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Abstract

Discretization of continuous variables so they may be used in conjunction with machine
learning or statistical techniques that require nominal data is an important problem to be
solved in developing generally applicable methods for data mining. This paper introduces a
new technique for discretization of such variables based on zeta, a measure of strength of
association between nominal variables developed for this purpose. Following a review of
existing techniques for discretization we define zeta, a measure based on minimisation of the
error rate when each value of an independent variable must predict a different value of a
dependent variable. We then describe both how a continuous variable may be dichotomised
by searching for a maximum value of zeta, and how a heuristic extension of this method can
partition a continuous variable into more than two categories. A series of experimental
evaluations of zeta-discretization, including comparisons with other published methods, show
that zeta-discretization runs considerably faster than other techniques without any loss of
accuracy. We conclude that zeta-discretization offers considerable advantages over
alternative procedures and discuss some of the ways in which it could be enhanced.



1. I ntroduction

A large number of machine learning and statistical techniques can only be applied to data sets
composed entirely of nominal variables. However, a very large proportion of real data sets
include continuous variables: that is variables measured at the interval or ratio level. One
solution to this problem is to partition numeric variables into a number of sub-ranges and treat
each such sub-range as a category. This process of partitioning continuous variables into
categories is usually termed discretization.

In this paper we describe a new technique for discretization of continuous variables
based on zeta, a measure of strength of association that we have developed for this purpose.
We begin in Section 2 by reviewing existing techniques for discretization and discussing their
strengths and limitations. We then proceed in Section 3 to introduce zeta, a new measure of
association between nominal variables that is based on minimisation of the error rate when
each value of the independent variable must predict a different value of the dependent
variable. In the following section we first show how a continuous variable may be
dichotomised by a procedure that searches for a maximum value of zeta, and then describe a
heuristic extension of this method to partition a continuous variable into more than two
categories. In Section 5 we describe a series of experimental evaluations of zeta-discretization
including comparisons with other published methods. These results show that zeta-
discretization runs considerably faster than other discretization techniques without any loss of
accuracy. In the final section we conclude that zeta-discretization offers considerable
advantages over alternative procedures and discuss some of the ways in which its could be
both improved and extended.

2. Discretization of Variables for Decision Tree Construction

Procedures for constructing classification decision trees using sets of pre-classified examples
(Breiman, Friedman, Olshen & Stone 1984; Quinlan 1986) have proved to be among the most
effective and useful machine learning techniques. However, such procedures are inherently
only applicable to data sets composed entirely of nominal variables. If they are to be applied
to continuous® variables some means must be found of partitioning the range of values taken
by a continuous variable into sub-ranges which can then be treated as discrete categories.
Such a partitioning process is frequently termed discretization.

A variety of discretization methods have been developed in recent years. Dougherty,
Kohavi and Sahami (1995) have provided a valuable systematic review of this work in which
discretization techniques are located along two dimensions: unsupervised vs. supervised, and
global vs. local.

Unsupervised discretization procedures partition a variable using only information
about the distribution of values of that variable: in contrast, supervised procedures also use
the classification label of each example. Typical unsupervised techniques include equal
interval width methods in which the range of values is simply divided into sub-ranges of

! Throughout this paper the term “‘continuous’ will be used to refer to variables measured at the interval or
ratio level. Ordinal variables form an intermediate case: when the number of distinct values is small, decision
trees may be built treating each value as a distinct category; when the number is larger, ordinals should be
treated as continuous variables.



equal extent, and equal frequency width methods in which the range is divided into sub-
ranges containing equal numbers of examples. More sophisticated unsupervised methods
draw on techniques of cluster analysis (Everitt 1980), to identify partitions that maximise
within group similarity while minimising between groups similarity (Van der Merckt 1993).

