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Abstract

The need to discretize a numerical range
into class coherent intervals is a problem
frequently encountered. Training Set Error
(TSE) is one of the commonly used impurity
functions in this task.

We show that in order to find T'SE-optimal
discretization one only needs to examine a
small subset of all cut points, called alter-
nation points. On the other hand, we prove
that failing to check an alternation point may
lead to a suboptimal discretization. Alterna-
tion points can be identified efficiently once
the data has been ordered.

Our empirical evaluation demonstrates that
the number of alternations in numerical
ranges typically is much lower than the total
number of cut points. In our experiments the
discretization algorithm running on top of al-
ternation points was significantly faster than
the same algorithm on all cut points. Thus,
the sublinear number of evaluated threshold
candidates further reduces the practical time
requirement of T'SFE optimization.

1. Introduction

Consider having a set of labeled data points (with du-
plicate values allowed) from some range in the real
axis. In order to distill some general information on
the relation between the data values and their labels,
the numerical range is discretized into labeled inter-
vals. An upper bound on the number of allowed inter-
vals is usually given as an external parameter.

As goodness criterion—an evaluation function—to
discriminate between the candidate discretizations we
use the Training Set Error (subsequently TSE for
short): choose the discretization in which the inter-
val labeling differs least often from that of the data
points. In this paper we examine efficient ways to ob-

tain discretizations that are optimal with respect to
TSE.

TSE is arguably the most commonly used attribute
evaluation function in machine learning algorithms
(Auer, Holte & Maass, 1995; Brodley, 1995; Lubin-
sky, 1995; Kearns et al., 1997). Using T'SE in grow-
ing the hypothesis is prone to overfit it to the train-
ing examples. On the other hand, the principle of
empirical risk minimization is based on the choosing
the hypothesis that minimizes training error (Vapnik
& Chervonenkis, 1971). Under certain conditions one
can guarantee that the minimum-error hypothesis will
also have a small generalization error.

An union of intervals of a numerical range has some-
times been used as hypotheses in theoretical frame-
works (Maass, 1994; Kearns et al., 1997; Lozano,
2000), but more often the bounded-arity discretization
problem is encountered as a subproblem in learning
more complex hypotheses. For example, in learning
decision trees one needs to partition the domains of
numerical attributes into a modest number of inter-
vals (Breiman et al., 1984; Quinlan, 1986). In clas-
sifier induction discretization of numerical domains is
a potential time-consumption bottleneck, since in the
general case the number of possible discretizations is
exponential in the number of interval threshold candi-
dates within the domain.

With respect to many commonly used evaluation func-
tions numerical ranges can be optimally discretized in
quadratic time in the number of interval threshold can-
didates using a dynamic programming algorithm (Ful-
ton, Kasif & Salzberg, 1995; Zighed, Rakotomalala &
Feschet, 1997; Elomaa & Rousu, 1999), but only TSE
is known to optimize in linear time (Fulton et al., 1995;
Auer, 1997; Birkendorf, 1997). For quadratic-time al-
gorithms pruning cut point candidates in preprocess-
ing has turned out to be a useful way to speed up
the search (Fayyad & Irani, 1992; Elomaa & Rousu,
1999; 2000). In this paper we explore the possibilities
and limitations of further speed-up of minimum TSE
discretization via preprocessing the data.



The remainder of this paper is organized as follows. In
the next section we introduce the minimum training
error discretization problem more exactly and review
subquadratic-time search algorithms that have been
put forward for finding T'SE-optimal discretizations.
Pruning threshold candidates without losing the possi-
bility to recover an optimal discretization is considered
in Section 3. In Section 4 we prove that when using
TSE it is possible to prune more thresholds than when
using other common evaluation functions. In Section
5 we report empirical experiments on the pruned set
of threshold candidates. The final section presents the
concluding remarks of this paper.

2. Minimum 7SE Discretization

Let us first define the discretization problem more
formally. A sample S = {(z1,v1),---,(Zn,yn) }
consists of n labeled real values (given in the in-
creasing order of z). For each (z,y), ¢ € R and
y is the label of z from the set of classes C' =
{c1,.-.,¢m }. A k-interval discretization of the sam-
ple is generated by picking k — 1 interval thresh-
olds or cut points Ty < Ty < < Ty, T €
(Zmin, Tmax), where zpmin = min{z | (z,y) € S} and
Tmax = max{z | (z,y) € S}. Moreover, empty inter-
vals are not allowed. The set of k—1 thresholds defines
a partition Ule S; of the set S as follows:

{(z,y) €S|z <Ti} ifi =1,
Si=¢{(z,y) eS| Tici <z <T;} ifl<i<k,
{(z,y) €S |z>Tr1} if i = k.

