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Abstract

This paper proposes genetic algorithms (GAs) approach to feature discretization and the determination of connection weights for artificial
neural networks (ANNs) to predict the stock price index. Previous research proposed many hybrid models of ANN and GA for the method of
training the network, feature subset selection, and topology optimization. In most of these studies, however, GA is only used to improve the
learning algorithm itself. In this study, GA is employed not only to improve the learning algorithm, but also to reduce the complexity in
feature space. GA optimizes simultaneously the connection weights between layers and the thresholds for feature discretization. The
genetically evolved weights mitigate the well-known limitations of the gradient descent algorithm. In addition, globally searched feature
discretization reduces the dimensionality of the feature space and eliminates irrelevant factors. Experimental results show that GA approach
to the feature discretization model outperforms the other two conventional models.q 2000 Published by Elsevier Science Ltd.
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1. Introduction

For a long time, there has been much research interest in
predicting the stock price index. Among them, there are
many studies using data mining techniques including artifi-
cial neural networks (ANNs). However, most studies
showed that ANN had some limitations in learning the
patterns because stock market data has tremendous noise
and complex dimensionality. ANN has preeminent learning
ability while it is often confronted with inconsistent and
unpredictable performance for noisy data. In addition,
sometimes the amount of data is so large that the learning
of patterns may not work well. In particular, the existence of
continuous data and large amount of data may pose a chal-
lenging task to explicit concepts extraction from the raw
data due to the huge amount of data space determined by
continuous features (Liu & Setiono, 1996). Many research-
ers in the society of data mining are interested in the reduc-
tion of dimensionality. The reduction and transformation of
the irrelevant or redundant features may shorten the running
time and yield more generalized results (Dash & Liu, 1997).

This paper proposes a new hybrid model of ANN and

genetic algorithms (GAs) for feature discretization to miti-
gate the above limitations. Feature discretization is to trans-
form continuous values into discrete ones in accordance
with certain thresholds. Feature discretization is closely
related to the dimensionality reduction (Liu & Motoda,
1998a). Properly discretized data can simplify the process
of learning and may improve the generalizability of the
learned results. This study uses GA to search the optimal
or near-optimal thresholds for feature discretization. In
addition, this study simultaneously searches the connection
weights between layers in ANN. The genetically evolved
connection weights mitigate the well-known limitations of
the gradient descent algorithm.

The rest of the paper is organized as follows. Section 2
reviews prior research. Section 3 proposes feature discreti-
zation using GA and describes the benefits of the proposed
approach. Section 4 describes the research design and
experiments. In Section 5, the empirical results are summar-
ized and discussed. In Section 6, conclusions and the limita-
tions of this study are presented.

2. Research background

2.1. Prior research on stock market prediction using ANN

Many studies on stock market prediction using artificial
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intelligence (AI) techniques were performed during the past
decade. These studies used various types of ANN to predict
accurately the stock index and the direction of its change.

One of the earliest studies, Kimoto, Asakawa, Yoda and
Takeoka (1990) used several learning algorithms and
prediction methods for developing the Tokyo stock
exchange prices index (TOPIX) prediction system. They
used the modular neural network to learn the relationships
among various market factors. Kamijo and Tanigawa (1990)
used the recurrent neural network and Ahmadi (1990)
employed the backpropagation neural network with the
generalized delta rule to predict the stock market. Yoon
and Swales (1991) also performed predictions using quali-
tative and quantitative data.

Some researchers investigated the issue of predicting the
stock index futures market. Choi, Lee and Rhee (1995) and
Trippi and DeSieno (1992) predicted the daily direction of
change in the S&P 500 index futures using ANN. Duke and
Long (1993) executed daily predictions of the German
government bond futures using the backpropagation neural
network. The above studies are mainly focused on applica-
tions of ANN to the stock market prediction.

Recent research tends to hybridize several AI techniques.
Hiemstra (1995) proposed fuzzy expert systems to predict
stock market returns. He suggested that ANN and fuzzy
logic could capture the complexities of functional mapping
because they do not require the specification of the function
to approximate. A more recent study of Tsaih, Hsu and Lai
(1998) integrated the rule-based technique and ANN to
predict the direction of change of the S&P 500 stock
index futures on a daily basis. Some researchers tend to
include novel factors to the learning process. Kohara, Ishi-
kawa, Fukuhara and Nakamura (1997) incorporated prior
knowledge to improve the performance of stock market
prediction.

