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Abstract. Rule induction from data with numerical attributes must be
accompanied by discretization. Our main objective was to compare two
discretization techniques, both based on cluster analysis, with a new rule
induction algorithm called MLEM2, in which discretization is performed
simultaneously with rule induction. The MLEM2 algorithm is an exten-
sion of the existing LEM2 rule induction algorithm, working correctly
only for symbolic attributes and being a part of the LERS data min-
ing system. For the two strategies, based on cluster analysis, rules were
induced by the LEM2 algorithm. Our results show that MLEM2 outper-
formed both strategies based on cluster analysis and LEM2, in terms of
complexity (size of rule sets and the total number of conditions) and,
more importantly, in terms of error rates.

1 Introduction

Many real-life data contain numerical attributes, with values being integers or
real numbers. Such numerical values cannot be used in rules induced by data
mining systems since there is a very small chance that these values may match
values of unseen, testing cases. There are two possible approaches to processing
data with numerical attributes: either to convert numerical attributes into inter-
vals through the process called discretization before rule induction or conduct
both discretization and rule induction at the same time.

The former approach is more frequently used in practice of data mining.
An entire spectrum of discretization algorithms was invented [7]. Using this
approach discretization is performed as a preprocessing for the main process of
rule induction.

The latter approach was used in a few systems, e.g., in C4.5 that induces
decision trees at the same time discretizing numerical attributes [17], in the
MODLEM algorithm [9, 10, 18], a modification of LEM2, and in the MLEM2
algorithm. The MLEM2 algorithm [8] is another extension of the existing LEM2
rule induction algorithm. Performance of MLEM2 was compared with MODLEM
performance in [8]. The LEM2 algorithm is a part of data mining system LERS
(Learning from Examples based on Rough Sets) [5, 6]. LERS uses rough set
theory [14, 15] to deal with inconsistency in input data.

As follows from our previous results on melanoma diagnosis [1], discretization
based on cluster analysis is a sound approach. For example, discretization algo-
rithms based on divisive and agglomerative methods were ranked as the second
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and third (out of six) with respect to error rate (with minimal entropy being
first), however, an expert in the domain ranked rule sets induced by LEM2 from
the data discretized by minimal entropy on the fourth position, while the dis-
cretization algorithms based on divisive method of cluster analysis was again sec-
ond [1]. In our previous research we used only one data set describing melanoma.

Our current objective was to compare two discretization techniques, based
on cluster analysis, with a new rule induction algorithm called MLEM2, in which
discretization is performed simultaneously with rule induction. As follows from
our results, MLEM2 outperformed two other strategies, in which discretization
techniques based on cluster analysis were used first and then rule induction was
conducted by LEM2 algorithm. Note that MLEM2 produces the same rule sets
from symbolic attributes as LEM2.

2 Discretization Algorithms Based on Cluster Analysis

The data mining system LERS uses for discretization a number of discretization
algorithms, including two methods of cluster analysis: agglomerative (bottom-
up) [3] and divisive (top-down) [16]. In agglomerative techniques, initially each
case is a single cluster, then they are fused together, forming larger and larger
clusters. In divisive techniques, initially all cases are grouped in one cluster, then
this cluster is gradually divided into smaller and smaller clusters. In both meth-
ods, during the first step of discretization, cluster formation, cases that exhibit
the most similarity are fused into clusters. Once this process is completed, clus-
ters are projected on all attributes to determine initial intervals on the domains
of the numerical attributes. During the second step (merging) adjacent intervals
are merged together. In the sequel, the former method will be called the agglom-
erative discretization method, the latter will be called the divisive discretization
method. In our experiments, both methods used were polythetic (all numerical
attributes were used).

Initially all attributes were categorized into numerical and symbolic. During
clustering, symbolic attributes were used only for clustering stopping condition.
First, all numerical attributes were normalized (attribute values were divided by
the attribute standard deviation, following [4]).

In agglomerative discretization method initial clusters were single cases. Then
the distance matrix of all Euclidean distances between pairs of cases was com-
puted. The closest two cases, a and b, compose a new cluster {a, b}. The distance
from {a, b} to any remaining case c was computed using the Median Cluster
Analysis formula [4],
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where dxy id the Euclidean distance between x and y. The closest two cases
compose a new cluster, etc.

At any step of clustering process, the clusters form a partition π on the set
of all cases. All symbolic attributes define another partition τ on the set of all
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cases. The set of all concepts define yet another partition λ on the set of all
cases. The process of forming new clusters was terminated when π · τ > λ.

In divisive discretization method, initially all cases were placed in one cluster
C1. Next, for every case the average distance from all other cases was computed.
The case with the largest average distance was identified, removed from C1,
and placed in a new cluster C2. For all remaining cases from C1 a case c with
the largest average distance d1 from all other cases in C1 was selected and the
average distance d2 from c to all cases in C2 was computed. If d1−d2 > 0, c was
removed from C1 and put to C2. Then the next case c with the largest average
distance in C1 was chosen and the same procedure was repeated. The process
was terminated when d1 − d2 ≤ 0. The partition defined by C1 and C2 was
checked whether all cases from C1 were labeled by the same decision value and,
similarly, if all cases from C2 were labeled by the same decision value (though
the label for C1 might be different than the label for C2). The stopping condition
was the same as for the agglomerative discretization method.

