
X. Li, O.R. Zaiane, and Z. Li (Eds.): ADMA 2006, LNAI 4093, pp. 223 – 238, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Incremental Discretization for Naïve-Bayes Classifier 

Jingli Lu, Ying Yang, and Geoffrey I. Webb 

Clayton School of Information Technology, Monash University 
VIC 3800, Australia 

{Jingli.Lu, Ying.Yang, Geoff.Webb}@infotech.monash.edu.au 

Abstract. Naïve-Bayes classifiers (NB) support incremental learning. However, 
the lack of effective incremental discretization methods has been hindering 
NB’s incremental learning in face of quantitative data. This problem is further 
compounded by the fact that quantitative data are everywhere, from temperature 
readings to share prices. In this paper, we present a novel incremental 
discretization method for NB, incremental flexible frequency discretization 
(IFFD).  IFFD discretizes values of a quantitative attribute into a sequence of 
intervals of flexible sizes.  It allows online insertion and splitting operation on 
intervals. Theoretical analysis and experimental test are conducted to compare 
IFFD with alternative methods. Empirical evidence suggests that IFFD is 
efficient and effective. NB coupled with IFFD achieves a rapport between high 
learning efficiency and high classification accuracy in the context of 
incremental learning.  

1   Introduction 

Naïve-Bayes classifiers (NB) are simple yet powerful [3, 4]. Its efficiency has 
witnessed its widespread deployment in real-world applications including medical 
diagnosis, fraud detection, email filtering and webpage prefetching. One key 
contributing factor to NB’s efficiency is its capability of incremental learning from 
qualitative data [5, 6]. To accommodate a new training instance, NB only needs to 
update relevant entries in its probability table. This often has a much lower cost than 
non-incremental approaches that have to rebuild a new classifier from scratch in order 
to include new training data. 

If learning involves quantitative data, NB often uses discretization to transform 
them into qualitative data. Briefly speaking, discretization groups sorted values of a 
quantitative attribute into intervals, treats each interval as a qualitative value and 
inputs them into NB. Ideally, discretization should also be incremental in order to be 
coupled with NB. When receiving a new training instance, incremental discretization 
is expected to be able to adjust intervals’ boundaries and statistics, using only the 
current intervals and this new instance instead of re-accessing previous training data.  
Unfortunately, the majority of existing discretization methods are not oriented to 
incremental learning. To update discretized intervals with new instances, they need to 
add those new instances into previous training data, and then re-discretize on basis of 
the updated complete training data set.  This is detrimental to NB’s efficiency by 
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inevitably slowing down its learning process. Hence there is a real and immediate 
need for appropriate incremental discretization methods for NB.  

Some preliminary research has been contributed to exploring incremental 
discretization for NB. A representative is the method PiD proposed by Gama and 
Pinto [6]. PiD is based on a two layer histograms and is efficient in term of time and 
space complexity. However it can be sub-optimal in that the histograms are not exact 
and the splitting operation in the first layer possibly produces inexact counters.  

This paper proposes a new effective approach, incremental flexible frequency 
discretization (IFFD). IFFD is based on fix frequency discretization (FFD) that has 
been demonstrated as a very efficient and effective discretization method for NB in 
the context of non-incremental learning [10, 11]. IFFD produces intervals with 
flexible sizes, stipulated by a lower bound and an upper bound. An interval is allowed 
to accept new values until its size reaches the upper bound. An interval whose size 
exceeds the upper bound is allowed to split if the resulting smaller intervals each have 
a size no smaller than the lower bound. Accordingly IFFD is able to incrementally 
adjust discretized intervals, effectively update associated statistics and efficiently 
synchronize with NB’s incremental learning.  

The remaining of this paper is organized as follows. Section 2 introduces naïve-
Bayes learning and discretization. Section 3 explains the motivation and methodology 
of IFFD. Section 4 describes rival incremental methods from related work. Section 5 
analyzes each alternative method’s complexity in terms of learning time and space. 
Section 6 conducts experiments to verify IFFD’s efficacy and efficiency. Section 7 
gives concluding remarks. 