Some of them, however, did not produce outstanding
prediction accuracy partly because of the tremendous
noise and non-stationary characteristics in stock market
data. Lawrence, Tsoi and Giles (1996) pointed out that
when the training of ANN tends to be difficult for high
noisy data then the networks fall into a naive solution
such as always predicting the most common output. Another
reason may be the local convergence of the gradient descent
algorithms. Most ANN used in prior research employed the
gradient descent algorithm to train the network.

2.2. The connection weights in the ANN solutions

Many ANN studies relied on the gradient descent algo-
rithm to get the connection weights of the model. Sexton,
Alidaee, Dorsey and Johnson (1998a) pointed out that the
gradient descent algorithm may perform poorly even on
simple problems when predicting the holdout data. Their
indication stems from the fact that backpropagation is a
local search algorithm and may tend to fall into a local
minimum.

Sexton, Dorsey and Johnson (1998b) indicated that the
use of the momentum, restarting training at many random
points, restructuring the network architecture, and applying
significant constraints to the permissible forms can fix it.
They also suggested that one of the most promising direc-
tions is using global search algorithms to search the weight
vector of the network instead of local search algorithms
including the gradient descent algorithm. They employed
GA to search the weight vector of ANN. The results showed
that the GA-derived solution was superior to the corre-
sponding backpropagation solution. Gupta and Sexton
(1999) and Ignizio and Soltys (1996) also suggested that
the GA-derived solutions are better than the gradient
descent algorithm derived solutions.

Some ANN research advocated that other global search
algorithms can improve performance. Sexton et al. (1998a)
used tabu search to optimize the network and tabu search-
derived solutions were significantly superior to those of
backpropagation solutions for all test data in the resulting
comparison. In another paper, Sexton, Dorsey and Johnson
(1999) again incorporated simulated annealing, one of
global search algorithms, to optimize the network. They
compared GA to the simulated annealing. They concluded
that GA outperformed simulated annealing. On the other
hand, Shin, Shin and Han (1998) concluded that backpro-
pagation with the gradient descent algorithm outperform
ANN with GA in their application on bankruptcy prediction.
They concluded that GA solution cannot always guarantee
better performance than ANN trained with the gradient
descent algorithm.

2.3. The feature discretization method in data mining

The data mining society has been interested in feature
transformation and subset selection because data preproces-
sing is an essential step for knowledge discovery. One of the
most popular preprocessing methods is feature transforma-
tion. Feature transformation is the process of creating a new
set of features (Liu & Motoda, 1998b). It may be split into
three categories including feature extraction, feature
construction, and feature discretization. Among them,
feature discretization is closely related to dimensionality
reduction (Liu & Motoda, 1998a). The methods of feature
discretization are classified as endogenous (unsupervised)
versus exogenous (supervised), local versus global, parame-
terized versus non-parameterized, and hard versus fuzzy
(Dougherty, Kohavi & Sahami, 1995; Scott, Williams &
Ho, 1997; Susmaga, 1997).

Endogenous (unsupervised) methods do not take into
consideration the value of the dependent feature while
exogenous (supervised) methods do. Local methods discre-
tize one attribute at once while the global ones discretize all
features simultaneously. Parameterized methods specify the
maximal number of intervals generated in advance while
non-parameterized methods determine it automatically.
Hard methods discretize the intervals at the cutting point
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exactly while fuzzy methods discretize it by overlapping
bounds (Susmaga, 1997).

The endogenous methods include discretizing by the self-
organizing map (Lawrence et al., 1996), the percentile
method (Buhlmann, 1998; Scott et al., 1997), and the clus-
tering method (Kontkanen, Myllymaki, Silander & Tirri,
1997; Scott et al., 1997). Basak, De and Pal (1998) proposed
the neuro-fuzzy approach using the feature evaluation index
and Piramuthu, Ragavan and Shaw (1998) suggested the
decision-tree based approach as an endogenous discretiza-
tion method. These methods have the advantage of simpli-
city in the discretization process. However, they do not
consider the association among each independent and
dependent feature. The prediction performance is enhanced
by the ability of discrimination not only by a single feature
but also by the association among features. For this limita-
tion, the endogenous method does not provide an effective
way of forming categories (Scott et al., 1997).

