Discretizing Continuous Attributes Using
Information Theory

Chang-Hwan Lee

Department of Information and Communications, DongGuk University,
Seoul, Korea 100-715
chlee@dgu.ac.kr

Abstract. Many classification algorithms require that training exam-
ples contain only discrete values. In order to use these algorithms when
some attributes have continuous numeric values, the numeric attributes
must be converted into discrete ones. This paper describes a new way
of discretizing numeric values using information theory. The amount of
information each interval gives to the target attribute is measured us-
ing Hellinger divergence, and the interval boundaries are decided so that
each interval contains as equal amount of information as possible. In or-
der to compare our discretization method with some current discretiza-
tion methods, several popular classification data sets are selected for
discretization. We use naive Bayesian classifier and C4.5 as classification
tools to compare the accuracy of our discretization method with that of
other methods.

1 Introduction

Discretization is a process which changes continuous numeric values into discrete
categorical values. It divides the values of a numeric attribute into a number of
intervals, where each interval can be mapped to a discrete categorical or nominal
symbol. Most real-world applications of classification algorithm contain contin-
uous numeric attributes. When the feature space of data includes continuous
attributes only or mixed type of attributes (continuous type along with dis-
crete type), it makes the problem of classification vitally difficult. For example,
classification methods based on instance-based measures are generally difficult
to apply to such data because the similarity measures defined on discrete val-
ues are usually not compatible with similarity of continuous values. Alternative
methodologies such as probabilistic modeling, when applied to continuous data,
require an extremely large amount of data.

In addition, poorly discretized attributes prevent classification systems from
finding important inductive rules. For example, if the ages between 15 and 25
mapped into the same interval, it is impossible to generate the rule about the
legal age to start military service. Furthermore, poor discretization makes it dif-
ficult to distinguish the non-predictive case from poor discretization. In most
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cases, inaccurate classification caused by poor discretization is likely to be con-
sidered as an error originated from the classification method itself. In other
words, if the numeric values are poorly discretized, no matter how good our
classification systems are, we fail to find some important rules in databases.

In this paper, we describe a new way of discretizing numeric attributes. We
discretize the continuous values using a minimum loss of information criterion.
Our discretization method is supervised one since it takes into consideration the
class values of examples, and adopts information theory as a tool to measure
the amount of information each interval contains. A number of typical machine
learning data sets are selected for discretization, and these are discretized by both
other current discretization methods and our proposed method. To compare the
correctness of the discretization results, we use the naive Bayesian classifier and
C4.5 as the classification algorithms to read and classify data.

The structure of this paper is as follows. Section 2] introduces some current
discretization methods. In Section Bl we explain the basic ideas and theoretical
background of our approach. Section [ explains the brief algorithm and cor-
rectness of our approach, and experimental results of discretization using some
typical machine learning data sets are shown in Section [Bl Finally, conclusions
are given in Section

2 Related Work

Although discretization influences significantly the effectiveness of classification
algorithms, not many studies have been done because it usually has been con-
sidered a peripheral issue. Among them, we describe a few well-known methods
in machine learning literature.

A simple method, called equal distance method, is to partition the range
between the minimum and maximum values into N intervals of equal width.
Another method, called equal frequency method, chooses the intervals so that
each interval contains approximately the same number of training examples;
thus, if N = 10, each interval would contain approximately 10% of the examples.
However, with both of these discretizations, it would be very difficult or almost
impossible to learn certain concepts.

Some classification algorithms such as C4.5 [11I] and PVM [13] take into
account the class information when constructing intervals. For example, in C4.5,
an entropy measure is used to select the best attribute to branch on at each node
of the decision tree. And that measure is used to determine the best cut point
for splitting a numeric attribute into two intervals. A threshold value, T, for the
continuous numeric attribute A is determined, and the test A < T is assigned
to the left branch while A > T is assigned to the right branch. This cut point is
decided by exhaustively checking all possible binary splits of the current interval
and choosing the splitting value that maximizes the entropy measure.

Fayyad [6] has extended the method of binary discretization in and C4.5
[11], and introduced multi-interval discretization, called Entropy Minimization
Discretization(EMD), using minimum description length(MDL) technique. In
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this method, the data are discretized into two intervals and the resulting class
information entropy is calculated. A binary discretization is determined by se-
lecting the cut point for which the entropy is minimal amongst all candidates.
The binary discretization is applied recursively, always selecting the best cut
point. A minimum description length criterion is applied to decide when to stop
discretization. This method is implemented in this paper, and used in our expri-
mental study.