2   Discretization for Naïve-Bayes Learning 

2.1   Naïve-Bayes Classifier (NB) 

Assume that an instance I is a vector of attribute values <x1, x2, …, xn>, each value 
being an observation of an attribute Xi (i∈ [1,n]). Each instance can have a class label 
ci },,,{ 21 kccc L∈ , being a value of the class variable C . If an instance has a known 

class label, it is a training instance. If an instance has no known class label, it is a 
testing instance. The dataset of training instances is called the training dataset. The 
dataset of testing instances is called the testing dataset. 

To classify an instance },,,{ 21 nxxxI L= , NB estimates the probability of each 

class label given I,  )|( IcCP i=  using Formula (1, 2, 3,4). Formula (2) follows (1) 

because P(I) is invariant across different class labels and can be canceled. Formula (4) 
follows (3) because of NB’s attributes independent assumption.  It then assigns the 
class with the highest probability to I. NB is called naïve because it assumes that 
attributes are conditionally independent of each other given the class label. Although 
its assumption is sometimes violated, NB is able to offer surprisingly good 
classification accuracy in addition to its very high learning efficiency, which makes 
NB popular with numerous real-world classification applications [2, 8]. 
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In naïve-Bayes classifier, the class type must be qualitative while the attribute type 
can be either qualitative or quantitative. When an attribute Xj is quantitative, it often 
has a large or even infinite number of values. As a result, the conditional probability 
that Xj takes a particular value xj given the class label ci covers very few instance if 
there is any at all. Hence it is not reliable to estimate P(Xj=xj|C=ci) according to the 
observed instances.  One common practice to solve the problem of quantitative data 
for NB is discretization.  

2.2   Discretization 

Discretization is a popular approach to transforming quantitative attributes into 
qualitative ones for NB. It groups sorted values of a quantitative attribute into a 
sequence of intervals, treats each interval as a qualitative value, and maps every 
quantitative value into a qualitative value according to which interval it belongs to. In 
the paper, the boundaries among intervals are sometimes referred to as cut points. The 
number of instances in an interval is referred to as interval frequency. The total 
number of intervals produced by discretization is referred to as interval number. 

Incremental discretization aims at efficiently updating discretization intervals and 
associated statistics upon receiving each new training instance. Ideally, it does not 
require to access historical training instances to carry out the update. Instead it only 
needs the current intervals (with associated statistics) and the new instance.  

3   Incremental Flexible Frequency Discretization 

In this section, we propose a novel incremental discretization method, incremental 
flexible frequency discretization (IFFD). It is motivated by the pros and cons of fixed 
frequency discretization (FFD) in the context of naive-Bayes learning and incremental 
learning [10, 11].  

3.1   Fixed Frequency Discretization (FFD) 

FFD has been proposed as an effective and efficient discretization method for naïve-
Bayes learning through bias and variance management. It has been found that large 
interval size tends to increase NB’s classficiation bias while large interval number 
tends to increase NB’s classification variance [12].  To discretize a quantitative 
attribute, FFD sets a sufficient interval frequency, m = 30 [11,13]. It then discretizes 
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the ascendingly sorted values into intervals of frequency m. By introducing m, FFD 
aims to ensure that each interval has sufficient training instances for NB probability 
estimation, reducing classification variance error. On top of that, by not limiting the 
number of intervals formed, more intervals can be formed as the training data size 
increases, reducing classification bias error. Empirical evidence has demonstrated that 
FFD helps NB achieve lower classification error than alternative discretization 
methods do.  

Although FFD is effective for naïve-Bayes learning, it is developed in the context 
of non-incremental learning. Every time when new training instances have arrived, 
FFD has to rebuild the discretization intervals from scratch. It is possible that even a 
single instance can push every boundary to (unnecessarily) move. For example, FFD 
discretizes the sorted values of a quantitative attribute into the following intervals. For 
simplicity, we assume m =  3: 