On the other hand, exogenous methods include maximiz-
ing the statistical significance of Cramer’s V between other
dichotomized variables (Scott et al., 1997), entropy mini-
mization heuristic in inductive learning and thek-nearest
neighbor method (Fayyad & Irani, 1993; Martens, Wets,
Vanthienen & Mues, 1998; Ting, 1997). The exogenous
method also includes feature transformation using GA for
C4.5 (Vafaie & De Jong, 1998). These methods discretize
an independent feature to maximize its association with the
values of dependent and other independent features.

2.4. GA and the design of ANN architecture

GA is a search algorithm based on survival of the fittest
among string structures (Goldberg, 1989). GA has been
investigated recently and shown to be effective in exploring
a complex space in an adaptive way, guided by the biologi-
cal evolution mechanisms of reproduction, crossover, and
mutation (Adeli & Hung, 1995).

The following describes the basic steps of GA.
The first step is problem representation. The problems

must be represented as a suitable form to be handled by
GA. GA often works with a form of binary coding. If the
problems are coded as chromosomes, the populations are
initialized. Each chromosome within the population is
gradually evolved by biological operations. Larger popula-
tions ensure greater diversity but require more computa-
tional burden. Once the population size is chosen, the
initial population is randomly generated (Bauer, 1994).
After the initialization step, each chromosome is evaluated
by the fitness function. According to the value of the fitness
function, the chromosomes associated with the fittest indi-
viduals will be reproduced more often than those associated
unfit individuals (Davis, 1994).

Crossover allows the search to fan out in diverse direc-
tions looking for attractive solutions and permits chromo-
somal material from different parents to be combined in a
single child. In addition, mutation arbitrarily alters one or

more components of a selected chromosome. It provides the
means for introducing new information into the population.
Finally, GA tends to converge on optimal or near-optimal
solutions (Wong & Tan, 1994).

GA is usually employed to improve the performance of
AI techniques. For ANN, GA is popularly used to select
neural network topology such as optimizing relevant feature
subset, determining the optimal number of hidden layers
and processing elements. Feature subset, the number of
hidden layers, the number of processing elements in hidden
layers, the activation functions, and the connection weights
between layers are the architectural factors of ANN to be
determined in advance. Most previous studies were focused
on the improvement of the learning algorithm itself. There
are few studies on the dimensionality reduction and the
elimination of irrelevant patterns for ANN.

This study proposes GA approach to feature discretiza-
tion (GAFD) for ANN. In this study, GA supports the simul-
taneous optimization of connection weights and feature
discretization. GAFD takes into consideration the depen-
dent feature by fitness function in GA. GA iterates the
evolution of the populations to maximize the fitness func-
tion. GAFD simultaneously discretizes all features into the
intervals at the exact thresholds. In addition, GAFD deter-
mines the maximal number of thresholds automatically.
GAFD is classified as an exogenous, global, hard, and
non-parameterized discretization method.

3. GA approach to feature discretization for ANN

Many fund managers and investors in the stock market
generally accept and use certain criteria for technical indi-
cators as the signal of future market trends. Even if a feature
represents a continuous measure, the experts usually inter-
pret the values in qualitative terms such as low, medium,
and high (Slowinski & Zopounidis, 1995). For ‘Stochastic
%K’, one of the most popular technical indicators, the value
of 75 is basically accepted by stock market analysts as a
strong signal if the value exceeds 75, the market is regarded
as an overbought situation or a bullish market. On the other
hand, if it drops below 25, it is considered as an oversold
situation or the signal of a bearish market. When the value
of ‘Stochastic %K’ is placed between 25 and 75, it is
regarded as the signal of a neutral market (Edwards &
Magee, 1997).

The reasoning process of ANN may be like that of human
experts. Properly discretized data can simplify the process
of learning and may improve the generalizability of the
learned results because it may effectively reduce the noisy
and redundant data. Feature discretization needs relevant
and rational discretizing thresholds. However, the thresh-
olds may vary depending on the securities being analyzed
and the overall market condition (Achelis, 1995). There are
no general guidelines to discretize for this reason. We may
search the thresholds for discretizing a continuous measure
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into a qualitative norm to capture the domain-specific
knowledge. As mentioned earlier, although some studies
suggested various methods for discretizing features, this
paper proposes the optimization of discretizing thresholds
based on GA. GAFD may find optimal or near-optimal
thresholds of discretization for maximum predictive perfor-
mance because GA searches the optimal or near-optimal
parameters to maximize the fitness function.

