussian datasets (i.e., the more 
nongaussian the attribute variable of a data set is, the better). One of the classical 
measures of nongaussianity is kurtosis. The kurtosis of a variable y is defined by the 
following equation:  

4 2 2( ) { } 3( { })kurt y E y E y= −  (4) 

where y is zero-mean and of unit variance. Kurt will be zero for Gaussian variable.  
So the absolute value of kurtosis | ( ) |kurt y is usually used as measure of non-

gaussianity. And ICA is more suited to the variable with larger value of | ( ) |kurt y . 

3.2   ICA-Based Discretization Algorithm 

Our method is composed of the following four steps: 

(1) Centering and whitening 
Given a multivariate dataset, let xi denotes (i=1, …, n) it’s the i-th attribute which 
consists of m records, then the most basic and necessary step is to center xi before the 
application of the ICA algorithm. Centering xi is to subtract its mean value so as to 
make xi zero-mean. This preprocessing can simplify ICA algorithm. 

After centering, whitening as another important preprocessing should be taken, 
which transform the observed random vector X into white vector (i.e., the components 
are uncorrelated and their variances equal unity) denoted by Y. One popular whitening 
method is adopted here, which is using the eigenvalue decomposition (EVD) of the 
covariance matrix E{X X

T} =EDET, where E is the orthogonal matrix of eigenvectors 
of E{XXT} and D is the diagonal matrix of its eigenvalue, D = Diag(d1, d2, ..., dm). Thus,  

Y =ED-1/2ETX (5) 

Where the matrix D-1/2 is computed by a simple component-wise operation as D-1/2 = 
Diag(d1

-1/2, …, dn

-1/2). It is easy to check that now E{YYT}=I. 

(2) Transforming attributes space by FastICA into new attributes space 
After centering and whitening, FastICA is used to transform the original multi-attribute 
space into new independent multi-attribute space. Let zi (i=1,…, n) denotes a new 
attribute which contains m data points, and each of them is independent of others. 
Finally, the class attribute is appended to the new space accordingly, and each instance 
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in the new dataset has the same class label as before. During transform, attribute 
information contained in the original dataset is preserved maximally in the new 
dataset. 

(3) Using Univariated Discretization  
After the new attributes zi, (i=1, …, n) are obtained, we apply Unviariated 
Discretization method to each of them, and finally get the discretized intervals of the 
new attributes. 

So far, many Univarivated Discretization have been proposed, in our experiment, 
we use the MDL method of Fayyad and Zrani [13] which is the only supervised 
discretization method provided in Weka and is also known for its good performance. 

4   Experiments 

In this section, we validate the Multivariate Discretization method proposed in our paper 
in terms of the quality of the discretization results. Here we use the results of 
Classification tasks on our discretization data to test the performance of our algorithm.  

4.1   Experiment Setting 

All the datasets used in this experiment are from UCI repository1. In order to simplify 
our experiment, those datasets with only continuous attributes were chosen. Table 1 
gives a description of the chosen datasets. We used WEKA2, software which contains 
Classification and Discretization tool packages to evaluate our discretization results. 

Table 1. Data Sets Used in Evaluation 

Dataset Records Attributes Num of Class 
labels 

Iris 150 4 3 

Waveform 300 21 3 

Glass 214 9 7 

Cancer 683 8 2 

Having chosen the datasets, we first took away the class attribute of each dataset, 
then centered and whitened the remaining continuous attributes, and transformed the 
original datasets by FastICA algorithm into new attributes space. A Matlab imple-
mentation of the FastICA algorithm is available on the World Wide Web free of 
charge3. At last we obtained a new dataset with independent attributes carrying the 

                                                           
1 http://www.ics.uci.edu/~mlearn/MLRepository.html 
2 http://www.cs.waikato.ac.nz/~ml/ 
3 http://www.cis.hut.fi/projects/ica/fastica/ 
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information of the original dataset attributes. After transformat, the class attribute 
taken away before it was appended, then a new dataset was completed. 

Discretization tool package of WEKA includes both supervised and unsupervised 
Univariate Discretization methods. The supervised discretization method is based 
on MDL [13]. As the attributes in the new transformed space are independent, they 
can be discretized separately. The discretized datasets was then processed by four 
classification algorithms of WEKA, respectively, C4.5, IBK, PART, NaiveBayes, 
and the error rates of classification using 10-fold cross-validation are reported in 
Table 2. 

Table 2. Classification Error Comparison 

Dataset 
Mean 

kurtosis 
 C4.5 IBK PART NB PCA+C4.5 

Original 24.56 25.34 23.6 18.24 Waveform 2.9237 
ICA 17.32 16.86 16.72 18.12 

N 

Original 6 6 4.67 6 Iris 2.8941 
ICA 1.3 1.3 1.3 1.3 

4.9 

Original 26.19 21.50 24.30 25.23 Glass 2.2055 
ICA 27.57 28.04 29.91 29.91 

29 

Original 4.25 3.07 4.25 2.49 Cancer 1.6425 
ICA 6.59 6.88 6.30 5.41 

4.1 

Two groups of datasets were used in this experiment, one was composed of the 
original datasets that was downloaded from UCI Repository, and the other was 
composed of the new independent attribute data sets that were transformed from the 
original data sets using ICA. The supervised Univariate Discretization based on 
MDL was conducted on both the group’s data sets. And their classification errors 
are reported in Table 2. From Table 2, for the datasets Waveform and Iris, ICA-
based discretization method improved the classification accuracy significantly. 
However, it did not work very well on the datasets Glass and Cancer. This is 
because ICA has its roots for datasets with nongaussian distribution. We have 
mentioned before that kurtosis is one classic measure of nongaussianity, so the 
kurtosis of each dataset is given in the second column of the table. As there are 
more than one attributes for each dataset, the given value is the mean kurtosis of all 
the attributes. It can be seen that Waveform and Iris are much more nongaussian 
than Glass and Cancer as they have larger mean kurtosis. This can explain why our 
method works better for the former two datasets. The last column lists the results of 
the PCA-based Multivariate Discretization method from[2]. And we can see that 
our method is competent. 

5   Conclusions 

In this paper, we proposed ICA-based Multivariate Discretization method. It uses ICA to 
transform original dataset to a new dataset in which the attributes are independent of each 
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other, and then conducts the Univariate Discretization on the new dataset. The numerical 
experiment results show that the discretization results of this method could improve the 
classification accuracy, especially for the nongaussian datasets, and it is competent 
compared to other multivariate method, such as PCA-based method and so on. 
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