{3.0, 4.0, 4.3}, {4.5, 5.1, 5.9}, {6.0, 6.1, 6.2}, {6.5, 6.7, 6.8}, {6.9, 7.1}  

Suppose that a new instance has come with this attribute being value “5.2”. 
According to the current cut points,  the appropriate interval to accommodate “5.2” is 
{4.5, 5.1, 5.9}. Inserting “5.2” into {4.5, 5.1, 5.9} will make the interval frequency 
increase to 4, which is greater than FFD’s specified threshold 3. Hence we need to 
move “5.9” out of the updated interval{4.5, 5.1, 5.2, 5.9}  and insert it into the 
interval {6.0, 6.1, 6.2}, which produces another interval {5.9, 6.0, 6.1, 6.2} whose 
frequency is greater than 3. Following the same lines of reasoning, we have to move 
“6.2” into the next one and so on so forth until the last interval. As a result, the 
updated intervals are {3.0, 4.0, 4.3}, {4.5, 5.1, 5.2}, {5.9, 6.0, 6.1}, {6.2, 6.5, 6.7}, 
{6.8, 6.9, 7.1} and almost every cut point has been changed. 

In this case, FFD has to rebuild the intervals and NB’s conditional probability table 
from the second interval all the way to the last one. In the best situation, the new 
instance is inserted into the last interval and the computation cost can be non-trivial. 
However in the worst situation such as when the new instance is inserted into the first 
interval, FFD is extremely inefficient. The reason is that FFD specifies a fixed 
interval frequency. This observation motivates our new incremental discretization 
approach as follows. 

3.2   Incremental Flexible Frequency Discretization (IFFD) 

IFFD sets its interval frequency to be a range [minBinsize, maxBinsize) instead of a 
single value m. The two arguments, minBinsize and maxBinsize, are respectively the 
minimum and maximum frequency that IFFD allows intervals to assume. Whenever a 
new value arrives, IFFD first inserts it into the interval that the value falls into. IFFD 
then checks whether the updated interval’s frequency reaches maxBinsize. If not, it 
accepts the change and update statistics accordingly. If yes, IFFD splits the 
overflowed interval into two intervals under the condition that any of the resulting 
intervals has its frequency no less than minBinsize. Otherwise, even if the interval 
overflows because of the insertion, IFFD does not split it, in order to prevent high 
classification variance [10,11]. In the current implementation of IFFD,  minBinsize is 
set as 30, following FFD’s lines of reasoning so as to minimize classification bias and 
variance; and maxBinsize is set as twice of minBinsize. 
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By assuming a more flexible interval frequency, IFFD is able to solve FFD’s 
dilemma in incremental learning. Recall the example in Section 3.1. Assume minBinsize 
= 3 and hence maxBinsize = 6. When the new attribute value “5.2” comes, IFFD inserts 
it into the second interval {4.5, 5.1, 5.9}. That interval is hence changed into {4.5, 5.1, 
5.2, 5.9} whose frequency (equal to 4) is still within [3, 6). So what we need do is only 
to modify NB’s conditional probabilies related to the second interval. Assume another 
two new attribute values “5.4, 5.5” have come and are again inserted into the second 
interval. This time, the interval {4.5, 5.1, 5.2, 5.4, 5.5, 5.9} has a frequency as 6, 
reaching  maxBinSize. Hence IFFD will split it into {4.5, 5.1, 5.2} and {5.4, 5.5, 5.9} 
whose frequencies are both within [3, 6). Then we only need to recalculate NB’s 
conditional probabilities related to those two intervals. By this means, IFFD makes the 
update process local, affecting a minimum number of intervals and associated statistics. 
As a result, incremental discretization can be carried out very efficiently,  

Table 1 shows the pseudo codes of the IFFD algorithm. For simplicity, we just 
consider one attribute value to update the discretization intervals and classifier and 
assume all attribute values are different. cutPoints is the set of cut points of 
discretization intervals. counter is the conditional probability table of the classifier. 
minBinsize is minimum bin size. IFFD will update the cutpoints and counter 
according to new attribute value V. classLabel is the class label of V. 

