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Abstract—The task of extracting knowledge from databases is quite often performed by machine learning algorithms. The majority of

these algorithms can be applied only to data described by discrete numerical or nominal attributes (features). In the case of continuous

attributes, there is a need for a discretization algorithm that transforms continuous attributes into discrete ones. This paper describes

such an algorithm, called CAIM (class-attribute interdependence maximization), which is designed to work with supervised data. The

goal of the CAIM algorithm is to maximize the class-attribute interdependence and to generate a (possibly) minimal number of discrete

intervals. The algorithm does not require the user to predefine the number of intervals, as opposed to some other discretization

algorithms. The tests performed using CAIM and six other state-of-the-art discretization algorithms show that discrete attributes

generated by the CAIM algorithm almost always have the lowest number of intervals and the highest class-attribute interdependency.

Two machine learning algorithms, the CLIP4 rule algorithm and the decision tree algorithm, are used to generate classification rules

from data discretized by CAIM. For both the CLIP4 and decision tree algorithms, the accuracy of the generated rules is higher and the

number of the rules is lower for data discretized using the CAIM algorithm when compared to data discretized using six other

discretization algorithms. The highest classification accuracy was achieved for data sets discretized with the CAIM algorithm, as

compared with the other six algorithms.

Index Terms—Supervised discretization, class-attribute interdependency maximization, classification, CLIP4 machine learning

algorithm.

�

1 INTRODUCTION

IN this section, we describe the existing discretization
methods, provide basic definitions, and formulate goals

for the CAIM algorithm.
We observe exponential growth of the amount of data

and information available on the Internet and in database
systems. Researchers often use machine learning (ML)
algorithms to automate the processing and extraction of
knowledge from data. Inductive ML algorithms are used to
generate classification rules from class-labeled examples
that are described by a set of numerical (e.g., 1,2,4), nominal
(e.g., black, white), or continuous attributes. Some of the
inductive ML algorithms like the AQ algorithm [20], [15],
CLIP algorithms [5], [6], or CN2 algorithm [8], [9] can
handle only numerical or nominal data, while some others
can handle continuous attributes but still perform better
with discrete-valued attributes [1], [17]. This drawback can
be overcome by using a discretization algorithm as a front-
end for a machine learning algorithm.

Discretization transforms a continuous attribute’s values
into a finite number of intervals and associates with each
interval a numerical, discrete value. For mixed-mode
(continuous and discrete) data, discretization is usually
performed prior to the learning process [1], [11], [12], [22].
Discretization can be broken into two tasks. The first task is
to find the number of discrete intervals. Only a few
discretization algorithms perform this; often, the user must

specify the number of intervals or provide a heuristic rule
[3]. The second task is to find the width, or the boundaries,
of the intervals given the range of values of a continuous
attribute. The proposed CAIM algorithm automatically
selects a number of discrete intervals and, at the same
time, finds the width of every interval based on the
interdependency between class and attribute values.

Discretization algorithms can be divided into two
categories:

1. Unsupervised (or class-blind) algorithms discretize
attributes without taking into account respective
class labels. The two representative algorithms are
equal-width and equal-frequency discretizations [4].
The equal-width discretization algorithm determines
the minimum and maximum values of the discre-
tized attribute and then divides the range into the
user-defined number of equal width discrete inter-
vals. The equal-frequency algorithm determines the
minimum and maximum values of the discretized
attribute, sorts all values in ascending order, and
divides the range into a user-defined number of
intervals so that every interval contains the same
number of sorted values.

2. Supervised algorithms discretize attributes by tak-
ing into account the interdependence between
class labels and the attribute values. The repre-
sentative algorithms are: maximum entropy [27],
Patterson and Niblett [21], which is built into a
decision trees algorithm [23], Information Entropy
Maximization (IEM) [13], and other information-
gain or entropy-based algorithms [11], [29], statis-
tics-based algorithms like ChiMerge [17] and Chi2
[19], class-attribute interdependency algorithms
like CADD [3] and clustering-based algorithms
like K-means discretization [26].
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Quantization methods [18] are also used to design
discretization algorithms, e.g., the adaptive quantizer
algorithm [2]. Since a large number of possible attribute
values slows and makes inductive learning ineffective [1],
one of the main goals of a discretization algorithm is to
significantly reduce the number of discrete intervals of a
continuous attribute. At the same time, the algorithm
should maximize the interdependency between discrete
attribute values and class labels, as this minimizes the
information loss due to discretization. A satisfactory trade
off between these two goals needs to be achieved.