Supervised techniques normally attempt to maximise some measure of the relationship
between the partitioned variable and the classification label. Entropy or information gain is
often used to measure the strength of the relationship (see for example Quinlan 1986, 1993;
Catlett 1991; Fayyad & Irani 1992, 1993). Both ChiMerge (Kerber 1992) and StatDisc
(Richeldi & Rossotto 1995) employ procedures similar to agglomerative hierarchical
clustering techniques (Everitt 1980): ChiMerge uses x> whereas StatDisc uses @ (Healey
1990) to determine which groups should be merged. Holte’s (1993) 1R attempts to form
partitions such that each group contains a large majority of a single classification, subject to a
constraint of minimal acceptable group size.

Supervised techniques might reasonably be expected to lead to more accurate
classification trees since the partitions they produce are directly related to the class to be
predicted. On the other hand one might expect most of the unsupervised techniques to be
considerably faster since they involve little more than sorting the data, an operation which is
common to all discretization methods.

Global discretization procedures are applied once to the entire data set before the
process of building the decision tree begins. Consequently a given variable will be partitioned
at the same points whenever it is used in the tree. In contrast, local discretization procedures
are applied to the subsets of examples associated with the nodes of the tree during tree
construction: consequently the same variable may be discretized many times as the tree is
developed and the final tree may include several partitionings of the same variable. The
majority of systems using unsupervised methods carry out global discretizations. Examples of
supervised global methods include D-2 (Catlett 1991), ChiMerge (Kerber 1992), Holte’s
(1993) 1R method, and StatDisc (Richeldi & Rossotto 1995). C4.5 (Quinlan 1993,1996) and
Fayyad and Irani’s (1993) entropy minimisation method both use a supervised technique to
perform local discretization. However the majority of supervised techniques could be used for
either local or global discretization: for example, Fayyad and Irani’s (1993) method has been
successfully employed to form global discretizations (Ting 1994; Dougherty et al 1995).

Since local discretization techniques can develop alternative partitionings for different
parts of the sample space, one would expect them to be superior to global methods in
producing accurate classification trees. However one would also expect to pay a
considerable price in execution speed for this improved accuracy since the discretization
process may be repeated many times as the tree is built.

Dougherty et al. (1995) carried out a comparative study of five discretization
procedures using 16 data sets from the UC Irvine Machine Learning Database Repository”.
The methods compared were two unsupervised global methods (equal width interval
procedures), two supervised global methods (1RD (Holte 1993) and Fayyad & Irani’s (1993)
entropy minimisation) ), and C4.5 which is a supervised local method. In all cases the tree
was actually constructed by C4.5 but in the four global methods the data was pre-processed
using the corresponding procedure to discretize all continuous variables. Somewhat
surprisingly  Dougherty et al. found only small differences, most of which were not
statistically significant, between the classification accuracies achieved by resulting decision

2 Accessible on the World Wide Web at  http://www.ics.uci.edu/~mlearn/MLRepository.html



trees. None produced the highest accuracy for all data sets. In particular the local supervised
method, C4.5, showed no advantage over other supervised methods: Fayyad & Irani’s
method achieved the best overall results. Dougherty et al. do not report execution times but
our own replication (see Section 5) shows that there is a clear trade-off between speed and
accuracy: the fastest methods of discretization lead to the least accurate classification trees.

In the rest of this paper we introduce a new procedure for discretization of continuous
variables that compares favourably with all the methods discussed in this section. It requires
less execution time than other methods and yet leads to classification accuracies that are as
high as the best achieved by alternative techniques.

3. Zeta: A New M easur e of Association

Our initial attempts to develop a discretization technique that would be both fast and accurate
were based upon lambda, a widely used measure of strength of association between nominal
variables (Healey 1990). Lambda measures the proportionate reduction in prediction error
that would be obtained by using one variable to predict another, using a modal value
prediction strategy in all cases. Unfortunately lambda is an ineffective measure in those
situations were the dependency between two variables is not large enough to produce
different modal predictions since in such cases its value is zero.

