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Abstract. Knowledge discovery approaches based on rough sets have
successful application in machine learning and data mining. As these ap-
proaches are good at dealing with discrete values, a discretizer is required
when the approaches are applied to continuous attributes. In this paper,
a novel adaptive discretizer based on a statistical distribution index is
proposed to preprocess continuous valued attributes in an instance in-
formation system, so that the knowledge discovery approaches based on
rough sets can reach a high decision accuracy. The experimental results
on benchmark data sets show that the proposed discretizer is able to
improve the decision accuracy.
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1 Introduction

Based on rough set theory, knowledge discovery, machine learning and data min-
ing approaches [1,2] have been developed. For example, the multi-knowledge ap-
proach [3,4] is based on multiple reducts from rough set theory. Multi-knowledge
approach can extract more useful knowledge from a training set so that a high
decision accuracy can be reached. Because this approach prefers dealing with dis-
crete data, a transformation from continuous values to discrete values is required.
This is done using a continuous attribute discretizer. Two classes of discretiz-
ers (unsupervised and supervised discretizers) have been proposed in [5,6,7]. In
this paper a new adaptive discretizer is proposed to solve the data type trans-
formation problem in approaches based on rough sets. In this new discretizer,
a distributional index is defined and applied to determine the splitting point
within an interval. Based on the index decrement, the discretizer can adaptively
discretize any continuous attribute without involvement of users. The discretizer
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can share statistical information with the multi-knowledge approaches and the
Bayes classifier. The discretizer can also be applied to other machine learning
approaches for discretization of continuous attributes. In Sect. 2, a statistical
distribution is introduced. In Sect. 3, a algorithm for discretization is proposed.
Experimental results and analysis are given in Sect. 4. Sect. 5 concludes the
paper.

2 Statistical Distribution

2.1 Instance Information System

Following the notation in [2,4,8,12], let I =< U, A ∪ D > represent a in-
stance information system, where U = {u1, u2, , ui, , un} is a finite non-empty
set, called an instance space or universe, and where ui is called an instance in
U . A = a1, a2, a3, , ai, , am, also a finite non-empty set, is a set of attributes of
the instances, where ai is an attribute of a given instance. D is a non-empty
set of decision attributes, and A ∪ D = ∅. For every a ∈ A there is a domain,
represented by Va, and there is a mapping a(u) : U → Va from U to the domain
Va , where a(u) represents the value of attribute a of instance u and is a value
in the set Va. For a given universe U , a domain of attributes is as follows.

Va = a(U) = a(u) : u ∈ Ufor a ∈ A. (1)

The domain of a decision attribute is represented by

Vd = d(U) = d(u) : u ∈ Ufor d ∈ D. (2)

2.2 Value Number Distribution

In order to obtain a statistical table, a set of distribution numbers are defined
as follows. Suppose that there is an instance information system I =< U, A ∪
D >. Let Ndk,ai,vx represent the number of instances with decision value dk and
attribute value vx ∈ Vai for attribute ai.

Ndk,ai,vx = |u : d(u) = dk and a(u) = vx for all u ∈ U |. (3)

Let Nai,vx represent the number of instances with attribute value vx ∈ Vai for
attribute ai.

Nai,vx = |u : a(u) = vx for all u ∈ U |. (4)

2.3 Definition of Distributional Index

Based on principles of entropy of information [10,11], we construct a distribu-
tional index. Let vst → ven represent an interval of attribute value from value
vst to ven and Ndmain,ai,vst→ven represent the number of instances that satisfies

Ndmain,ai,vst→ven = max
d∈Vd

(Nd,ai,vst→ven). (5)
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The distributional index is defined as follows.

E(vst → ven) =
−Ndmain,ai,vst→ven

|U | logn(
Ndmain,ai,vst→ven

Nai,vst→ven

). (6)

where |U | is the total number of instances in the instances information sys-
tem, and n is the number of decision values. If vst → ven covers whole range
of attribute values, Nai,vst→ven = |U |. Suppose that all the values within this
interval support one decision, i.e. Ndmain,ai,vst→ven = Nai,vst→ven . Therefore, we
have the minimum of E(vst → ven) = 0. If the Ndk,ai,vst→ven is an uniform
distribution over the decision space, the maximum of E(vst → ven) is equal to
Nai,vst→ven/|U |. This number decreases as more intervals are split.