The CAIM algorithm discretizes an attribute into the
smallest number of intervals and maximizes the class-
attribute interdependency and, thus, makes the ML task
subsequently performed much easier. The algorithm auto-
matically selects the number of discrete intervals without
any user supervision. The CAIM algorithm uses class-
attribute interdependency as defined in [3].

The CAIM algorithm is compared with six well-known
discretization algorithms, almost always resulting in the
smallest number of discrete intervals and the highest class-
attribute interdependency. The CAIM algorithm and the six
algorithms were used to discretize several continuous and
mixed-mode data sets. The data sets were used with two
ML algorithms—the CLIP4 [5], [6], and C5.0 [10] algor-
ithms—to generate the rules. The accuracy of the rules
shows that the application of the CAIM algorithm as a
front-end discretization algorithm significantly improves
the classification performance and reduces the number of
generated rules.

2 CAIM DISCRETIZATION ALGORITHM

In this section, we describe the newly developed discretiza-
tion criterion and algorithm.

2.1 Definitions of Class-Attribute Interdependent
Discretization

The CAIM algorithm’s goal is to find the minimum number
of discrete intervals while minimizing the loss of class-
attribute interdependency. The algorithm uses class-attri-
bute interdependency information as the criterion for the
optimal discretization. We introduce several definitions
after [3] to define the criterion.

A supervised classification task requires a training data
set consisting of M examples, where each example belongs
to only one of S classes. F indicates any of the continuous
attributes from the mixed-mode data. Next, there exists a

discretization scheme D on F , which discretizes the

continuous domain of attribute F into n discrete intervals

bounded by the pairs of numbers:

D : f½d0; d1�; ðd1; d2�; . . . ; ðdn�1; dn�g; ð1Þ

where d0 is the minimal value and dn is the maximal value

of attribute F , and the values in (1) are arranged in

ascending order. These values constitute the boundary set

fd0; d1; d2; . . . ; dn�1; dng for discretization D.
Each value of attribute F can be classified into only one

of the n intervals defined in (1). Membership of each value

within a certain interval for attribute F may change with the

change of the discretization D. The class variable and the

discretization variable of attribute F are treated as two

random variables defining a two-dimensional frequency

matrix (called quanta matrix) that is shown in Table 1.
In Table 1, qir is the total number of continuous values

belonging to the ith class that are within interval ðdr�1; dr�.
Miþ is the total number of objects belonging to the ith class

and Mþr is the total number of continuous values of

attribute F that are within the interval ðdr�1; dr�, for i ¼
1; 2 . . . ; S and r ¼ 1; 2; . . . ; n.

The estimated joint probability of the occurrence that

attribute F values are within the interval Dr ¼ ðdr�1; dr� and
belong to class Ci can be calculated as:

pir ¼ pðCi;DrjF Þ ¼ qir
M

: ð2Þ

The estimated class marginal probability that attribute F

values belong to class Ci, piþ, and the estimated interval

marginal probability that attribute F values are within the

interval Dr ¼ ðdr�1; dr� pþr are as follows:

piþ ¼ pðCiÞ ¼
Miþ
M

; ð3Þ

pþr ¼ pðDrjF Þ ¼ Mþr

M
: ð4Þ

The Class-Attribute Mutual Information between the

class variable C and the discretization variable D for

attribute F given the 2D frequency matrix shown in

Table 1 is defined as:

IðC;DjF Þ ¼
XS

i¼1

Xn

r¼1

pir log2
pir

piþpþr
: ð5Þ
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Similarly, the Class-Attribute Information [12] and the

Shannon’s entropy of the given matrix are defined,
respectively, as:

INFOðC;DjF Þ ¼
XS

i¼1

Xn

r¼1

pir log2
pþr

pir
; ð6Þ

HðC;DjF Þ ¼
XS

i¼1

Xn

r¼1

pir log2
1

pir
: ð7Þ

Given (5), (6), and (7), the Class-Attribute Interdepen-

dence Redundancy (CAIR) criterion [28] (8) and Class-
Attribute Interdependence Uncertainty (CAIU) [14] (9)

criterion are defined as follows:

RðC;DjF Þ ¼ IðC;DjF Þ
HðC;DjF Þ ; ð8Þ

UðC;DjF Þ ¼ INFOðC;DjF Þ
HðC;DjF Þ : ð9Þ

The CAIR criterion is used in the Class-Attribute

Dependent Discretizer (CADD) algorithm [3]. The CAIR
criterion [7] is used to measure the interdependence

between classes and the discretized attribute (the larger its

value, the better correlated are the class labels and the

discrete intervals). It is also independent of the number of

class labels and the number of unique values of the

continuous attribute. The same holds true for the CAIU
criterion, but with a reverse relationship. The CADD

algorithm has the following disadvantages:

. It uses a user-specified number of intervals when
initializing the discretization intervals.

. It initializes the discretization intervals using a
maximum entropy discretization method; such
initialization may be the worst starting point in
terms of the CAIR criterion.

. The significance test used in the algorithm requires
training for selection of a confidence interval.

The CAIU and CAIR criteria were both used in the

CAIUR discretization algorithm [14]. The CAIUR algorithm
avoided the disadvantages of the CADD algorithm gen-

erating discretization schemes with higher CAIR values, but

at the expense of very high-computational cost, making it

inapplicable for discretization of continuous attributes that

have a large number of unique values.
The CAIM algorithm aims to:

. maximize the interdependency between the contin-
uous-valued attribute and its class labels,

. achieve the minimum number of discrete intervals
possible, and

. perform the discretization task at reasonable com-
putational cost so that it can be applied to
continuous attributes with large number of unique
values.

The CAIM algorithm avoids the disadvantages of the

CADD and CAIUR algorithms. It works in a top-down

manner, dividing one of the existing intervals into two new

intervals using a criterion that results in achieving the

optimal class-attribute interdependency after the split, and

starts with a single, ½do; dn� interval. The idea of the CAIM

algorithm and initial benchmarking results were first

reported in [16]. The discretization criterion and the CAIM

algorithm are described in the next two sections.

2.2 Discretization Criterion

The Class-Attribute Interdependency Maximization (CAIM)

criterion measures the dependency between the class

variable C and the discretization variable D for attribute

F , for a given quanta matrix (see Table 1), and is defined as:

CAIMðC;DjF Þ ¼

Pn

r¼1

maxr
2

Mþr

n
; ð10Þ

where n is the number of intervals, r iterates through all

intervals, i.e., r ¼ 1; 2; . . . ; n, maxr is the maximum value

among all qir values (maximum value within the rth column

of the quanta matrix), i ¼ 1; 2; . . . ; S, Mþr is the total number

of continuous values of attribute F that are within the

interval ðdr�1; dr�.
The CAIM criterion is a heuristic measure that is used to

quantify the interdependence between classes and the

discretized attribute. It has the following properties:

. The larger the value of CAIM, the higher the
interdependence between the class labels and the
discrete intervals. The bigger the number of values
belonging to class Ci within a particular interval (if
the number of values belonging to Ci within the
interval is the largest, then Ci is called the leading
class within the interval), the higher the interdepen-
dence between Ci and the interval. The goal of
maximizing the interdependence between classes
and the discrete intervals can be translated into
achieving the largest possible number of values that
belong to a leading class within all intervals. The
CAIM criterion accounts for the trend of maximizing
the number of values belonging to a leading class
within each interval by using maxr. The value of
CAIM grows when values of maxr grow, which
relates to the increase of the interdependence
between the class labels and the discrete intervals.
The highest interdependence between the class
labels and the discrete intervals (and, at the same
time, the highest value of CAIM) is achieved when
all values within a particular interval belong to the
same class for all intervals. In this case, maxr ¼ Mþr

and CAIM=M/n.
. It takes on real values from the interval [0, M], where

M is the number of values of the continuous
attribute F .

. The criterion generates discretization schemes where
each interval has all of its values grouped within a
single class label. This observation motivated us to
use the maxr values within each of the n intervals
and summing them for all intervals.

. The squared maxr value is divided by the Mþr for
two reasons:
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- To account for the negative impact that values
belonging to classes other than the class with the
maximum number of values within an interval
have on the discretization scheme. The more
such values the bigger the value of Mþr, which,
in turn, decreases the value of CAIM.