Table 1. Pseudo Codes of IFFD 

Function: IFFD(cutPoints, counter, minBinsize, V, 
classLabel) 
//If V is greater than the last cut point 
if(V > cutPoints[size-2] ) //size is the interval 

number 
// cutPoints counts from 0 
{ insert V into interval[size-1];  

counter[size-1][classLabel]++;  
chaInt = size-1; //record changed interval   

} 
else 
{ for(j = 0; j < size-1; j++) 
 if(V =< cutPoints[j]) 
 { insert V into interval[j]; 

intFre[j]++; 
  counter[j][classLabel]++;  //update contingency 

table 
  chaInt = j;  //record the interval which has been 

changed 
break;   

}  
} 
if(intFre[chaInt] > minBinsize*2) 
{  get new cut point; //split interval[chaInt] into two 

c1 and c2 
insert the new cut point into cutPoints; 
calculate counter[c1] and counter[c2];//update 

contingency table 
} 
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Please be noted that identical values are always kept in the same interval. For 
example, if the interval is {4.5, 5.1, 5.2, 5.2, 5.2, 5.6, 5.9}, IFFD will not split it into 
{4.5, 5.1, 5.2} and {5.2, 5.6, 5.9} even though its frequency has exceeds maxBinsize 
(=6). Nor will IFFD split it into {4.5, 5.1} and {5.2, 5.2, 5.2, 5.6, 5.9} or {4.5, 5.1, 
5.2, 5.2, 5.2} and {5.6, 5.9}, because the smaller interval frequency is less than 
minBinsize (=3). 

4   Rival Methods from Related Work 

4.1   Move Boundary FFD (MFFD) 

An intuitive way to relieve FFD’s dilemma in incremental learning (Section 3.1) is to 
just move the interval boundaries instead of redoing discretizaiton. We name this 
method move boundary FFD (MFFD). For the same example as in Section 3.1, if 
MFFD is applied, we just calculate the change of every interval. The second interval 
{4.5, 5.1, 5.9} has been inserted into an attribute value “5.2” and delete an attribute 
value “5.9”, then we just modify the conditional probability. Attention is only paid to 
the inserted and deleted values. Do like this until the last interval. NB coupled with 
MFFD has the same classification accuracy as NB coupled with FFD, but the former 
is more efficient than the latter. 

Table 2. The Pseudo Codes of MFFD 

Function: MFFD(cutPoints, counter, V, classLabel) 
curVal=V; curClasslabel= classLabel; 
for(j = 0; j < size-1; j++)   //size is the interval 

number 
{ if(curVal =< cutpoints[j]) 

 { // interval[j] is the jth interval of the attribute 
insert curVal into interval[j]; 
//fre is the specified interval frequency 
// V[j][fre-1] is the last value in interval[j] 
remove V[j][fre-1] from interval[j];  
cutPoints[j]= V[j][fre-2];  //modify cut points 
counter[j][curClasslabel]++;  //update contingency 
table 
counter[j][ V[j][fre-1].class]--; 
curVal = V[j][fre-1];  
curClasslabel = V[j][fre-1].class; 

} 
} 
If(fre[size-1] < split threshold) 
{ insert curVal into interval[size-1];  

counter[size-1][curClasslabel]++;  
} 
else 
{ split interval[size-1]; 

calculate counter[size-1] and counter[size];  
size = size+1; 

} 
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Table 2 presents the pseudo codes of MFFD. For simplicity, we just consider one 
attribute value to update the discretization intervals and classifier and assume all 
attribute values are different.  cutpoints is the set of cut points of discretization 
intervals. counter is the conditional probability table of the classifier. MFFD will 
update the cutpoints and counter according to new attribute value V. classLabel is the 
class label of V. 

4.2   Partition Incremental Discretization (PiD) 

PiD is a two layer histograms incremental discretization method [6]. The first layer 
based on equal-width or equal-frequency determines the candidate cut points 
according to observed values. At this layer, the interval number is significantly 
greater that the final interval number. For example, the final interval number is 40, 
probably the interval number in the first layer is 200. For incremental learning, it 
inserts the incremental data into the appropriate intervals. To any interval whose 
frequency is greater than the specified threshold, it will be split. Because in this 
layer, it does not store the historical data, the splitting result is inaccurate. It just 
splits an interval into two uniformly. The second layer merges the intervals gained 
at the first layer. In the second layer, PiD can construct the final discretization 
interval by any different strategies. Namely, PiD discretizes quantitative attributes 
twice. At first, it uses a loose interval number to discretize; and then merges 
intervals if necessary. The main advantage of PiD is low time and space 
complexity, but during the splitting operation in the first layer, it possibly produces 
inexact counters.  