In this paper we use Training Set Error to deter-
mine the goodness of a partition. Let 6;(S) =
[{(z,y) € S|y #c;}| denote the error, or the num-
ber of disagreements, with respect to class c; in the
set S. That is, if all instances in S were predicted
to belong to class ¢;, we would make ¢;(S) errors on
S. Furthermore, let §(S) = min,,cc §;(S) denote the
minimum error on S. A class ¢; € C' is called a major-
ity class of S, if predicting class c; leads to minimum
number of errors on S, that is, §;(S) = 6(S). Note
that more than one class can qualify as a majority
class. The majority classes of a set S are denoted by
majo(S) = {c; € C | 6;(S) = 5(S) }.

Given a k-interval partition Ule S; of S, where each
interval is labeled by (one of) its majority class, its
Training Set Error is given by

A
TSE < + s,) =" 5(5:).

Intuitively, TSE is the number of training instances

ol

falsely classified in the partition when each interval is
labeled by one of its majority classes.

The global minimum error discretization problem is to
find a partition Hf:l S; of S that has the minimum
TSE value over all partitions of S. The maximum
number of intervals k¥ may be given as a parameter.
Then the problem is to find the T'SE-optimal partition
among those that have at most k intervals. This is
called bounded-arity discretization.

In the following we review efficient (subquadratic) al-
gorithms that have been proposed for minimum train-
ing error discretization of numerical ranges. All algo-
rithms require an O(nlogn) time sorting step prior to
discretization. Note that it is not possible to discretize
an unordered sample of (z,y) € R x C pairs faster
than sorting; given such a hypothetical discretization
algorithm one could sort arbitrary real numbers by
assigning each data point a unique class label and ask-
ing the discretization algorithm to create T'SE-optimal
discretization. The output would have to define the se-
quence of bins and the sorted data could be recovered
in linear time from it.

Maass (1994) was the first to devise a subquadratic
algorithm for minimizing T'SE in bounded arity dis-
cretization. In his algorithm a balanced binary tree,
to leaves of which the data points are assigned, is con-
structed in O(nlogn + nk?) time. Optimal interval
assignment and labeling are then found in O(k?) time
using this data structure. Kearns et al. (1997) pre-
sented an algorithm requiring O(nlogn) time. Their
algorithm is based on the observation that given an
optimal partition of arity k, in the two-class case, the
optimal partition of arity & — 2 either has the label
of both its first and last interval flipped, or one of
the other (internal) intervals j has its label flipped,
in which case one interval is composed of out of the
three intervals j — 1, 7,7 + 1 in the original k-interval
partition.

Using dynamic programming to compose the partition
from the best lower-arity partitions of subsets yields
a linear-time algorithm in the two-class case. Such
an algorithm was first presented by Fulton, Kasif, and
Salzberg (1995). In processing the sorted data from
left to right, we only have to decide, at suitable thresh-
old points, whether the uncommitted data points are
combined to the last interval of the already constructed
discretization or do they start a new interval in the dis-
cretization. The decision, of course, is based on which
of the alternatives yields a smaller training error. Us-
ing this approach and keeping track of the optimal dis-
cretization of the processed data for all arities 1,...,k
lets us, in the end, choose the optimal discretization
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Figure 1. A sequence of data points sorted according to their numerical values (above). The class labels (X and Y) of the
data points are also shown. The sequence of data bins with the respective class distributions (below). Interval thresholds

can be set at the bin borders.

of the numerical range with at most k& intervals. The
time complexity of this approach clearly is O(kn).

How to generalize the dynamic programming compu-
tation to the case when there are m > 2 classes was
shown by Auer (1997). The sufficient modification is
to maintain separately for each class ¢; (1 < j < m)
at each threshold candidate the optimal discretizations
of arity 1,...,%k such that the last interval is labeled
with ¢;. Taking multiple classes into account raises the
time requirement of the algorithm to O(kmn). Auer
(1997) also showed how the space complexity of the al-
gorithm can be kept low. Birkendorf (1997) has given
a similar algorithm as a special case of a more general
optimization problem. Below, we experiment with this
Auer-Birkendorf algorithm.