- To scale the maxr
2 number. Because the division

factorMþr is always greater or equal tomaxr, the
overflow error will not happen during calcula-
tions. To avoid the overflow, the calculation is
performed by first dividing maxr by Mþr and
then multiplying the result by maxr, i.e.,

maxr
2

Mþr
is calculated as

maxr
Mþr

maxr:

. Because the algorithm favors discretization schemes
with smaller numbers of intervals, the summed
value is divided by the number of intervals n.

. The Miþ values from the quanta matrix are not used
because they are defined as the total number of
objects belonging to the ith class, which does not
change with different discretization schemes.

The value of the CAIM criterion is calculated with a

single pass over the quanta matrix. The CAIM criterion has

similar properties to the CAIR criterion, but the experi-

mental results show that the CAIM criterion tends to

generate a much smaller number of intervals and using it

results in achieving higher interdependency. The CAIM

algorithm uses the CAIM criterion as its discretization

criterion.

2.3 The CAIM Algorithm

The optimal discretization scheme can be found by

searching over the space of all possible discretization

schemes to find the one with the highest value of the

CAIM criterion. Such a search for a scheme with the

globally optimal value of CAIM is highly combinatorial and

time consuming. Thus, the CAIM algorithm uses a greedy

approach, which searches for the approximate optimal

value of the CAIM criterion by finding locally maximum

values of the criterion. Although this approach does not

guarantee finding the global maximum, it is both compu-

tationally inexpensive and well-approximates finding the

optimal discretization scheme, which is shown in the results

section. The algorithm consists of these two steps:

. initialization of the candidate interval boundaries
and the initial discretization scheme and

. consecutive additions of a new boundary that results
in the locally highest value of the CAIM criterion.

The pseudocode of the CAIM algorithm follows.

Given: Data consisting of M examples, S classes, and

continuous attributes Fi

For every Fi do:

Step 1.

1.1 Find maximum (dn) and minimum (do) values of Fi.

1.2 Form a set of all distinct values of Fi in ascending

order, and initialize all possible interval boundaries B

with minimum, maximum and all the midpoints of
all the adjacent pairs in the set.

1.3 Set the initial discretization scheme as D : f½d0; dn�g,
set GlobalCAIM=0.

Step 2.

2.1 Initialize k ¼ 1.

2.2 Tentatively add an inner boundary, which is not

already in D, from B, and calculate corresponding

CAIM value.
2.3 After all the tentative additions have been tried

accept the one with the highest value of CAIM.

2.4 If (CAIM > GlobalCAIM or k < S) then update D

with the accepted in Step 2.3 boundary and set

GlobalCAIM=CAIM, else terminate.

2.5 Set k ¼ kþ 1 and go to 2.2.

Output: Discretization scheme D

The algorithm starts with a single interval that covers all
possible values of a continuous attribute and divides it
iteratively. From all possible division points that are tried
(with replacement) in 2.2., it chooses the division boundary
that gives the highest value of the CAIM criterion. The
algorithm assumes that every discretized attribute needs at
least the number of intervals equal to the number of classes
since this assures that the discretized attribute can improve
subsequent classification.

In what follows, we estimate the complexity of the
algorithm for discretizing a single attribute. The CAIM
algorithm’s time bound is determined by the calculation
of the CAIM criterion in Step 2.2. In the worst case, the
CAIM criterion is calculated in OðM � SÞ time, where M is
the number of distinct values of the discretized attribute
and S is the number of classes in the problem. The CAIM
algorithm starts with a single interval and as experimental
results in Table 3 show, the expected number of intervals
per attribute is OðSÞ. Thus, the time bound for calculation
of the CAIM value can be estimated as OðS2Þ. The CAIM
values are calculated for OðMÞ boundaries in Step 2.2.
This gives the total time of Step 2.2 as OðM � S2Þ. Step 2.2
is executed in the worst-case OðMÞ times, and the results
show that the expected number of intervals is again OðSÞ,
thus we can estimate that Step 2.2 is executed OðSÞ times.
Thus, the time bound for Step 2 of the CAIM algorithm is
OðSÞ �OðM � S2Þ ¼ OðM � S3Þ. Sorting in Step 1.2 takes
OðM � logðMÞÞ time and determines the time for Step 1.
Depending on the value of S, which for most inductive
machine learning applications is a small constant, the
expected running time of the algorithm is OðMlogðMÞÞ.
This makes the CAIM algorithm applicable to large
problems.