4.3   Kernel Density Estimation (KDE) 

A counterpart of discretization is probability density estimation to handle quantitative 
attributes for NB. It models each quantitative attribute by some continuous probability 
distribution. Probability density estimation methods can manipulate quantitative 
attributes for naïve-Bayes incremental learning.  A representative method is kernel 
density estimation (KDE) [7]. 

KDE is a non-parametric approach that does not assume the underlying distribution 
to take any particular form. Instead it estimates from sample values. This circumvents 
unsafe assumptions and achieves better accuracy because of real world diversity. For 
KDE, it calculates the conditional class probability as: 
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where ni is the number of training instances with class label ci. For every quantitative 
attribute of testing instance, KDE has to perform probability calculation ni times to 
get P(Xj=xj|C=ci). If the instance number is large, it has a potential computational 
problem.  
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5   Time and Space Complexity Comparison 

In this section, we analyse the time and space complexity incurred by accommodating 
a new training instance. It includes updating the discretized intervals as well as 
updating required probabilities for NB.  

5.1   Time Complexity 

In the following, n is abbreviation of instance number; k is the attribute number; C is 
the number of class label, specified Interval Frequency is abbreviated by IntF, IntN 
represents Interval Number, then IntN=n/IntF.  

5.1.1   Train Time Complexity on a New Instance 

Train Time Complexity of MFFD 
Assume the probability of the new attribute value inserting into every interval is 
equal. 1+− iIntN  is the number of intervals which has to be changed, where i is the 
appropriate interval for the new instance. Inserting an instance into the interval while 
deleting another one from the interval has a constant cost in time complexity O(1). So 
for every incremental attribute value, the training time complexity is presents in 
equation (6). This complexity repeating for k attribute is O(k), so resulting in the 
totally complexity is O(n)*O(k)=O(nk).  
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Train Time Complexity of PiD 
The time complexity of PiD depends on the discretization methods selected in each 
layer. In our experiments, we select equal-width and PD for the two layers separately 
(the reason that we select them is explained in 4.2.1). Here we just analyze time 
complexity in this situation.  

In the first layer, when the interval frequency of a specified interval is greater than 
a user defined threshold ( a percentage of the total instance number), the interval will 
be split. The more interval number is defined in the first layer, the less probability 
some interval will be split. In the first layer, the interval frequency is a large number, 
so the time for splitting operation can be ignored. The input of the second layer is the 
intervals and associated statistics of first layer. If the interval gained in the first layer 
is m, then the time complexity of PiD is O(mk).  

Train Time Complexity of IFFD 
Assume the probability of the new attribute value inserting into some interval is 
equal. Max is the maximum interval frequency; Min is the minimum interval 
frequency.  
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When a new attribute value inserts into the appropriate interval, the probability that 

the interval does not split is
1+−

−
MinMax

MinMax
. In this situation, the operation is just to 

insert the new instance. Inserting an instance into the interval has a constant cost in 

time complexity O(1). The probability that the interval splits is
1

1

+− MinMax
. In this 

situation, the operation is to recalculate the conditional probability table of the two 
new intervals and change the cut points. For a single attribute, if the data structure of 

cutPoints is array, the time complexity is presented in equation (7), 
2

IntN
 means the 

number of cut points have to move, when insert a new cut point into the cutPoints. 
And if tree or list structure is selected, the time complexity is demonstrated as 
equation (8). This complexity repeating for k attribute is O(k), so resulting in the 
totally complexity for array structure  is O(n)*O(k)=O(nk) and for tree structure is 
O(1)*O(k)=O(k). In our experiment, we select array structure to store cutPoints, 
because our select Weka as the platform, in Weka, cutPoints is stored in an array.  
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Train Time Complexity of KDE 
At training time, KDE just store the attribute values, so its time complexity is O(k). 

5.1.2   Test Time Complexity on a New Instance 

Test Time Complexity of MFFD, IFFD and PiD 
For every class label, the classifiers which manipulate quantitative attributes by 
discretization methods can get the conditional probability from the conditional 
probability table directly, so testing time complexity on the new instance is O(Ck).  

Test Time Complexity of KDE 
At testing time, from equation (5) we can see, for every class label ci and every 
quantitative attributes, KDE must evaluate f for every observed different attribute 
value whose class label is in class ci. So the testing time complexity of KDE is O(nk). 