Fuzzy discretization(FD), proposed by Kononenko [g], initially forms k equal-
width intervals using equal width discretization. Then it estimates p(a; < X; <
b;|C = ¢) from all training instances rather than from instances that have value
of X; in (a;,b;). The influence of a training instances with value v of X; on
(a;,b;) is assumed to be normally distributed with the mean value equal to
v. The idea behind fuzzy discretization is that small variation of the value of
a numeric attribute should have small effects on the attribute’s probabilities,
whereas under non-fuzzy discretization, a slight difference between two values,
one above and one below the cut point can have drastic effects on the estimated
probabilities. The number of initial intervals k is a predefined parameter and is
set as 7 in our experiments. This method is also implemented and used in our
experimental study.

Khiops [3] proposes a discretization method using chi-square statistic. This
method optimizes the chi-square criterion in a global manner on the whole dis-
cretization domain. It is a bottom-up method which starts with the discretization
from the elementary single value intervals. It then evaluates all merges between
adjacent intervals and selects the best one based on the chi-square criterion, and
iterates.

Even though some algorithms use dynamic discretization methods, it might
still be preferable to use static discretization. Using static discretization as a pre-
processing step, we can see significant speed up for classification algorithm with
little or no loss of accuracy [4]. The increase in efficiency is due to that the dy-
namic algorithm, such as C4.5/CART, must re-discretize all numeric attributes
at every node in the decision tree while in static discretization all numeric at-
tributes are discretized only once before the classification algorithm runs.

3 Hellinger-Based Discretization

It is seldom possible to verify that a given discretization is reasonable because
a classification algorithm can hardly distinguish a non-predictive case from a
poorly discretized attribute. In general, it is seldom possible to know what the
correct or optimal discretization is unless the users are familiar with the problem
domain. Another problem which complicates evaluation is that discretization
quality depends on the classification algorithms that will use the discretization.
Even though it is not possible to have an optimal discretization with which to
compare results, some notion of quality is needed in order to design and evaluate
a discretization algorithm.
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The primary purpose of discretization, besides eliminating numeric values
from the training data, is to produce a concise summarization of a numeric
attribute. An interval is essentially a summary of the relative frequency of classes
within that interval. Therefore, in an accurate discretization, the relative class
frequencies should be fairly consistent within an interval(otherwise the interval
should be split to express this difference) but two adjacent intervals should not
have similar relative class frequencies(otherwise the intervals should be combined
to make the discretization more concise). Thus, the defining characteristic of
a high quality discretization can be summarized as: maximizing intra-interval
uniformity and minimizing inter-interval uniformity.

Our method achieves this notion of quality by using an entropy function.
The difference between the class frequencies of the target attribute and the class
frequencies of a given interval is defined as the amount of information that the in-
terval gives to the target attribute. The more different these two class frequencies
are, the more information the interval gives to the target attribute. Therefore,
defining an entropy function which can measure the degree of divergence be-
tween two class frequencies is crucial in our method and will be explained in the
following.

3.1 Measuring Information Content

The basic principle of our discretization method is to discretize numeric values
so that each discretized interval has as equal amount of information as possible.
In other words, we define the amount of information that a certain interval
contains as the degree of divergence between a priori distribution and a posteriori
distribution of the target attribute. Therefore, the critical part of our method
is to select or define an appropriate measure of the amount of information each
interval gives to the target attribute.

In our approach, the interpretation of the amount of information is defined
in the following. For a given interval, its class frequency distribution is likely
to differ from that of the target attribute. The amount of information an inter-
val provides is defined as the dissimilarity(divergence) between these two class
frequencies. We employ an entropy function in order to measure the degree of
divergence between these two class frequencies.

Some entropy functions have been used in this direction in machine learning
literature. However, the purpose of these functions is different from that of ours.
They are designed to decide the most discriminating attributes for generating
decision trees [I1]. Suppose X is the target attribute and it has k discrete values,
denoted as x1,xs,...,2x. Let p(x;) denote the probability of x;. Assume that
we are going to discretize an attribute A with respect to the target attribute X.
Suppose A = a; and A = a;41 are boundaries of an interval, and this interval
is mapped into a discrete value a. Then the probability distribution of X under
the condition that a; < A < a;41 is possibly different from a priori distribution
of X. We will introduce several studies for measuring divergence from machine
learning literature and information theory literature.
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In machine learning literature, C4.5 [I1], which generates decision trees from
data, has been widely used for rule induction. It uses the following formula, called
information gain, for estimating the information given from A = a about X.