The linear-time search algorithms reviewed above are
asymptotically optimal in the number of examples.
One cannot guarantee finding the optimal discretiza-
tion without examining all of the cut point candidates,
and they cannot be found without going through all
of the data. For the dynamic programming scheme,
a worst-case lower bound of Q(kmn) can be derived
from the general literature concerning dynamic pro-
gramming optimization (Elomaa & Rousu, 2001).

However, in practice there are many potential thresh-
olds that can be overlooked without risking to lose the
optimal discretization. Hence, the sublinear number
of threshold candidates gives a possibility to reduce
the time requirement of the search. In the following
we review approaches to optima-preserving pruning of
cut point candidates.

3. Pruning Threshold Candidates in
Preprocessing

As noted before, the processing of a numerical value
range starts with sorting of the data points. If one
could make its own partition interval out of each data
point in the sorted sequence, this discretization would
have zero training error. However, one cannot— nor

wants to — discern between all data points. Only those
that differ in their value can be separated from each
other. Consider, for example, the data set shown in
Figure 1. There are 27 integer-valued data points.
They are instances of two classes; X and Y. Inter-
val thresholds can only be set in between those points
where the data point value changes. Therefore, we can
preprocess the data into bins. There is one bin for each
existing data point value. Within each bin we record
the class distribution of the instances that belong to it.
The class distribution information suffices to evaluate
the goodness of the partition; the actual data set does
not need to be maintained.

The sequence of bins has the minimal attainable mis-
classification rate. However, the same rate can usu-
ally be obtained with a smaller number of intervals.
The analysis of the entropy function by Fayyad and
Irani (1992) has shown that cut points embedded into
class-uniform intervals need not be taken into account,
only the end points of such intervals —the boundary
points —need to be considered to find the optimal dis-
cretization. Elomaa and Rousu (1999) showed that the
same is true for a large class of commonly used evalua-
tion functions including also T'SE. The analysis can be
used in preprocessing in a straightforward manner: we
merge together adjacent class uniform bins with the
same class label to obtain example blocks (see Figure
2). The boundary points of the value range are the
borders of its blocks. Block construction still leaves
all bins with a mixed class distribution as their own
blocks.

Subsequently, a more general property was also proved
for TSE and some other evaluation functions (Elo-
maa & Rousu, 2000): segment borders — points that
lie in between two adjacent bins with different relative
class distributions —are the only points that need to
be taken into account. It is easy to see that segment
borders are a subset of boundary points. Example seg-
ments are easily obtained from bins by comparing the
relative class distributions of adjacent bins (see Figure
2).
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Figure 2. The blocks (above) and segments (below) in the
sample of Figure 1. Block borders are the boundary points
of the numerical range and segment borders are a subset
of them.

4. Further Prepruning Opportunities
for Training Set Error

An earlier proof shows that only segment borders need
to be considered when trying to find T'SE-optimal par-
titions (Elomaa & Rousu, 2000). In this section we
prove that even some segment borders can safely be
disregarded.

Let a majority alternation point' be the border in
between two consecutive bins (or, as well, blocks or
segments) that have different majority classes. More
exactly, let S; = {(z,y)€S|z=wv1} and S2 =
{(z,y) €S|z =v2}, vi,v2 € R, be two adjacent
bins. There is a majority alternation point in between
S1 and S, if and only if

majs(S1) Nmajs(S2) =0,

that is, the sets of majority classes in S; and Sy are
disjoint. For example in the dataset of Figure 2 there
are only two majority alternations. Figure 3 shows the
data organized in to sequences between majority alter-
nations, which help to find T'SE-optimal partitions.

Theorem 1 The partition defined by all majority al-
ternation points in the sample S has the minimum
TSE value and has minimal number of intervals.

Proof Let us first show that all majority alternation
points must be cut points in the minimal T'SE-optimal
partition. Assume that ™ = Ule S; is a partition of
the sample S such that it does not contain all major-
ity alternation points. Then in 7 there must exist an
interval S; = {(z,y) € S| Ti—1 <z <T;} that con-
tains the majority alternation points as,...,a,,7 > 1,
which satisfy T;_1 < a1 < --- < a, < Tj;. Let UrJrl
denote the partition of .S; induced by the r alternatlon
points.