5.2   Space Complexity 

5.2.1   Space Complexity of MFFD, IFFD and KDE on a New Instance 
MFFD, IFFD and KDE have to store the historical quantitative attributes, so their 
space complexity is O(nk). 

MFFD has to change the cut points and modify the conditional probability table, so 
historical quantitative attributes are necessary.  
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For IFFD, when the interval frequency of some interval exceeds the threshold, the 
interval has to be split. Historical quantitative data is necessary to splitting operation. 
So IFFD must store the historical quantitative attribute values for every instance. But 
for every new instance, the modified interval is just one: split it or insert a point into 
it, namely the adjustment is local. So we can store the historical data in external 
storage. When change is necessary, we copy it from external storage to memory. With 
the development of hardware, storage is not a big problem.  

KDE must store every different quantitative attribute value for every class label. 
To classify an instance, KDE has to access every attribute value to calculate the 
conditional class probability. So it is necessary to store the attributes values in the 
memory. However memory store is more expensive than external storage. If for every 
class label there are many duplicate quantitative attribute values, KDE has a lower 
space then MFFD and IFFD; otherwise their storage space are equal. 

5.2.2   Space Complexity of PiD on a New Instance 
Splitting operation in PiD is to split an interval uniformly. PiD does not need to store 
historical quantitative attribute values. It just stores the interval information which 
gained at the first layer. So its space complexity is O(m), where m is the number of 
interval in the first layer. Compared with other methods, PiD has the lowest space 
complexity. 

The time and space complexity are summarized in Table 3.  

Table 3. Algorithmic complexity. n is abbreviation of instance number; k is the attribute 
number; C is the number of class label; m is the number of interval number in the first layer 
for PiD. 

Method MFFD IFFD PiD KDE 
Trainning O(nk) O(nk)   (Array) 

O(k)   (Tree) 
O(mk) O(k) Time 

Complexity 
Testing O(Ck) O(Ck) O(Ck) O(nk) 

Space Complexity O(nk) O(nk) O(mk) O(nk) 

6   Experimental Evaluation 

In this section, we compare the incremental learning performance of NB when 
coupled with IFFD, PiD, MFFD and KDE respectively to handle quantitative 
attributes.  

6.1   Data 

The experiments use a large suite of 30 benchmark datasets from the UCI machine 
learning repository [1]. For the purpose of incremental learning, the chosen datasets 
each have more than 500 instances. Table 4 describes the statistics of each dataset. 
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Table 4. Experimental Datasets. For each dataset, Size is the number of instances, Qa is the 
number of quantitative attributes, Ql is the number of qualitative attributes and C is the number 
of classes. 

ID Dataset     Size Qa Ql C ID Dataset     Size Qa Ql C 
1 cylinder-bands 540 20 19 2 16 Abalone 4177 8 0 3 
2 balance-scale 625 4 0 3 17 spambase 4601 57 0 2 
3 credit-a 690 6 9 2 18 waveform-5000 5000 40 0 3 
4 breast-w 699 9 0 2 19 page-blocks 5473 10 0 5 
5 diabetes 768 8 0 2 20 optdigits 5620 48 0 10 
6 vehicle 846 18 0 4 21 satellite 6435 36 0 6 
7 anneal 898 6 32 6 22 Musk2 6598 166 0 2 
8 vowel 990 10 3 11 23 pioneer 9150 30 6 57 
9 German 1000 7 13 2 24 Thyroid 9169 7 22 20 

10 cmc 1473 2 7 3 25 ae 9961 12 0 9 
11 yeast 1484 7 1 10 26 pendigits 10992 16 0 10 
12 volcanoes 1520 3 0 4 27 Sign 12546 8 0 3 
13 mfeat-zernike 2000 47 0 10 28 letter 20000 16 0 26 
14 segment 2310 19 0 7 29 Adult 48842 6 8 2 
15 hypothyroid 3772 7 23 4 30 Shuttle 58000 9 0 7 

6.2   Design 

For each instance, we randomly shuffle the instances and use the first 200 instances to 
initialize an NB classifier. The remaining instances come one after the other. Each 
instance is to be classified by the current NB first. Its true class label is then made 
known to the classifier which takes it as a new training instance.  Accordingly, the 
discretized intervals are updated and so is the classifier. Then the next instance comes 
and the same procedure runs again, and so on so forth until the last instance is 
classified. We call this complete process a trial. We conduct five trails and average 
their classification error rates. 