The remaining costs of the algorithm include building
the quanta matrix given the discretization scheme in OðMÞ
time (this time adds to calculating the CAIM value),
updating the discretization scheme in Step 2.4 in OðMÞ
time, and updating the global CAIU value in OðMÞ time. All
these costs can be omitted from the estimation.

The CAIM algorithm achieves a balance between a
reasonable computational cost and finding the optimal
discretization scheme. Despite the greedy manner in which
the algorithm works, the discretization schemes it generates
have very high class-attribute interdependency and always
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a small number of discretization intervals. For the data sets

used in the experimental section, the CAIM algorithm

generates discretization schemes with the (possibly) smal-

lest number of intervals that assures low-computational

cost and always achieves very high class-attribute inter-

dependency, which results in significant improvement in

the subsequently performed classification task.

3 RESULTS

In the following sections, the results of the CAIM algorithm

along with six other leading discretization algorithms on

the eight well-known continuous and mixed-mode data sets

are presented.

3.1 The Experimental Setup

The eight data sets used to test the CAIM algorithm are:

1. Iris Plants data set (iris),
2. Johns Hopkins University Ionosphere dataset (ion),
3. Statlog Project Heart Disease data set (hea),
4. Pima Indians Diabetes data set (pid)

5. Statlog Project Satellite Image data set (sat),
6. Thyroid Disease data set (thy),
7. Waveform data set (wav), and
8. Attitudes Towards Workplace Smoking Restrictions

data set (smo).

The first seven data sets were obtained from the UC
Irvine ML repository [25]; the last data set was obtained
from the StatLib data set archive [24]. A detailed description
of the data sets is shown in Table 2.

Tests were performed for the CAIM algorithm and six
other discretization algorithms. The six discretization
algorithms were:

. two unsupervised algorithms: equal-width and
equal frequency and

. four supervised algorithms: Patterson-Niblett, IEM,
Maximum Entropy, and CADD.

The unsupervised algorithms require the user to specify
the number of discrete intervals. In our experiments, we
used the following heuristic formula [27] to estimate the
number of intervals: nFi ¼ M=ð3CÞ, where nFi is the number
of intervals for attribute Fi, M is the number of examples,
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and C is the number of classes. The supervised algorithms
apply their own criteria to generate an appropriate number
of discrete intervals.

All seven algorithms were used to discretize the eight
data sets. The goodness of the discretization algorithm was
evaluated based on the CAIR criterion value, the number of
generated intervals, and the execution time.

To quantify the impact of the selection of a discretization
algorithm on the classification task performed subsequently
by a machine learning algorithm, the discretized data sets
were used to generate classification rules by ML algorithms.
The ML algorithms can be divided into rule, decision tree,
and hybrid algorithms [7]. We used the CLIP4 algorithm [5],
[6] to represent the family of hybrid algorithms that
generate rules, and the C5.0 algorithm [10] to represent
the family of decision tree algorithms. The classification
goodness was measured using accuracy and the number of
rules. The results were compared among the seven
discretization algorithms for all data sets and both learning
algorithms.

3.2 Analysis of the Results

3.2.1 Analysis of the Discretization Results

Evaluation of the discretization algorithms was performed
using the CAIR criterion [28] since one of the goals of
discretization is to maximize the class-attribute interdepen-
dence. After [3], this can be done by finding a discretization
scheme, DMAX, out of all possible discretization schemes, D,
such that: CAIRðDMAXÞ � CAIRðDiÞ8ðDi 2 DÞ.

The CAIM criterion has the same properties as the CAIR
criterion, but, since it is a new heuristic measure, the CAIR
criterion was used instead. The higher the value of the
CAIR criterion, the higher the interdependence between the
class labels and the discrete intervals. Table 3 shows the
CAIR value, the number of discrete intervals, and the
execution time for the 10-fold cross validation tests on
eight data sets and the seven discretization schemes. The
discretization was done using the training folds and the
testing folds were discretized using the already generated
discretization scheme. The discretized data sets were used
in Section 3.2.2. The direct comparison of results can be
performed by looking at the rank column in Table 3. The
rank value is defined as each algorithm’s rank for a
particular data set among the seven algorithms, averaged
over the eight data sets.