A closely related measure, which we term zeta, has been developed that overcomes this
limitation. The fundamental difference between lambda and zeta is that the latter is not based
on a modal value prediction strategy: the assumption made in determining zeta is that each
value of the independent variable will be used to predict a different value of the dependent
variable.

Zeta is most readily understood by first considering the simplest case: using a
dichotomous variable A to predict values of another dichotomous variable B. Suppose we
have a sample of N items whose value distribution is given in the following 2 by 2 table:

A | A
By | Nu N1
By | Ny | Nop

where

If each value of A is used to predict a different value of B then there are only two
possibilities: either A; —» By and A, - B, ,0or A; - B, and A, - Bs. If the former is used then the
number of correct prediction would be n;; + ny, ; if the latter then n;, + ny; would be correct.
Zeta is defined to be the percentage accuracy that would be achieved if the pairings that lead
to greater accuracy were used for prediction. Hence it is defined as follows:

. max(n,, +n,,,Nn;, +n,;) x100%
- N




This definition may be generalised to the case of one k-valued variable A being used to
predict the values of another variable B that has at least k values. The more general form of
zeta is

k

Z n; ()i
Z =""——x100%
where f(i) should be understood as follows. In order to make predictions each of the k values
of A must be paired with a non-empty set of values of B: these k sets must together form a
partition of the set of possible values for B. If B has k distinct values there will be k! ways in
which such sets of pairings could be made. One such set of pairing will give the greatest
prediction accuracy; call this the best pairing assignment. Then By is the value of B that is
paired with A; in the best pairing assignment.

Note that although the computational effort required to compute Z is extremely modest
for small values of k, the computational complexity is O(k!). Hence the measure is only
useful for variables with a small number of values. Fortunately this includes a very high
percentage of practical cases.

4, Discretization Using Zeta

Having defined a measure of association between two nominal variables we now proceed to
describe how this measure may be used to partition a continuous variable. The underlying
principle is very simple. In theory, given a k-valued classification variable C, a continuous
variable X could be partitioned into k sub-ranges by calculating zeta for each of the possible
assignments of the k-1 cut points and selecting that combination of cut points that gives the
largest value of zeta. In general such a method will not be practicable because the number of
combinations of cut points is extremely large.

4.1. Dichotomising Using Zeta

However it is practicable for the special case of k = 2 since there will only be one cut point.
Fortunately this is an extremely common special case in real world classification problems,
many of which reduce to a choice between positive and negative diagnoses. If there are N
examples in the data set there are at most N - 1 candidate cut points. Zeta can be calculated
for every one of these and the point yielding the maximum value selected.

In practice it is not necessary to consider every possible cut point. Fayyad and Irani
(1992) have shown that optimal cut points for entropy minimisation must lie between
examples of different classes. A similar result can be proved for zeta maximisation. Hence it is
only necessary to calculate zeta at points corresponding to transitions between classes, thus
reducing the computational cost, particularly when the variables are highly associated.

4.2. Interpretingthe Zeta Graph

A graph of zeta values for all candidate cut points illuminates the behaviour of zeta and may
give an investigator further insight into the relationship of the two variables concerned. Figure
1 shows a typical zeta graph; this particular example was obtained when dichotomising the
Texture variable from the Wisconsin Breast Cancer data set in the UC Irvine Repository.
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Figure 1: Zeta graph for Texture attribute from the Wisconsin
Breast Cancer data in UC Irvine Repository.

Two features of this graph are common to all such zeta graphs:

* A minimum value at the bottom of a deep crevasse. This minimum occurs at the
point at which the best pairing assignment changes.

» Both extremities have a zeta value equal to the frequency of the modal class. This
is the success rate one would achieve using the optimal strategy to guess the
dependent variable without knowledge of the independent variable.

Other features are characteristic of a graph plotted for variables that are strongly related:

» A clearly defined peak rising to a level well above the modal class frequency level.
This indicates the optimal position for a dichotomising cut point.