H(X) - H(X|a) = 3" p(t)log (p(lt)> ~ 3" p(tla)log (p(jm)) G

It takes into consideration both a priori and a posteriori probabilities. It calcu-
lates the difference between the entropy of a priori distribution and that of a
posteriori distribution, and uses the value to determine the most discriminating
attribute of decision tree. However, it sometimes fails to calculate the divergence
between two distributions correctly. Calculating the average value of each prob-
ability, it cannot detect the divergence of the distributions in the case that one
distribution is a permutation of the other.

In information theory literature, several studies are done about divergence
measure. Kullback [9] derived a divergence measure, called I-measure, defined as

> pladaytog "1, ©)

Another group of divergence measure, widely used in information theory, includes
Bhattacharyya divergence [2] and Renyi divergence [12].

However, since these measures are originally defined on continuous variables,
there are some problems when these are applied to discrete values. These mea-
sures are not applicable in case one or more than one of the p(z;) are zero.
Suppose that one class frequency of a priori distribution is unity and the rest
are all zero. Similarly, one value of a posteriori distribution is unity and the rest
are all zero. Then Kullback divergence, Renyi divergence and Bhattacharyya di-
vergence are not defined in this case, and we cannot apply these directly without
approximating the original values.

In this paper, we adopt Hellinger divergence [7] which is defined as

1/2
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It was originally proposed by Beran [I], and unlike other divergence measures,
this measure is applicable to any case of probability distribution. In other words,
Hellinger measure is continuous on every possible combination of a priori and
a posteriori values. It can be interpreted as a distance measure where distance
corresponds to the amount of divergence between a priori distribution and a
posteriori distribution. It becomes zero if and only if both a priori and a poste-
riori distributions are identical, and ranges from 0 to v/2. Therefore, we employ
Hellinger divergence as a measure of divergence, which will be used as the in-
formation amount of intervals. The entropy of an interval I described above is
defined as follows.
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Definition 1. The entropy of an interval I is defined as follows:
1/2
E(I) =

> (Vo) — VoD

%

4 Discretizing Algorithm

The algorithm consists of an initialization step and a bottom up combining
process. As part of the initialization step, the training examples are sorted ac-
cording to their values for the attribute being discretized and then each example
becomes its own interval. The midpoint between each successive pair of values
in the sorted sequence is called a potential cutpoint. Each cutpoint associates
two adjacent intervals(or point values), and its corresponding entropy is defined
as follows.

Definition 2. The entropy of a cutpoint C, adjacent to interval a and b, is
defined as follows.
E(C) = E(a) — E(b). (5)

If the class frequency of these two intervals are exactly the same, the cutpoint
is called in-class cutpoint, and if not, the cutpoint is called boundary cutpoint.
In other words, if two adjacent point values or intervals have different class fre-
quencies, their midpoint(cutpoint) is defined as boundary cutpoint. Intuitively,
discretization at in-class cutpoints are not desirable because it separates exam-
ples of one class. Therefore, boundary cutpoint must have high priority to be
selected for discretization.

In combining process, the amount of information that each interval gives
to the target attribute is calculated using Hellinger divergence. For each pair of
two adjacent intervals, the system computes the informational difference between
them. The least value of difference will be selected and its corresponding pair
of intervals will be merged. Merging process continues until the system reaches
the maximum number of intervals(k) usually given by users. The value of k,
maximum number intervals, is determined by selecting a desired precision level
the user wants. The standard recommended value of k is to set the value between
3 to 10 depending on the domain to prevent an excessive number of intervals
from being created. Figure [Il shows the abstract algorithm of the discretization
method.

We have the following theorem which shows the correctness of our discretiza-
tion algorithm.

Theorem 1. The in-class cutpoints are not to be selected for discretization un-
less all boundary cutpoints are erhausted for discretization.

The proof is omitted due to space limit. This theorem implies that in our al-
gorithm discretization keeps occurring only at boundary cutpoints unless it ex-
hausts all boundary cutpoints. By doing so, it prevents the in-class cutpoints
from being selected for discretization.
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Input : a1, a2, ..., an (sorted and distinct numeric values)

ap = G1; AN+1 = GN;
K:=maximum number of interval;
/* Initialization step */
for i=1 to N do
INTVL= {li = (pi, :)Ipi = (ai-1 + ai)/2,¢: = (ai + aiy1)/2};
end
/* Entropy of each interval */
for each I; € INTVL do

B(1) = | ,(V/P(a;) = v/Pla|1))?
end
/* Entropy of each cutpoint */
for i=1 to N-1 do
E(pi) = E(Ii) = E(Iit1);
end
repeat N-K times do
MERGE=cutpoint with least value of E;
merge two intervals of MERGE;
end
return INTVL;

1/2

Fig. 1. Discretization Algorithm

The computational complexity of our discretization method is given as O(n),
where n is the number of examples.