The CAIM algorithm achieved the highest class-attribute
interdependency for five out of eight data sets, and, for wav
and ion, data sets had the second and third highest,
respectively. The CAIM algorithm was behind the compe-
titors for only the smo data set, but this data set has only two
continuous attributes out of 13. For this test, the CAIM
algorithm achieved the highest rank (1.9) among all
compared algorithms and this rank is significantly better
than 3.1 achieved by the Information Entropy Maximization
algorithm, which was the second best. The results show that
the greedy approach combined with the CAIM criterion
work, in practice, resulted, on average, in higher inter-
dependence between class and attribute variables than the
interdependence achieved by other algorithms.

The CAIM-generated discretization schemes have the
following mean (through all intervals and experiments)
values of the CAIM criterion (mean CAIM value/upper
boundary of CAIM value): for iris 33.3/135 (std 0.5), for sat
562.3/5791 (std 5.4), for thy 5554.5.6/6480 (std 11.8), for wav
457.0/3240 (std 2.9), for ion 129.5/315 (std 2.2), for smo

1242.1/2569 (std 10.4), for pid 293.0/691 (std 6.1), and for hea
75.0/243 (std 2.9). The upper boundary is the number of
examples, as shown in Section 2.2. For some of the data sets,
like thy, pid, and smo, the achieved CAIM value was high in
comparison to its upper boundary, but, in general, its value
depends on the distribution of the values belonging to
different classes. Since the computation of the globally
optimal value of the CAIM criterion is computationally
expensive (the number of all possible discretization
schemes that need to be considered is highly combinator-
ial), we did not compare the achieved CAIM values to the
optimal values. Instead, we used the CAIR criterion to show
the performance, in terms of interdependence between the
class and attribute variables, for the CAIM algorithm.

The CAIM algorithm generated a discretization scheme
with the smallest number of intervals for six data sets, as
compared with six other discretization algorithms. For the
smo and hea data sets, it generated the second smallest
number of intervals. Again, the rank of CAIM was
significantly better than the ranks of other discretization
algorithms. Smaller numbers of discrete intervals reduce
the size of the data and helps to better understand the
meaning of the discretized attributes. This is a significant
advantage of the CAIM algorithm that further shows its
usefulness.

Unsupervised discretization algorithms achieved the
shortest execution time since they do not process any class
related information; they require less computation time and
generate results that are less suited for the subsequent ML
tasks. Among supervised algorithms, the Maximum En-
tropy algorithm achieved the best average rank. The second
fastest were IEM and CAIM algorithms; they worked well
on larger data sets like thy or wav, which is important for
real-life applications. The results for IEM, CAIM, and
Maximum Entropy algorithms show that they are the
fastest among supervised methods, with comparable
performance.

The above results show that the CAIM algorithm
generates small numbers of intervals that are highly
interdependent with class labels, with speeds comparable
to the fastest state-of-the-art supervised discretization
algorithms.

3.2.2 Analysis of the Classification Results Using the

Discretized Data Sets

The discretized data sets generated in Section 3.2.1, were
used as input to CLIP4 and C5.0 algorithms to generate
classification rules. The accuracy and the number of rules
were compared for the seven discretization algorithms.
Since C5.0 can generate data models from continuous
attributes, we compared its performance while it gener-
ated rules from raw data against the results achieved
using discretized data using the seven algorithms. Direct
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comparison of results can be seen by looking at the
RANK column in Table 4 that shows the accuracy.

On average, the best accuracy for the two learning
algorithms was achieved for the data that was discretized
using the CAIM algorithm. Using CLIP4 and C5.0 to
generate a data model, the difference between the rank
achieved by the CAIM algorithm and the next best IEM
algorithm, and built-in discretization, in the case of C5.0, is
over 1.0. In the case of using the CLIP4 algorithm to
generate a data model, the average accuracy of the rules
was the highest for data discretized with the CAIM
algorithm. The second best accuracy was achieved for the
data discretized with the IEM algorithm, while accuracies
using the remaining discretization algorithms were lower
and comparable to each other.