The overall framework of GAFD is shown in Fig. 1.
The algorithms of GAFD consist of three phases.
Phase 1.In the first phase, GA searches optimal or near-

optimal connection weights and thresholds for feature
discretization. The populations, the connection weights
and the thresholds for feature discretization, are initialized
into random values before the search process. The para-
meters for searching must be encoded on chromosomes.
This study needs three sets of parameters. The first set is
the set of connection weights between the input layer and
the hidden layer of the network. The second set is the set of
connection weights between the hidden layer and the output
layer. As mentioned earlier, the above two sets may mitigate
the limitation of the gradient descent algorithm. These sets
were incorporated in the studies of Dorsey and Sexton
(1998), Gupta and Sexton (1999), Ignizio and Soltys
(1996), Sexton et al. (1998b, 1999) and Shin et al. (1998).
The third set represents the thresholds for feature
discretization.

The strings used in this study have the following encod-
ing. This study uses 12 input features and employs 12
processing elements in the hidden layer. Each processing
element in the hidden layer receives 12 signals from the
input layer. The first 144 bits represent the connection
weights between the input layer and the hidden layer.
These bits are searched from25 to 5. Each processing
element in the output layer receives a signal from the hidden
layer. The next 12 bits indicate the connection weights
between the hidden layer and the output layer. These bits
also varied between25 and 5. The following 48 bits are the

thresholds for feature discretization. Each feature is discre-
tized into at most five categories and needs four thresholds
for discretization. In addition, GA also searches the number
of categories to be discretized using these bits. The thresh-
olds are not used if the searched thresholds are more than the
maximum value of each feature. The upper limit of the
number of categories is five and the lower limit is one.
This number is automatically determined by the searching
process of GA.

The encoded chromosomes are searched to maximize the
fitness function. The fitness function is specific to applica-
tions. In this study, the objectives of the model are to
approximate connection weights and the thresholds of
discretization for the correct solutions. These objectives
can be represented by the average prediction accuracy of
the training data. This study applies the average prediction
accuracy of the training data to the fitness function.

The parameters to be searched use only the information
about training data. In this phase, GA operates the process of
crossover and mutation on initial chromosomes and iterates
until the stopping conditions are satisfied. For the control-
ling parameters of the GA search, the population size is set
to 100 organisms and the crossover and mutation rates are
varied to prevent ANN from falling into a local minimum.
The range of the crossover rate is set between 0.5 and 0.7
while the mutation rate ranges from 0.05 to 0.1. As the
stopping condition, only 5000 trials are permitted.

Phase 2.The second phase is the process of feedforward
computation in ANN. In this phase, the sigmoid function is
used as the activation function. This function is a popular
activation function for the backpropagation neural network
because it can easily be differentiated. The linear function is
used as a combination function for the feedforward compu-
tation with derived connection weights from the first phase.

Phase 3.The derived connection weights and thresholds
for feature discretization are applied to the holdout data.
This phase is indispensable to validate the generalizability
because ANN has the eminent ability of learning the known
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data. If this phase is not carried out the model may fall into
the problem of overfitting with the training data. Table 1
summarizes the algorithms of GAFD.

4. Research data and experiments

The research data used in this study is technical indicators
and the direction of change in the daily Korea stock price
index (KOSPI). The total number of samples is 2928 trading
days, from January 1989 to December 1998. Table 2 gives
selected features and their formulas (Achelis, 1995; Chang,
Jung, Yeon, Jun, Shin & Kim, 1996; Choi, 1995; Edwards &
Magee, 1997; Gifford, 1995).

The direction of daily change in the stock price index are
categorized as “0” or “1”. “0” means that the next day’s
index is lower than the today’s index, and “1” means that
the next day’s index is higher than today’s index. We select
12 technical indicators as feature subsets by the review of
domain experts and prior research. Table 3 presents the
summary statistics for each feature.