Final clusters were projected into all numerical attributes, defining this way
a set of intervals. The next step of discretization was merging these intervals
to reduce the number of intervals and, at the same time, preserve consistency.
Merging of intervals begins from safe merging, where, for each attribute, neigh-
boring intervals labeled by the same decision value are replaced by their union
provided that the union was a labeled again by the same decision value. The next
step of merging intervals was based on checking every pair of neighboring inter-
vals whether their merging will result in preserving consistency. If so, intervals
are merged permanently. If not, they are marked as un-mergeable. Obviously,
the order in which pairs of intervals are selected affects the final outcome. In our
experiments we started from an attribute with the most intervals first.

3 MLEM2

In general, LERS uses two different approaches to rule induction: one is used
in machine learning, the other in knowledge acquisition. In machine learning, or
more specifically, in learning from examples (cases), the usual task is to learn
discriminant description [13], i.e., to learn the smallest set of minimal rules,
describing the concept. To accomplish this goal, i.e., to learn discriminant de-
scription, LERS uses two algorithms: LEM1 and LEM2 (LEM1 and LEM2 stand
for Learning from Examples Module, version 1 and 2, respectively) [5].

Let B be a nonempty lower or upper approximation of a concept represented
by a decision-value pair (d, w). Set B depends on a set T of attribute-value pairs
(a, v) if and only if

∅ �= [T ] =
⋂

t∈T

[t] ⊆ B,

where [(x, v)] denotes the set of all examples such that for attribute a its values
are v.

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T ′ of T exists such that B depends on T ′. Let T be a nonempty collection
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of nonempty sets of attribute-value pairs. Then T is a local covering of B if and
only if the following conditions are satisfied:

– each member T of T is a minimal complex of B;
–

⋂
t∈T [T ] = B;

– T is minimal, i.e., T has the smallest possible number of members.

The user may select an option of LEM2 with or without taking into account
attribute priorities. The procedure LEM2 with attribute priorities is presented
below. The option without taking into account priorities differs from the one
presented below in the selection of a pair t ∈ T (G) in the inner loop WHILE.
When LEM2 is not to take attribute priorities into account, the first criterion is
ignored. In our experiments all attribute priorities were equal to each other.

Procedure LEM2
(input: a set B,
output: a single local covering T of set B);
begin

G := B;
T := ∅;
while G �= ∅

begin
T := ∅;
T (G) := {t|[t] ∩ G �= ∅} ;
while T = ∅ or [T ] �⊆ B

begin
select a pair t ∈ T (G) with the highest
attribute priority, if a tie occurs, select a pair
t ∈ T (G) such that |[t] ∩ G| is maximum;
if another tie occurs, select a pair t ∈ T (G)
with the smallest cardinality of [t];
if a further tie occurs, select first pair;
T := T ∪ {t} ;
G := [t] ∩ G ;
T (G) := {t|[t] ∩ G �= ∅};
T (G) := T (G) − T ;
end {while}

for each t ∈ T do
if [T − {t}] ⊆ B then T := T − {t};

T := T ∪ {T };
G := B −

⋃
T∈T [T ];

end {while};
for each T ∈ T do

if
⋃

S∈T −{T}[S] = B then T := T − {T };
end {procedure}.

For a set X , |X | denotes the cardinality of X .
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Rules induced from raw, training data are used for classification of unseen,
testing data. The classification system of LERS is a modification of the bucket
brigade algorithm [2, 12]. The decision to which concept a case belongs is made
on the basis of three factors: strength, specificity, and support. They are defined
as follows: Strength is the total number of cases correctly classified by the rule
during training. Specificity is the total number of attribute-value pairs on the
left-hand side of the rule. The matching rules with a larger number of attribute-
value pairs are considered more specific. The third factor, support, is defined as
the sum of scores of all matching rules from the concept. The concept C for
which the support (i.e., the sum of all products of strength and specificity, for
all rules matching the case, is the largest is a winner and the case is classified as
being a member of C).

MLEM2, a modified version of LEM2, categorizes all attributes into two cat-
egories: numerical attributes and symbolic attributes. For numerical attributes
MLEM2 computes blocks in a different way than for symbolic attributes. First, it
sorts all values of a numerical attribute. Then it computes cutpoints as averages
for any two consecutive values of the sorted list. For each cutpoint x MLEM2
creates two blocks, the first block contains all cases for which values of the nu-
merical attribute are smaller than x, the second block contains remaining cases,
i.e., all cases for which values of the numerical attribute are larger than x. The
search space of MLEM2 is the set of all blocks computed this way, together with
blocks defined by symbolic attributes. Starting from that point, rule induction
in MLEM2 is conducted the same way as in LEM2.