The averaged accuracy of rules generated by the

C5.0 algorithm shows that the best results are achieved

after discretization of data with the CAIM algorithm. The
second best results were achieved by discretizing data using
the IEM algorithm and C5.0 with its built-in discretization.
Discretization using the remaining algorithms resulted in
achieving significantly worse accuracies on average. The
accuracy results show that the CAIM algorithm generates
the discrete data that results in improved performance of
subsequently used supervised learning algorithms when
compared to the data generated by the other discretization
algorithms. Table 5 shows the classification results in terms
of number of generated rules.

The rank achieved by the CAIM algorithm, for experi-
ments performed with CLIP4 and C5.0 algorithms, shows
that, on average, it had the smallest number of rules. Closer
analysis of the results shows that the CLIP4 algorithm
generates a small number of rules for all data sets
discretized using the seven discretization algorithms. The
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average rank results show that discretizing data using
Paterson-Niblett algorithm resulted in an average number
of rules similar to the number of rules for data models
generated using data discretized with the CAIM algorithm.
On the other hand, the number of leaves (rules) generated
by the C5.0 algorithm varied significantly over the data sets.
The three discretization algorithms that work best with the
C5.0 algorithm are: the CAIM algorithm, the Paterson-
Niblett algorithm, and the IEM algorithm. Also, similarly
low numbers of leaves were generated when using the
C5.0’s built-in discretization. Among these four discretiza-
tion algorithms, discretizing the data using the CAIM
algorithm resulted in, on average, the smallest number of
leaves.

The comparison between the CAIM algorithm and the
other six state-of-the-art discretization algorithms shows
that it generates discretization schemes with the highest, on
average, interdependency between the discrete intervals
and the class labels and the smallest number of intervals.
The classification results using the discretized data show
that the CAIM algorithm significantly improves accuracy of
the results achieved by the subsequently used ML algo-
rithms and reduces the number of rules generated by the
CLIP4 algorithm and the size of trees generated by the
decision tree algorithm. The same results were achieved
when comparing the CAIM algorithm to the C5.0 built-in
discretization. CAIM discretizes the data with speeds that
are comparable to the speeds of the two fastest supervised
discretization algorithms used in the experiments, which
shows its potential for large applications.

The future work will include the expansion of the CAIM
algorithm so it can remove irrelevant or redundant
attributes after the discretization is performed. This task
can be performed by the application of the �2 methods [17],
[19]. This would, in turn, reduce the dimensionality of the
discretized data in addition to the already reduced number
of values for each attribute.

4 SUMMARY AND CONCLUSIONS

In this paper, we proposed the CAIM algorithm that handles
continuous and mixed mode attributes. The CAIM algo-
rithm is a supervised discretization algorithm. The tests
show that, when the proposed algorithm is applied as a
front-end tool, it improves the performance of supervised
ML algorithms. The algorithm works with any class-labeled
data and is not limited to a particular learning algorithm.
The CAIM algorithm does not require user interaction and
performs automatic selection of the number of discrete
intervals, in contrast to some other discretization algorithms.

The CAIM algorithm maximizes mutual class-attribute

interdependence and possibly generates the smallest

number of intervals for a given continuous attribute. It

was tested on several well-known data sets and compared

with six other state-of-the-art discretization algorithms. The

comparison shows that the CAIM algorithm generates

discretization schemes with, on average, the lowest number

of intervals and the highest dependence between class

labels and discrete intervals, thus outperforming other

discretization algorithms. The execution time of the CAIM

algorithm is much shorter than the execution time of some

other supervised discretization algorithms, being at the

same time comparable to the time of the two fastest

supervised discretization algorithms. The CAIM and six

other discretization algorithms were also tested with two

ML algorithms. The tests show that the CAIM algorithm

significantly improved the accuracy of rules generated by

CLIP4 and C5.0 algorithms achieving results much better

than the other algorithms. Significant reduction in the

number of leaf nodes and rules is also achieved when using

the CAIM algorithm in conjunction with the decision tree

algorithm and CLIP4 algorithm, respectively. The analysis

of performance of the CAIM algorithm shows that the small

number of intervals that the algorithm generates helps to

reduce the size of the data and improves the accuracy and

the number of subsequently generated rules.
In a nutshell, the CAIM algorithm is very effective and

easy to use supervised discretization algorithm that can be

applied to problems that require discretization of large

data sets.
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