» The graph is fairly smooth. In cases where the dichotomised variable has little
predictive value the graph shows numerous reversals of gradient whose magnitude
may approach that of the largest peak.

4.3. MoreThan Two Classes

The dichotomising procedure described above forms the basis of a heuristic method of
discretizing a variable into k categories. This is a stepwise hill-climbing procedure that locates
and fixes each cut point in turn. It therefore finds a good combination of cut points but offers
no guarantee that it is the best. As noted above, examining all possible combinations is likely
to be too time consuming.

The procedure for discretizing a variable A into k classes, given a classification variable
B which takes k distinct values is as follows. First find the best dichotomy of A using the
procedure described above. If k is greater than 2 then at least one of the resulting sub-ranges
of A will be associated with 2 or more values of B: use the dichotomising procedure again on
such a sub-range to place the second cut point. Proceed in a similar fashion until k - 1
cutpoints have been placed and each sub-range is associated with a different value of B.

This is a heuristic method because once a cut point is placed it is not moved; hence not
all cut point combinations are considered. Nevertheless, as some of the results discussed later
show, the cut points chosen lead to high predictive accuracy and hence the use of the
heuristic is justified.



Attributes Cut-points i  Accuracy (%)
Radius 150 i 89.1
Texture 19.6 73.6
Perimeter 96.3 89.1
Area 693.7 89.4
Smoothness 0.11 67.3
Compactness 0.12 80.0
Concavity 0.09 88.5
Concave points 0.05 91.5
Symmetry 021 69.1
Fractal Dimension 055 i 65.2

Table 1. Accuracy obtained using zeta discretization to dichotomise
individual attributes in the Wisconsin Diagnostic Breast Cancer data set.

4.4. Computational Complexity

As is the case with almost all discretization procedures for continuous values, the zeta
procedure assumes the values have been sorted. This will be on operation of computational
complexity O(n log n) where n is the number of examples in the data set. The process of
locating each cut point requires a very simple calculation to be performed at most (n - 1)
times. Thus if k partitions are formed the operation must be performed at most (k - 1)(n - 1)
times. Hence the total computational complexity is O(n log n) + O(kn). When k is small
relative to log n, as is usually the case in practice this is approximately O(n log n).

5. Experimental Results

5.1. Discretizinga Single Variable

The first experiments carried out were intended to establish whether the zeta technique
partitioned individual variable in a useful fashion. Two types of data were tested: artificial
data of known distribution and real data sets containing records of observed phenomena.

5.1.1. Artificial Data Sets

The basic technique employed was to generate data from two or more overlapping normal
distributions, assigning each such distribution to a different class. The zeta discretization
method was then used to find division points between the classes. The separation of the
means were varied. As might be expected, when the separation was relatively large (one
standard deviation or more) the cut point was always located very close to the ‘correct’
location, but when the distributions were close together it was positioned less accurately.

5.1.2. Real Data Sets

To investigate the efficacy of zeta in discretizing individual variables in sets of real data, we
selected a number of data sets from the UC Irvine repository and investigated how they were
divided. As an example, Table 1 shows the results obtained for the continuous attributes in
the Wisconsin Diagnostic Breast Cancer data set.

The modal class for this data set forms 62.5% of the total. All the variables have been
dichotomised at points that improve prediction accuracy above this baseline. In six cases the
accuracy rises to 80% or higher, while the 91.5% accuracy achieved for the single variable



‘concave points’ is approaching the 94.3% achieved by C4.5 (see Table 2) using all the
variables.

Thus it can be concluded that the zeta discretization is an effective procedure for
locating good cut points within the ranges of continuous variables. We now proceed to
consider how it compares with other effective methods.