For IFFD, minBinSize is 30 while maxBinsize is 60. For PiD, the first layer is 
equal-width discretization and the interval number is 200 [5]. In the second layer, we 
choose to proportional discretization [9], which has been demonstrated efficient and 
work well [9]. 

Statistically a win/draw/lose record is calculated when we compare IFFD against 
each alternative method. The record represents the number of data sets in which IFFD 
respectively beats, tie with or loses to the rival method. A one-tailed binomial sign 
test will be applied to the record. If its result is less than the critical level of 0.05, the 
wins against losses are statistically significant, supporting the claim that IFFD has a 
systematic (instead of by chance) advantage over the rival method. 

6.2.1   Comparing at Ten Observation Points 
Along the time line, 10 observed classification error rates are recorded when 10%, 
20%, 30%, …, 100% of instances have been classified respectively. At every 
observation point, we calculate the win/draw/lose records on classification error rate 
when comparing IFFD against alternative methods. Table 5 lists the records as well as 
their sign test results. 
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Table 5. Classification error win/draw/lose records on 10 observation points 

Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Win 20 19 19 20 22 21 20 21 18 19 
Draw 1 0 0 0 0 0 1 1 2 1 
Lose 9 11 11 10 8 9 9 8 10 10 

IFFD 
& 

PiD 
Sign test 0.031 0.1 0.1 0.049 0.008 0.021 0.031 0.012 0.092 0.068 

Win 14 14 15 17 17 16 17 18 17 17 
Draw 1 2 0 1 0 0 0 0 0 2 
Lose 15 14 15 12 13 14 13 12 13 11 

IFFD 
& 

MFFD 
Sign test 0.644 0.575 0.572 0.229 0.292 0.428 0.292 0.181 0.292 0.172 

Win 17 15 16 18 17 19 19 19 19 19 
Draw 0 0 0 0 0 0 0 0 0 0 
Lose 13 15 14 12 13 11 11 11 11 11 

IFFD 
& KDE 

Sign test 0.292 0.572 0.428 0.181 0.292 0.1 0.1 0.1 0.1 0.1 

At every observation points, we also record the arithmetic mean of each method’s 
classification error rate averaged on 30 datasets, as in figure 1. 
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Fig. 1.  Incremental Learning Curve. Comparing the classification error rate of naïve-Bayes 
classifiers which use the 4 methods to deal with quantitative attributes respectively at the 10 
observation points, we can see, the error rate of IFFD is marginally lower than that of MFFD’s 
for the whole learning curve, the separation between IFFD and PiD becomes smaller and 
smaller with instances increasing. IFFD has substantially lower error rate than KDE. 

In general, the classification error rate decreases gradually while more training 
instances are available. The error rate of IFFD is marginally lower than that of MFFD’s 
for the whole learning curve. There is a larger gap between IFFD and PiD at the 
beginning, which shrinks with time going on. IFFD has substantially lower error rate 
than KDE and its leading position remains through the whole learning period. The 
learning curve of PiD and KDE have small gaps at the beginning which enlarges later. 
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Specifically, to compare IFFD against PiD, IFFD is statistically more accurate than 
PiD at the 0.05 critical level when the training data size is medium (from the column 
40% to the column 80%). On the pther hand, IFFD is not significantly better than PiD 
when the training data size is extremely small or large. We suggest the reason that 
PiD employs proportional discretization at its second layer, which controls the 
interval frequency better than IFFD’s interval [30,60) does. 