4 Experiments

In our experiments we used eight well-known data sets with numerical attributes
(Table 1). All of our data sets, except Bank, were obtained from the Univer-
sity of California at Irvine Machine Learning Depository. The Australian Credit
Approval data set was donated by J. R. Quinlan. The data set Bank describing
bankruptcy was created by E. Altman and M. Heine at the New York University
School of Business in 1968. The data set Bupa, describing liver disorders, contain
data gathered by BUPA Medical Research Ltd., England. German data set, with

Table 1. Data sets.

Number of
cases attributes concepts

Australian 690 14 2
Bank 66 5 2
Bupa 345 6 2
German 1000 24 2
Glass 214 9 6
Iris 150 4 3
Pima 768 8 2
Segmentation 210 19 7
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only numerical attributes, was donated by H. Hoffman from the University of
Hamburg (Germany). The data set Glass, representing glass types, was created
by B. German, Central Research Establishment, Home Office Forensic Science
Service, Canada. The Iris data set was created by R. A. Fisher and donated by
M. Marshall in 1988. The Pima data set describes Pima Indian diabetes and
was donated by V. Sigillito in 1990. The data set Segmentation created in 1990
by the Vision Group, University of Massachusetts, represents image features:
brickface, sky, foliage, cement, window, path, and grass.

Table 2 presents means of numbers of errors for all eight data sets. The
means of errors were computed using 30 experiments of variable ten-fold cross
validation, with the exception of three data sets: Bupa, German and Pima and
MLEM2. Only 20 experiments of running of MLEM2 against Bupa and Pima and
only 21 experiments of running MLEM2 against German were performed since
these experiments were very time-consuming (e.g., running of MLEM2 against
Pima lasted for about 2 hours 37 minutes on Alpha 21264 computer). Table 3
presents sample standard deviations of numbers of errors associated with our
experiments.

Table 4 presents the cardinalities of rule sets induced by respective methods.
Also, Table 5 presents the total numbers of conditions in the corresponding rule
sets.

Table 2. Means of numbers of errors.

Agglomerative Divisive MLEM2
Discretization Discretization

Method Method

Australian 205.5 212.6 135.3
Bank 5.63 4.9 3.73
Bupa 143.8 142.9 109.9
German 288.6 294.0 285.3
Glass 74.1 69.9 71.83
Iris 13.33 9.3 8.97
Pima 253.1 249.7 223.1
Segmentation 50.4 44.9 36.77

Table 3. Standard deviations of numbers of errors.

Agglomerative Divisive MLEM2
Discretization Discretization

Method Method

Australian 6.23 11.24 7.93
Bank 1.35 1.63 1.11
Bupa 8.87 8.33 6.87
German 7.04 5.97 7.60
Glass 4.25 5.42 4.81
Iris 2.19 1.68 1.27
Pima 8.70 8.74 12.34
Segmentation 5.28 4.53 3.47
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Table 4. Sizes of rule sets.

Agglomerative Divisive MLEM2
Discretization Discretization

Method Method

Australian 115 109 90
Bank 4 6 3
Bupa 164 162 71
German 205 232 159
Glass 82 76 30
Iris 13 11 8
Pima 287 264 116
Segmentation 38 35 14

Table 5. Total numbers of conditions in rule sets.

Agglomerative Divisive MLEM2
Discretization Discretization

Method Method

Australian 559 542 348
Bank 7 13 6
Bupa 487 500 241
German 1309 1359 814
Glass 262 255 87
Iris 30 21 17
Pima 1025 963 428
Segmentation 144 134 37

5 Conclusions

Our main objective was to compare three different strategies for rule induc-
tion from data with numerical attributes. In the first two strategies, data with
numerical attributes were discretized first, using two different discretization al-
gorithms, based on agglomerative and divisive algorithms of cluster analysis,
respectively, and then rule sets were induced using the LEM2 algorithm. The
LEM2 algorithm is the most frequently used rule induction option of the LERS
data mining system. In the third strategy we used our new algorithm, called
MLEM2, an extension of the LEM2 algorithm. Results of our experiments are
presented in Tables 2 and 3. In order to rank these three strategies, first, for
any data set and for every pair of means from Table 2 and associated with the
three methods, the well known test [11] about the difference between two means,
involving error standard deviation and sample sizes was taken with the signif-
icance level equal to 0.05. Then, for the three sequences of results of this test,
each associated with the eight data sets, the sign test [11]was used to compare
the entire methods, again, with the same significance level equal to 0.05. Results
are: MLEM2 produces less errors than the remaining two methods and the re-
maining two methods are incomparable (the null hypothesis that they produce
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the same number of errors cannot be rejected with the level of significance equal
to 0.05).

Less important observation, about the complexity of rule sets, follows from
Tables 4 and 5: rule sets induced by MLEM2 are simpler than rule sets induced
by the remaining two strategies (the total number of rules and the total number
of conditions, for any data sets used in our experiments, were always smaller for
MLEM2).

Our final observation is that MLEM2 induces rules from raw data with nu-
merical attributes, without any prior discretization, and that MLEM2 provides
the same results as LEM2 for symbolic attributes. Note that MLEM2 can handle
also missing attribute values. A comparison of MLEM2 and other approaches to
missing attribute values will be reported in the future.
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