C4.5

Data Set Continuous Entropy 1RD Bin-log | n-Bins Zeta
allbp 97.45+-0.10 |97.22+-0.16 |96.05+-0.32 |96.39+-0.32 |96.32+-0.13 |96.63+-0.23
ann-thyroid [99.61+-0.11 [99.38+-0.13 |97.64+-0.04 |94.06+-0.19 |92.72+-0.24 |98.38+-0.16
australian 84.93+-0.81 |85.65+-1.82 |85.22+-1.35 |84.06+-0.97 |84.93+-0.77 |86.38+-0.96
breast 94.28+-0.60 |94.42+-0.89 |95.13+-0.57 |94.85+-1.28 |94.85+-0.41 |95.85+-0.89
cleve 79.23+-1.63 |80.23+-3.25 |80.24+-4.15 |76.57+-2.60 |76.91+-2.11 |78.23+-2.37
Crx 86.09+-1.11 |84.78+-1.94 |85.22+-1.93 |84.78+-1.82 |85.07+-1.80 |84.93+-1.99
diabetes 72.66+-1.08 |73.70+-0.78 |70.45+-1.16 |73.44+-1.07 |64.85+-1.21 |75.13+-1.32
german 71.30+-0.93 |72.20+-1.23 |70.00+-1.14 |72.10+-0.99 |71.80+-0.46 |73.80+-1.21
glass2 81.00+-2.59 |76.67+-1.63 |71.23+-5.06 |80.42+-3.55 |66.86+-2.06 |76.14+-1.63
heart 75.19+-1.91 |78.52+-1.26 |78.52+-0.74 |80.74+-1.11 |78.52+-1.72 |77.41+-3.07
horse-colic  ||85.87+-1.32 |85.60+-1.24 |85.60+-1.24 |85.33+-1.23 |85.60+-1.25 |86.15+-1.44
ionosphere  |89.45+-1.41 |91.15+-1.78 |88.88+-1.67 |88.60+-1.29 |83.17+-2.21 |89.72+-2.00
iris 94.00+-1.25 |94.00+-1.25 |94.00+-1.25 |96.00+-1.25 |73.33+-2.58 |94.00+-1.25
vehicle 73.17+-0.95 |68.68+-1.91 |66.21+-3.07 |68.45+-2.19 |62.06+-1.42 |69.27+-1.67
waveform-21 ||76.30+-0.53 |74.58+-0.58 |52.94+-0.43 |70.36+-0.65 |74.60+-0.87 |76.44+-0.59

Average 84.04 83.79 81.16 83.08 79.44 83.90

Table 2: Classification accuracies and standard deviations using C4.5 (Quinlan 1996) with different
discretization methods. Continuous denotes running C4.5 on undiscretized data; Entropy refers to a global
variant of Fayyad & Irani’s (1993) method; 1RD is Holte’s (1993) 1R discretizer; Bin-log | and n-Bins use
equal width binning; Zeta is the new method proposed in this paper. (c.f. Dougherty et al. 1995).

5.2

The next set of experiments was designed to evaluate the performance of zeta in the role for
which it was developed: the construction of decision trees. Our experimental procedure was
closely modelled on that employed by Dougherty et al. (1995) in their comparative study of
five discretization techniques.

Building Decision Trees: A Compar ative Study

We compared the five methods considered by Dougherty et al. and zeta discretization.
C4.5 (Quinlan 1996) was used to construct all of the decision trees. In five of the six cases,
the data was first processed by the global discretization procedure and then passed to C4.5. In
the sixth case no prior discretization took place; hence the local discretization procedures that
form part of C4.5 were used.

The code for zeta discretization was written in C by one of the authors (Ho); the code
for C4.5, also written in C, was the version distributed to accompany Quinlan (1993) updated
to Release 8 (Quinlan 1996); all the remaining code including both the other four
discretization procedures and the code to run the experiments was taken from the MLC++
machine learning library (Kohavi, John, Long, Manley & Pfleger 1994). The data sets used
for these experiments were all obtained from the UC Irvine repository. Each set was tested
five times with each discretization method.