Lemma 1. Suppose n is the number of examples. The complexity of the proposed
discretization method is given as

O(n) (6)

The proof of the lemma, is trivial based on the pseudo code in Figure [l

5 Empirical Results

Because our discretization method is not itself a classification algorithm it cannot
be tested directly for classification accuracy, but must be evaluated indirectly in
the context of a classification algorithm. Therefore, our discretization method
will be used to create intervals for two well-known classification systems: naive
Bayesian classifier and C4.5 [11].

In our experimental study, we compare our proposed method with Fuzzy
Discretization(FD) [8], as a preprocessing step to the C4.5 algorithm and naive-
Bayes classifier. C4.5 algorithm is a state-of-the-art method for inducing decision
trees. The naive Bayes classifier computes the posterior probability of the classes
given the data, assuming independence between the features for each class.

For the test data set, we have chosen eight datasets. Table [I] shows the
datasets we chose for our comparison. These datasets are obtained from the
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UCI repository [I0] such that each had at least one continuous atribute. We
used 10-fold cross-validation technique and, for each experiment, the training
data are separately discretized into seven intervals by Fuzzy Discretization(FD)
[8] and our proposed discretization method, respectively. The intervals so formed
are separately applied to the test data. The experimental results are recorded
as average classification accuracy that is the percentage of correct predictions of
classification algorithms in the test across trials.

Table [2] shows the classification results of naive Bayes classifier using the
different discretization methods. As we can see, our discretization method shows

Table 1. Description of datasets

Dataset Size Numeric Categorical Classes
Anneal 898 6 32 6
Breast 699 10 0 2
Glass 214 9 0 3
Hepatitis 155 6 13 2
Horse-colic 368 8 13 2
Hypothyroid 3163 7 18 2
Iris 150 4 0 3
Vehicle 846 18 0 4

Table 2. Classification results using naive Bayesian method

Dataset FD Proposed method
Anneal 92.3 89.2
Breast 96.3 97.2
Glass 64.8 68.1
Hepatitis 87.7 88.3
Horse-colic  81.5 78.4
Hypothyroid 97.2 97.0
Iris 94.7 96.6
Vehicle 59.6 62.8

Table 3. Classification results using C4.5

Dataset FD Proposed method
Anneal 89.2 87.3
Breast 91.5 95.8
Glass 69.2 70.1
Hepatitis 85.4 87.2
Horse-colic  81.5 82.7
Hypothyroid 98.8 97.3
Iris 95.6 96.3

Vehicle 62.7 66.4
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Fig. 2. Classification accuracy versus number of intervals

better results than other method in most data sets. In five cases among eight
datasets, our method showed better classification accuracy.

Table Bl shows the results of classification for each data set using C4.5, and
we can easily see that our discretization method shows the better classification
accuracy in most cases. In six cases among eight datasets, our method showed
the better classification accuracy.

Determining the right value of maximum number of intervals significantly
effects the correctness of discretization. Too small number of intervals prevents
important cutpoints from being discretized while too many cuts produce unnec-
essary intervals. In order to see the effect of the number of intervals, we applied
naive Bayesian classifier to iris data set with different number of intervals, and
the results are shown in Figure [2l For iris data set, when the attribute is dis-
cretized into 5-7 intervals, its classification result shows better accuracies while
the number of intervals is greater than 7 or less than 5, the classification accuracy
drops significantly.

6 Conclusion

In this paper, we proposed a new way of discretizing numeric attributes, con-
sidering class values when discretizing numeric values. Using our discretization
method, the user can be fairly confident that the method will seldom miss im-
portant intervals or choose an interval boundary when there is obviously a better
choice because discretization is carried out based on the information content of
each interval about the target attribute. Our algorithm is easy to apply because
all it requires for users to do is to provide the maximum number of intervals.
Our method showed better performance than other traditional methods in
most cases. Our method can be applied virtually to any domain, and is applicable
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to multi-class learning(i.e. domains with more than two classes—not just positive
and negative examples).

Another benefit of our method is that it provides a concise summarization of
numeric attributes, an aid to increasing human understanding of the relationship
between numeric features and the class attributes.

One problem of our method is the lack of ability to distinguish between true
correlations and coincidence. In general, it is probably not very harmful to have
a few unnecessary interval boundaries; the penalty for excluding an interval
is usually worse, because the classification algorithm has no way of making a
distinction that is not in the data presented to it.
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