From the definition of a majority alternation point it

!Note that the term alternation has a different meaning
here from, e.g., that in (Fulton et al., 1995; Kearns et al.,
1997).
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Figure 3. The majority alternations in the sample of Figure
1.

follows that for any class c; there is a subset Q,; within
Wi L] Qn for which 6;(Qn,) > 8(Q,), that is, c; is not
a majority class in Q. Thus, §;(S;) > S04 6(Qy),
and since c; is arbitrary also §(S;) > 3711 6(Qn)-

Therefore, partitioning S; into r + 1 subintervals at
these majority alternations reduces the number of mis-
classifications in S; and, thus, gives a better partition
than 7. Hence, m cannot be T'SE-optimal. This shows
that any T'SE-optimal partition has a cut point in each
majority alternation point.

Let us now assume that a TSFE-optimal partition

= Lﬂle S; has also other cut points than major-
ity alternations. Let the cut points points in the
partition be Ti,...,T,_1 and let us, further, define
To = —o0 and Tp = oo. Let T; be one cut point
in 7 that is not a majority alternation point. Now
T; separates two intervals in the partition, S; =
{(z,y) € S|Ti-s <z <Ti}and Siy1 ={(z,y) €S|
T; < z < Tj41 }. Since T; is not a majority alternation,
there must exist a class ¢; for which 6;(S;) = §(S;) and
8;(Si+1) = 6(Si+1). Thus, labeling both intervals S;
and S;11 with the same label c; results in a minimum
error partition. Therefore, removing T; will not affect
the number of misclassifications. The same holds for
all cut points that are not majority alternations.

Hence, we have shown that for globally minimal 7SE
value one needs to cut on each majority alternation
point and to keep the number of intervals at minimum,
no other thresholds except majority alternation points
can be used. a

The above theorem shows that, when the number of
intervals in the partition is not bounded, the best par-
tition is the one that cuts on each majority alterna-
tion point. However, when an optimal partition of
bounded-arity is required, examining majority alter-
nation points alone does not suffice; one has to con-
sider the frequency of the minority classes as well. In
the following, we generalize the concept of a majority
alternation point so that handling the bounded-arity
case becomes possible.

Let P and @ be two adjacent bins with relative class
frequency distributions Dp = {p1,...,pm } and Dg =
{q1,---,qm }, respectively. There is an alternation



point in between P and @ if there is no index set
I = {llvvzm} such that Diy Z Di, Z Z Di,,
and ¢;, > qi, > -+ > q;,,. In other words, an alter-
nation occurs in between two bins, if ordering of the
classes in descending order of frequency is different in
them; that is, there exists a pair of classes h and j
such that ps, > p; and g, < g;. Let us call the numer-
ical range intervals induced by the set of alternation
points as alternating segments. Clearly, a majority al-
ternation is a special case of an alternation. In the
two-class setting the two concepts coincide. Thus the
number of alternations is always at least as high as
that of majority alternations.

Next we show that only alternations need to be consid-
ered when searching for the T'SE-optimizing partition.

Theorem 2 For any numerical range and each k >
2 there is an TSE-optimal partition with at most k
intervals that is defined on alternation points.

Proof Let L, P, Q, and R form a sequence of ad-
jacent subsets along the numerical range. Let the
relative class distributions of sets L and R, Dy and
Dg, be arbitrary and let Dp = {p1,...,pm } and
Dg = {q1,-..,qm } be such that there is no alter-
nation point in between the sets P and Q.

Let us now consider splitting the set into two intervals
and labeling the left-hand side with class h and the
right-hand side with class j. In such a situation, let
01, ;(SWT) denote the error of a binary partition with
S as the left-hand side and 7' as the right-hand side.
The errors of the partitions are

+ >0 5(

On (LY (PUQUR)) =6,(L

S=P,Q,R
Sni(LUP)W(QUR)) = > ou(S)+ > 6;(5)
S=L,P S=Q,R
Shi(LUPUQ)WR) > 6u(S)+6;(R).
S=L,P,Q

By assumption, the point in between P and @ is not
an alternation. Therefore, from the definition of an
alternation it follows that for any pair of classes h and
J, 1 < h,j < m, either 1) p, < p; and g, < g; or 2)
pr, > pj and g, > g;. In the first case §;(P) < 6,(P)
and, consequently,

65(LW (PUQUR)) < 81, (LUP)
In the second case 6;(Q) > 0,(Q), and
51/ (LUP)W(QUR)) > 6 (LUPUQ) W R).