The results are shown in Table 2. As is to be expected the results for the first five
columns are very similar to the results reported by Dougherty et al. (1995). The zeta
discretization method stands up to the comparison very well. The average accuracy over all
the data sets was higher than all the other global methods and only slightly, but not
significantly, less than that achieved by C4.5 using local discretization. Thus we can conclude
that on average zeta discretization method achieves accuracies at least as good as the best
global methods.

43:12
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Figure 2: Total execution time for all data sets plotted as a function of average final classification
accuracy for different discretization methods (see caption to Table 2).

However, the zeta method is also fast. Figure 2 shows the total execution time required
by each of the six methods to complete all the data sets listed in Table 2, plotted as a function
of final classification accuracy. It is clear that four of the six data points lie roughly in a
straight line, indicating a time accuracy trade-off. Two points lie well below this line:
continuous (i.e. C4.5’s local method) and zeta. These two methods not only achieve high
accuracy but do so in appreciably less time. Thus we also conclude that zeta discretization is
the fastest method of achieving high accuracy.

6. Conclusion

These results show that zeta discretization is both an effective and a computationally efficient
method of partitioning continuous variables for use in decision trees. Indeed of the methods
considered in our comparative study it would appear to be the method of choice.

Although the zeta discretization procedure compares favourably with other methods of
partitioning continuous variables so they may be used in constructing decision trees, it is not
possible to conclude that it creates the best possible discretization. Indeed there is evidence to
suggest that further improvements are possible. For example the zeta procedure achieved an
accuracy of 95.85% for the Wisconsin Breast Cancer data set; higher than any other method
listed in Table 2. However the documentation accompanying the data cites an accuracy of



97.5% achieved when a hyperplane is constructed to separate the two classes (Wolberg,
Street, Heisey & Mangasarian 1995). Thus there is scope for improving zeta discretization.

The technique for partitioning variables into more than two categories is heuristic, since
not all combinations of cut points are considered. It is possible that the stepwise method
could be improved by using a different strategy for selecting successive cut points. The
current system repeatedly creates divisions to that maximise zeta. We have also experimented
with a system that repeatedly finds the cut point that best separates the two largest classes
within a range or sub-range of values. This produced modest improvements with artificial
data but made no difference on real data sets. Another possibility is to investigate whether
using zeta as a local rather than global discretization method would lead to any improvements
in accuracy.

A more radical enhancement would be to modify the discretization procedure so that it
could divide the continuous variable into more categories than there are classifications. This is
useful for capturing non-monotonic relationships. For example, suppose one had a data set
with a continuous variable indicating age and a dichotomous variable indicating employment
status. Young who are still at school and old people who have reached retirement are much
less likely to be employed than those whose ages fall in between. Hence the relationship
between age and the two employment classes will be better captured by dividing the range
into three rather than two sub-ranges. The existing zeta discretization procedure cannot
generate more sub-ranges than there are distinct values of the classification variable. We are
currently experimenting with a technique that uses secondary peaks on the zeta graph to
generate further cut points.

Both zeta graphs and discretization in general have applications beyond the
construction of decision trees. The zeta graph shows promise as a useful tool for exploratory
data analysis (Tukey 1977). A little experience enables a human investigator to ‘read’ a zeta
graph and hence rapidly discover many important aspects of a relationship between two
variables. Discretization itself also has an important role in exploratory data analysis:
dichotomization is often a useful first step towards discovering the major relationships in a
data set (Davis 1971). The zeta procedure will therefore be incorporated into SNOUT, an
intelligent assistant for exploratory data analysis currently under development. (Scott, Coxon,
Hobbs & Williams 1987).

The results of discretization are often interesting in their own right because category
formation is the most fundamental technique that people use to manage the otherwise
overwhelming complexity of their experiences. A ‘good’ partitioning is usually one that
enables the values of many other attributes to be predicted. All the methods discussed in this
paper, including zeta discretization, are concerned with predicting the values of a single
classification variable. Thus the most important challenge facing those doing research on
discretization procedures is the development of techniques for finding partitions that enable
the values of many variables to be predicted.
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