3 Algorithm of Discretization

Based on the definition of the distributional index, a very simple algorithm is
proposed to discretize continuous attributes. In order to discretize a continuous
attribute, the number of intervals and the borders of intervals have to be deter-
mined. Let vborder represent the value of splitting point. The best splitting point
can be found using following expression.

vborder = arg min
vbd∈vst→ven

(E(vst → vbd) + E(vbd → ven)). (7)

According to the property of distribution index, the distribution index always
becomes smaller when a interval is split into two intervals. Suppose that inter-
val vst → ven is split into two intervals vst → vbd and vbd → ven. The index
decrement is defined as

ΔEvst→ven(vbd) = {E(vst → ven) − [E(vst → vbd) + E(vbd → ven)]}. (8)

Based on this definition the splitting point can be rewritten as follows.

vborder = arg max
vbd∈vst→ven

ΔEvst→ven(vbd). (9)

For example, row 1 to 3 in Fig. 1 show a number distribution of Attribute
2 in the Wine data set. Applying Eq. 9 to this attribute, two intervals are
obtained by splitting at the border v32 with maximal ΔE as shown in row 4
in Fig. 1. Applying Eq. 9 to the new intervals, the maximal decrement of the
index can be obtained for splitting each interval. These new intervals and their
the maximal decrements are put into a candidate list. The interval with largest
maximal decrement in the candidate list is selected to split further. This splitting
procedure is repeated until index decrement is zero for all the intervals or the
desired number of intervals is reached. This is very different from the existing
discretization approaches [5,6,7]. Row 4 to 7 in Fig. 1 show the discretization
procedure of Attribute 2 in the Wine data set. Each row shows the curve of
ΔE vs splitting point within the selected interval. The circle indicates the the
splitting point with the maximal decrement.
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Fig. 1. Procedure of Discretization

4 Experimental Results

A set of 13 benchmark data sets from the UCI Machine Learning Repository [9]
was applied to test both multi-knowledge approaches with the discretizer and
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without the discretizer. The decision accuracies under the ten-fold cross valida-
tion standard are given in Table 1. Column ‘No’ lists decision accuracies for
multi-knowledge approach without the discretizer. Column ‘Dp’ lists decision
accuracies for multi-knowledge approach with the discretizer. In order to com-
pare with an unsupervised discretizer, column ‘5e’ lists decision accuracies for
multi-knowledge approach with a 5-identical-interval discretizer. It can be seen
that multi-knowledge approach with the adaptive discretizer improved decision
accuracies for 13 data sets. The average accuracy over 13 data sets is better
than multi-knowledge approaches without the adaptive discretizer and with a
5-identical-interval discretizer. Column C-type Attributes gives the number of
continuous attributes contained in corresponding data set. The names with ‘*’
indicate that some attribute values are missing in the data set.

Table 1. Comparison Results for New Discretizer An: Attribute Number, Cn: Con-
tinuous Attributes, In: Instance Number, No: No-Discretizer, Dp: Using the Proposed
Discretizer, 5e: Using 5-Equal Discretizer

Data An Cn In No Dp 5e

Sonar 60 60 208 77.8 97.1 91.4
Horse-colic* 27 7 300 80.0 86.3 80.3
Ionosphere 34 34 351 90.6 93.7 92.6
Wine 13 13 178 98.9 99.4 97.8
Crx-data* 15 6 690 85.1 86.5 85.0
Heart 13 6 270 83.3 86.3 85.1
Hungarian* 13 6 294 85.4 85.4 84.0
SPECTF 44 44 80 73.8 98.8 92.5
Bupa 6 6 345 65.5 70.2 67.0
Iris-data 4 4 150 96.7 96.7 93.3
Ecoli 6 6 336 71.5 75.3 75.0
Anneal* 38 6 798 99.4 99.7 99.7
Bands* 39 20 540 77.8 79.6 76.5
Average 83.5 88.8 86.2

5 Conclusion

In this paper a new discretizier based on the distributional index is proposed.
The minimum of the distributional index is applied to determine the border
value for splitting an interval. The maximum of index decrement is applied to
select the new intervals to split further. This discretizier has combined with both
information entropy and statistical distributions so that quality of rules exacted
from data sets can be improved after the discretization. Therefore, high decision
accuracies can be obtained. As number distributions are also applied in the naive
Bayes classifier and the multi-knowledge approaches [4,12], this discretizier can
be combined with the naive Bayes classifier and the multi-knowledge approaches
with very little increase of computational cost. The discretizer has been combined
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with the multi-knowledge approach to making decision. The experimental results
on 13 benchmark data sets show that the average accuracy has been improved.
This discretizer can be combined with other machine learning approaches for
further study.
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