(QUR)).

Hence, the partition (LUP)W(QUR) is always at most
as good as the two other partitions. Since the classes

h and j and the sets L and R are arbitrary, we have
shown that in any partition a cut point that is not
an alternation point, can be replaced with another cut
point without increasing the error. Thus, one can slide
cut points to the left or to the right until an alternation
point or the end of interval is encountered. Hence, a
TSE-optimal binary partition of an interval is defined
on alternation points.

Since in the T'SE-optimal k-interval discretization the
embedded binary partitions are TSFE-optimal, the
claim follows. a

The consequence of the above theorem is that only
those cut points that are alternations need to be con-
sidered when looking for the bounded arity optimal
TSE partition. Hence the sample can be processed
into alternating segments.

We show next that no alternations can be proven sub-
optimal without considering the context in which the
cut point is; that is, which other cut points are present
in the k-interval discretization of the range.

Theorem 3 For each alternation point there is a con-
text in which it is the TSE-optimal cut point.

Proof Let L, P, @, and R be adjacent subsets along
a numerical range. Let there be a pair of classes h
and j for which it holds that p, > p; and ¢, < g;.
That is, there is an alternation point in between P
and @. Now, let us choose the class distribution for
L so that h is the majority class of L U P U Q. Such
a distribution is easily generated by choosing L to be
large enough and consist of instances of a single class
h. Now, 6;(P) > 0,(P) and, consequently,

6n5(L W (PUQUR)) > 8,;((LUP) & (QU R)).

Similarly, the class distribution of R can be set so that
J is the majority class of P U Q U R. Since 6;(Q) <
6n(Q), we get

55((LUP)8 (QUR)) < 81,(LUPUQ) Y R).

Thus, the optimal binary split with the left side labeled
with class i and the right side labeled with class j has
the cut point on the alternation point in between P
and ). Since h and j are majority classes of the left
and the right sides of all binary splits of the subsets L,
P, @, and R, the split has the minimum TSE. Since
h and j are arbitrary, the claim follows. |

The above theorem shows that the usefulness of an al-
ternation point cannot be judged by examining the two



adjacent bins alone. This shows that while a fast left-
to-right scan over the data— examining two bins at a
time —is sufficient to find alternation points, discov-
ering an equally simple and fast algorithm for pruning
out some of the alternation points is unlikely.

5. Empirical Evaluation

In this section we examine alternation points with real-
world data. We test first for 29 well-known data sets
from the UCI data repository (Blake & Merz, 1998)
what are the relations of average numbers of bin bor-
ders, boundary points, segment borders, alternation
points, and majority alternations per numerical at-
tribute. Then the practical speed-up gained by exam-
ining alternations rather than bin borders, boundary
points, or segment borders is inspected.

5.1 On Finding Alternation Points Efficiently

Let us first make a note about the preprocessing algo-
rithm used in these tests. All preprocessing algorithms
first extracted bins from the sorted example sequence.
Then, boundary points, segment borders, or alterna-
tion points were extracted. The preprocessing algo-
rithms for boundary points and segment borders both
run in time O(n+mV’), where V is the number of bins.

The trivial algorithm for alternation points is one
which checks frequencies of up to (m? — m)/2 pairs
of classes in two adjacent bins until a disagreement in
the class ordering is found. The processing of the en-
tire range takes O(n+m?2V') time using this approach.

A faster algorithm for finding alternation points is ob-
tained by sorting (in a left-to-right pass) the class dis-
tribution histograms of the bins using bucket sort in
amortized O(n) time and checking a bucket and the
class frequency distribution of the adjacent interval to
the right for a disagreement in class ordering. The
bucket is merged to the interval if no alternation point
is found. This O(n + mV) time alternation point ex-
traction meets the asymptotic bound for extracting
bins from the data. However, the coefficients in this
approach are quite large. The UCI data sets mostly
have few classes, which prohibits time savings for the
linear-time approach. Therefore, we have used the
trivial alternation point detection in our experiments.