This study compares GAFD to the linear transformation
with the backpropagation neural network (BPLT) and to the
linear transformation with ANN trained by GA (GALT). In
this study, linear transformation means the linear scaling of
data into the range of 0.0–1.0. Linear transformation is
generally used to enhance the performance of ANN because
most ANN models accept numeric data only in the range
from 0.0 to 1.0 or21.0 to11.0 (Bigus, 1996). BPLT uses

the gradient descent algorithm to train the network. This is
the conventional approach of previous studies. GALT
employs GA only to determine the connection weights of
ANN. GALT is similar to the model of Gupta and Sexton
(1999), Sexton et al. (1998b) and Shin et al. (1998). The
number of processing elements in the hidden layer is fixed at
12. This is like the number of feature subsets.

About 20% of the data is used for holdout and 80% for
training. The training data is used to search the optimal or
near-optimal parameters and is employed to evaluate the
fitness function. The holdout data is used to test the results
with the data that is not utilized to develop the model. The
number of cases for each set is shown in Table 4.

5. Experimental results

Three models are compared according to the methods of
determining the connection weights and the methods of
feature transformation. Table 5 describes the average
prediction accuracy of each model.

In Table 5, GAFD has higher prediction accuracy than
BPLT and GALT by 10, 11% for the holdout data. It is
worth giving attention to the fact that there is a shade of
difference of prediction accuracy between the training data
and the holdout data for GAFD. There is, however, a wide
difference between the training data and the holdout data for
the other two models. These results may be caused by the
fact that the globally searched discretization simplifies the
learning process and eliminates the irrelevant patterns. This
prevents the network from falling into the problem of over-
fitting and may enhance the generalizability.

From Table 5, we also find that the average prediction
performances of BPLT and GALT are similar. Although
Sexton et al. (1998b) concluded that ANN with the
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Table 1
The algorithms of GAFD

Step 0. Initialize the populations (the connection weights
between layers and the thresholds for feature
discretization). (Set to small random values between 0.0
and 1.0)

Step 1. While stopping condition is false, do Steps 2–9.
Step 2. Do Steps 3–8.
Step 3. Each processing element in the input layer receives an

input signal and forwards this signal to all processing
elements in the hidden layer.

Step 4. Each processing element in the hidden layer sums its
weighted input signals and applies the sigmoid
activation function to compute its output signal of the
hidden processing element and forwards it to all
processing elements in the output layer.

Step 5. Each processing element in the output layer sums its
weighted signals from the hidden layer and applies the
sigmoid activation function to compute its output signal
of the output processing element and computes the
difference between the output signal and the target value.

Step 6. Calculate fitness. (Fitness function: average predictive
accuracy on training set)

Step 7. Select individuals to become parents of the next
generation.

Step 8. Create a second generation from the parent pool.
(Perform crossover and mutation)

Step 9. Test stopping condition.

Table 2
Selected features and their formulas (C is the closing price,L the low price,
H the high price, MA the moving average of price,Mt: �Ht 1 Lt 1 Ct�=3;
SMt: �

Pn
i�1 Mt2i11�=n; Dt: �

Pn
i�1 uMt2i11 2 SMt u�=n, Up the upward price

change, Dw the downward price change)

Name of feature Formulas

Stochastic %K Ct 2 Ln=Hn 2 Ln × 100
Stochastic %D

Pn2 1
i�0 %Kt2i =n

Stochastic slow %D
Pn2 1

i�0 %Dt2i =n
Momentum Ct 2 Ct24

ROC (rate of change) Ct=Ct2n × 100
LW %R (Larry William’s %R) Hn 2 Ct=Hn 2 Ln × 100
A/D Oscillator (accumulation/
distribution oscillator)

Ht 2 Ct21=Ht 2 Lt

Disparity 5 days Ct=MA5 × 100
Disparity 10 days Ct=MA10 × 100
OSCP (price oscillator) MA5 2 MA10=MA5

CCI (commodity channel index) �Mt 2 SMt�=�0:015× Dt�
RSI (relative strength index) 1002 100=1 1Pn2 1

i�0 Upt2i =n=
Pn2 1

i�0 Dwt2i =n



genetically evolved connection weights outperforms
conventional backpropagation neural networks with the
gradient descent algorithm, this study does not find evidence
to support their conclusions. The reasons for this result may
be summarized in two points. First is that there is a generic
limitation of global search algorithms. Sexton et al. (1999)
reported that performance with the connection weights
searched by simulated annealing, one of global search algo-
rithms, was lower than the performance of backpropagation
with the gradient descent algorithm. Their result was also
supported by Shin et al. (1998). They concluded that the
reason of the results came from the fact that GA may be
less competent in a local search. Although a global search is
more desirable than a local search for learning ANN, some-
times a local search is also needed. The other factor may be
a complex dimensionality in data. GA is a global search
algorithm, however, financial data including the stock
market data is too complex to be searched easily. It is neces-
sary to reduce the dimensionality of data and irrelevant
factors before searching.