For discretization, large interval frequency tends to produce low variance but high 
bias while large interval number tends to produce low bias but high variance. 
Proportional discretization attains equal bias and variance reduction by setting both 
interval frequency and interval number to be square root of the number of  training 
instances, a strategy that has been demonstrated to react sensibly to varying training 
data size [9]. Figure 2 shows the ideal interval frequency’s changing while training 
instances increase from 1 to 5000. From figure 3, we can see that when instances are 
fewer then 900, the ideal interval frequency should be less then 30, and when 
instances are more than 3600, the ideal interval frequency should be greater than 60. 
However, the current implementation of IFFD only allows the interval frequency to 
vary in the interval [30, 60). Hence for small datasets, IFFD’s interval frequency can 
be too big; whereas for large datasets, IFFD’s interval frequency can be too small. 
This explains why IFFD’s performance is not significantly better then PiD’s at the 
beginning and at the very end of the incremental learning curve. Our understanding of 
this issue also leads to an interesting future research issue, that is, how to make 
IFFD’s flexible frequency range change according to different training data size. 
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Fig. 2. Different sizes of training data require different ideal interval frequencies. Proportional 
discretization answers this call by setting both interval number and interval frequency to be the 
square root of the number of training instances. With instance number increasing, the interval 
frequency and number increase accordingly. When the instances number is less than 900, the 
ideal interval frequency should be less then 30 and when the instance number is greater than 
3600, the ideal interval frequency should be greater then 60. 
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To compare IFFD against MFFD, according to Table 5, the difference between 
classification error rate of IFFD and that of MFFD’s is not significant. When there are 
a small number of training instances, MFFD is better than IFFD. When more training 
instances are available, IFFD becomes better than MFFD. We suggest the reason is 
that the interval frequency of MFFD is 30 and is smaller than the interval frequency 
[30, 60) of IFFD. According to the interval frequency analysis in Fig 1, 30 is more 
suitable for small datasets. 

To compare IFFD against KDE, according to Table 5, the difference between 
classification error rate of KDE and that of IFFD’s is not significant. However,  
for some datasets, IFFD is dramatic better than KDE, as to be demonstrated in  
Section 6.2.2. 

Table 6. Classification error win/draw/lose records on 30 datasets 

Method Win Draw Lose Sign Test 
IFFD & PiD 20 0 10 0.049 

IFFD & MFFD 16 0 14 0.428 
IFFD & KDE 19 0 11 0.1 

6.2.2   Comparing on Every Dataset 
For every dataset, if the classification error rate of a rival method is less than that of 
IFFD’s at more than half of the 10 observation points, we deem that the rival method 
is better than IFFD for this dataset, and vice versa. The resutling win/draw/lose 
records across the 30 datasets are listed in Table 6. Accordingly, IFFD is significant 
better than PiD at the 0.05 critical level. Although not statistically significant, IFFD 
wins more often than not when compared with MFFD or KDE. 
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Fig. 3. NB’s running time averaged on 30 datasets when coupled with PiD IFFD, KDE and 
MFFD respectively. PiD and IFFD are more efficient than KDE and MFFD.  
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6.2.3   Comparing Running Time 
This section compares the running time of the four rival methods. Figure 3 
demonstrates each method’s running time averaged on the 30 datasets. From the 
fastest to slowest is PiD, IFFD, KDE and MFFD. It is consistent with our theoretical 
analysis in Section 5. PiD is the fastest algorithm. Although IFFD and MFFD have 
the same time complexity, for IFFD, it just modify one or two intervals and update the 
cutPoints, while for MFFD, on average it has to modify IntN /2 intervals and 
associated statistics, where IntN is the interval number.   

7   Conclusion  

In this paper, we have argued that most existing discretization methods do not suit 
incremental learning of naïve-Bayes classifiers (NB). This is sub-optimal because NB 
is extensively deployed for real-world applications which often involve quantitative 
data. Accordingly, we have proposed a novel incremental discretization method 
incremental flexible frequency discretization (IFFD). IFFD inherits from fxed 
frequency discretization the strength of minimizing classification bias and variance fir 
NB. Meanwhile, it adopts a more flexible strategy to handle to interval size so as to 
efficiently update discretized intervals upon receiving each new training instance. A 
comprehensive, theoretical and empirical study has been conducted to compare IFFD 
with representative alternative approaches. Observations suggest NB coupled with 
IFFD can achieve higher classification efficiency than those with MFFD and KDE, 
while achieve higher classification accuracy than those with PiD and KDE. Hence 
IFFD is a promising discretization approach for NB in practice where people want a 
rapport between learning accuracy and efficiency.  
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