5.2 Empirical Results

Figure 4 depicts the results of the first experiment.
Over all 29 test domains the average reduction in cut
point candidates when moving from segment borders
to alternation points is approximately 40% and close
to 60% when compared to all cut points. The num-
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Figure 4. The average number of bin borders (the figures
on the right) and the relative numbers of boundary points
(black bars below), segment borders (white bars), alter-
nation points (gray bars), and majority alternations (dark
gray bars on top) per numerical attribute of the domain.
The white figure on top of the dark gray bar is the number
of classes.

ber of segment borders is only slightly smaller than
that of boundary points. The number of alternations
and majority alternations is the same on two-class
domains (e.g., Adult, Australian, Breast Wisconsin,
etc.), which is clear from their definition. For some
two-class domains (e.g., Breast Wisconsin, Euthyroid,
Heart H, and Hypothyroid) this number is significantly
(ca. 75%) lower than that of segment borders. On
other multiclass domains (e.g., Heart C, Letter recog-
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Figure 5. The effects of the number of classes on the effi-

ciency gain obtained by using alternations rather than bin
borders.

nition, Satellite, and Yeast) there is a significant dif-
ference in the numbers of alternations and majority
alternations.

A striking result is that in many of those domains that
have many classes (e.g., Abalone, Auto insurance, Let-
ter recognition, Vowel, and Yeast) the number of alter-
nations is not much smaller than that of segment bor-
ders. The number of majority alternations, though,
is usually still somewhat smaller even for these do-
mains. An explanation for this is that the more there
are classes the less common it is that two adjacent seg-
ments have the same frequency order for all of them.
The majority class may still be the same in two ad-
jacent segments even though the number of classes is
high.

Figure 5 plots the relation between the number of
classes and the amount of reduction obtained in the
number of cut point candidates by using alternation
points. Each numerical attribute within our test do-
mains is represented by one dot. Largest reductions
are obtained in domains with few classes. In the two
data sets with over 25 classes the reduction stays below
25%. The correlation between the ratio A/V, where A
is the number of alternating segments, and the number
of classes is quite clear. Hence, one may expect that
in domains with many classes the time savings are not
as great as in domains with fewer classes.

Now that we know that the number of alternation
points is often even substantially lower than that of
boundary points and segment borders, the question
remains how much, if at all, can we benefit from using
alternations rather than their alternatives.

Figure 6 plots the total running time (preprocessing
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Figure 6. The time required in searching for T'SE-optimal
discretization when operating on alternations contrasted to
that on all cut points. The effects of the allowed maximum
arity and the relation A/V are also taken into account.

and search) of the Auer-Birkendorf algorithm on al-
ternation points against the same algorithm operating
on bin borders. It can be clearly observed that as the
relative number of alternations reduces or the num-
ber of intervals allowed in the discretization grows,
the advantage gained by using alternation points in-
creases significantly. The overhead associated with
finding the alternation points dictates that if either
of these parameters is not favorable, then discretiza-
tion based on alternations is less efficient than that on
easily-found bin borders. For k£ > 8 an A/V ratio be-
low 0.9 promises gains, while in binary discretization
no gains are obtained irrespective of the A/V ratio.

In the experiments we also observed that the dis-
cretizations defined on majority alternations were al-
ways optimal even for domains with more than two
classes. This indicates that the condition, which sets
a cut point on an alternation point that is not a ma-
jority alternation, is very rare in practice. So, if the
optimal score is not required, one can safely choose the
cut points from among majority alternations.

6. Conclusion

Examining segment borders—a subset of boundary
points —is necessary and sufficient in searching for
the optimal partition of a value range with respect
to a strictly convex evaluation function (Elomaa &
Rousu, 2002). We showed that with T'SE — which
is not strictly convex—only a well-defined subset of
segment borders need to be examined: only majority
alternations and alternation points need to be consid-



ered when searching for the global and bounded-arity
optimum, respectively.

On the other hand, we were able to show that in
bounded-arity discretization no alternations can be ig-
nored with TSFE without considering the placement of
adjacent cut points. The Auer-Birkendorf algorithm,
incidentally, does exactly this kind of bookkeeping: it
keeps track of the best context to the left for each
class and each arity. Hence, improving the dynamic
programming scheme on the conceptual level seems
difficult.

On some real-world domains the number of alterna-
tion points was discovered to be significantly smaller
than that of segment borders. Practical gains were ob-
tained by using alternation points rather than segment
borders.
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