The McNemar tests are used to examine whether GAFD
significantly outperforms the other two models. This test is a
nonparametric test for two related samples. This test may be
used with nominal data and is particularly useful with
before–after measurement of the same subjects (Cooper &
Emory, 1995). Table 6 shows the results of the McNemar
test to compare the performance for the holdout data.

As shown in Table 6, GAFD performs better than the
other two models at a 1% statistical significance level. In

addition, Table 6 shows that BPLT and GALT do not signif-
icantly outperform each other.

6. Concluding remarks

As mentioned earlier, previous studies tried to optimize
the controlling parameters of ANN using global search algo-
rithms. Some of them only focused on the optimization of
the connection weights of ANN. Others had an interest in
the optimization of the learning algorithms itself, but most
studies had little interest in the dimensionality reduction and
the elimination of irrelevant patterns. This paper has
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Table 3
Summary statistics

Name of feature Max Min Mean Standard Deviation

Stochastic %K 100.007 0.000 45.407 33.637
Stochastic %D 100.000 0.000 45.409 28.518
Stochastic slow %D 99.370 0.423 45.397 26.505
Momentum 102.900 2108.780 20.458 21.317
ROC 119.337 81.992 99.994 3.449
LW %R 100.000 20.107 54.593 33.637
A/D Oscillator 3.730 20.157 0.447 0.334
Disparity 5 days 110.003 90.077 99.974 1.866
Disparity 10 days 115.682 87.959 99.949 2.682
OSCP 5.975 27.461 20.052 1.330
CCI 226.273 2221.448 25.945 80.731
RSI 100.000 0.000 47.598 29.531

Table 4
Number of cases

Set Year Total

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Training 232 233 234 236 237 237 235 235 234 234 2,347
Holdout 57 58 58 58 59 59 58 58 58 58 581
Total 289 291 292 294 296 296 293 293 292 292 2,928

Table 5
Average predictive performance (hit ratio: %)

Year BPLT GALT GAFD

Training Holdout Training Holdout Training Holdout

1989 59.05 48.28 57.33 49.12 68.10 59.65
1990 62.23 49.15 59.23 56.90 66.95 60.34
1991 58.97 53.45 53.42 50.00 63.25 56.90
1992 61.02 51.72 60.17 44.83 66.95 58.62
1993 54.01 44.07 54.43 44.07 67.09 61.02
1994 62.45 64.41 61.18 59.32 63.29 62.71
1995 63.83 44.83 63.83 53.45 69.36 65.52
1996 61.28 60.35 61.70 50.00 64.26 67.24
1997 46.15 50.00 50.43 50.00 64.10 62.07
1998 55.98 51.72 56.84 48.28 64.53 62.07
Total 58.50% 51.81% 57.86% 50.60% 65.79% 61.70%



proposed a new hybrid GA and ANN to mitigate the above
limitations. In this paper, GA not only searches for the opti-
mal or near-optimal solutions of connection weights in the
learning algorithm but also looks for the optimal or near-
optimal thresholds of feature discretization for the dimen-
sionality reduction. GAFD discretizes the original continu-
ous data according to the GA-derived thresholds and
simultaneously assigns the genetically evolved connection
weights. We conclude that GAFD reduces the dimension-
ality of the feature space then enhances the generalizability
of the classifier from the empirical results.

This study has some limitations. First, the number of
processing elements in the hidden layer is fixed at 12.
This is the same as the number of input features. However,
the performance of the model may vary with the number
of processing elements in the hidden layer. The second
limitation is that the objects for optimization are focused
on only two factors of the learning process of ANN. GAFD
produces valid results in this study. However, GA can
potentially be used to simultaneously optimize several
factors of the learning process including feature subset
selection, network structure optimization, and learning para-
meter optimization. We also believe that there is great
potential for further research with feature discretization
using GA for other AI techniques including case-based
reasoning and decision trees.
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